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Abstract: Toll-like receptors (TLRs) are pattern recognition receptors that play a central role in the
development and function of the immune system. TLR signaling promotes the earliest emergence
of hematopoietic cells during development, and thereafter influences the fate and function of both
primitive and effector immune cell types. Aberrant TLR signaling is associated with hematopoietic
and immune system dysfunction, and both loss- and gain-of- function variants in TLR signaling-
associated genes have been linked to specific infection susceptibilities and immune defects. Herein,
we will review the role of TLR signaling in immune system development and the growing number of
heritable defects in TLR signaling that lead to inborn errors of immunity.
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1. Introduction

Toll-like receptors (TLRs) are a family of pattern recognition receptors that play a
significant role in the development and maintenance of the immune system. These receptors
recognize a wide variety of pathogens, as well as endogenous ligands associated with
cellular damage. Signaling through TLRs leads to the production of proinflammatory
cytokines and other inflammatory response mediators. TLRs and their signaling pathway
effectors are therefore critical to the function of both the innate and adaptive immune
system. In this review, we will discuss the role of TLRs in the development and maintenance
of the immune system, focusing on the evolving body of literature linking heritable defects
in TLR signaling to specific inborn errors of immunity (IEI).

2. Overview of TLR Signaling

Toll-like receptors (TLRs) are a family of pattern recognition receptors that play a
central role in the immune response to infection and cellular damage. They are type I
transmembrane proteins that contain a ligand-recognition leucin-rich repeat (LRR) domain, a
transmembrane domain, and a Toll/interleukin 1 receptor (TIR) homology domain [1]. There
are 10 TLR family members in humans, and 12 in mice [2–8]. Some of the TLRs, including
TLR1, TLR2, TLR4, TLR5, TLR6 and TLR11, are localized to the plasma membrane, while
others, including TLR3, TLR7, TLR8 and TLR9, are found in endosomes. Most function as
homodimers, with the exception of TLR2, which heterodimerizes with TLR1 or TLR6 [9–11].
TLRs recognize foreign pathogen-associated molecular patterns (“PAMPs”), as well as
endogenous by-products of cellular damage, or so-called damage-associated molecular
patterns (“DAMPs”) [12], and are expressed in a wide variety of hematopoietic and non-
hematopoietic cells, including effector immune cells (e.g., dendritic cells, macrophages,
lymphocytes, granulocytes), hematopoietic stem and progenitor cells (HSPCs), and non-
immune populations such as epithelial and endothelial cells [13–20]. TLR family members
each have a unique cadre of natural ligands (PAMPs and DAMPs). In general, the TLRs
expressed on the cell surface recognize microbial membrane lipids, proteins and lipoproteins,
and the endosomal TLRs recognize both microbial- and self-derived nucleic acids [21].
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Signaling through the TLRs involves the recruitment of intracellular adaptor pro-
teins, which ultimately lead to the activation of transcription factors such as nuclear
factor κ-light-chain enhancers of activated B cells (NF-κB), activating protein-1 (AP-1),
interferon regulatory factor 3 (IRF3) and IRF7, and the production of proinflammatory
cytokines (Figure 1). Most TLRs, with the exception of TLR3, utilize the intracellu-
lar signaling adaptor myeloid differentiation primary response gene 88 (MyD88) [22].
Activated TLRs recruit MyD88, followed by members of the serine-threonine kinase
interleukin-1 receptor-associated kinase (IRAK) family (including IRAK1, IRAK2 and
IRAK4) [23–25]. Together, these proteins form the “Myddosome.” The E3 ubiquitin ligase
tumor necrosis factor (TNF) R-associated factor 6 (TRAF6) is then recruited to this com-
plex, leading to its subsequent activation and stimulation of transformation growth factor
beta-activated kinase 1 (TAK1), followed by activation of the NF-κB and mitogen-activated
protein kinase (MAPK) pathways and the production of pro-inflammatory cytokines such
as interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor alpha (TNFα) and others [26].
Endosomal TLRs, including TLR3, TLR7, TLR8 and TLR9, act via the Myddosome and
TRAF6 to stimulate NF-κB and IFR7. TLR3 utilizes the adaptor TIR-domain-containing
adaptor-inducing interferon-β (TRIF) instead of MyD88 [27], and TLR4 signals via both
MyD88- and TRIF-dependent pathways [28]. TRIF binds to TNF receptor-associated
factor 3 (TRAF3), which then recruits the IKK-related kinases TANK-binding kinase 1
(TBK1) and IKKε, thus activating IRF3 and stimulating the production of type I interferons
(IFNs) [29]. Additionally, TRIF interacts with TRAF6 and promotes the activation of NF-κB
and MAPKs [30].
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Figure 1. TLR pathway variants and immune deficiencies. TLRs signal via MyD88-dependent or TRIF-dependent pathways.
Activated MyD88 recruits IRAKs1/2/4, then TRAF6, and ultimately activates MAPKs and NF-κB resulting in the production
of proinflammatory cytokines. Activated TRIF (via ligation of TLR3 or TLR4) binds to TRAF3 and TBK1, ultimately activating
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activation of MAPKs and NF-κB. Highlighted on the left are TLR signaling pathway players in which variants have been
associated with specific inborn errors of immunity, as indicated. Created with BioRender.com accessed on 27 April 2021.
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3. TLR Signaling in Immune System Development and Maintenance

TLRs regulate both the development and function of the immune system. Several stud-
ies have found that TLR signaling promotes the emergence of HSPCs from the hemogenic
endothelium during embryogenesis in mouse and zebrafish [31,32]. Specifically, stimulation
of TLR4 in hemogenic endothelial cells promotes HSPC development via Notch activation,
and loss of TLR4 signaling leads to a significant reduction in HSPC emergence [31]. Thus,
TLR signaling regulates immunity from the earliest steps of immune system development.
Thereafter, TLR signaling helps to instruct the fate and function of both primitive and effector
immune cells. In HSPCs, TLR signaling promotes proliferation and myeloid differentiation.
Treatment of mice or stimulation of HSPCs in culture with TLR agonists, for example, leads
to an expansion of HSPCs and differentiation along the myeloid lineage [20,33]. Notably,
chronic exposure to TLR ligands, while expanding immunophenotypic HSPCs, leads to a
loss of their function (repopulating and self-renewal activities) [34]. These effects of TLR
signaling on HSPC proliferation and function are mediated by both cell-autonomous and
non-cell autonomous mechanisms [35–37]. In mature effector immune cells, TLR signaling
is central to the initiation and development of both the innate and adaptive responses to
infection and injury. As noted above, TLR signaling leads to the production of type 1 interfer-
ons and other proinflammatory cytokines, and also promotes the production and secretion
of other antimicrobial factors such as nitric oxide and defensins that promote pathogen
killing [38]. TLR stimulation on antigen presenting cells upregulates the expression of cos-
timulatory molecules (CD40, CD80, and CD86) and IL-12 to facilitate the differentiation of
naïve T cells into antigen-specific Th1 effector T cells [39].

Aberrant TLR signaling is associated with susceptibility to infectious diseases, as well
as to autoimmune diseases [40,41], chronic inflammatory diseases [41,42], and cancer [43,44].
Herein, we will focus on the growing body of literature linking germline variants in TLRs
and TLR signaling pathway effector genes to specific immunodeficiencies.

4. Inborn Errors of Immunity (IEI) Associated with Inherited Defects in TLR Signaling

A number of IEI have been associated with inherited defects in TLR signaling (Figure 1).
In general, the degree of immunologic impairment (and therefore the types and severity
of infections) differ based on where in the TLR signaling pathway the defects occur. More
proximal loss-of-function defects, such as those found in TLR3 or in the adaptors MyD88
and IRAK-4, are associated with a restricted cadre of infections. Conversely, defects in
more distal effectors of TLR signaling, such as those affecting NF-κB, have more broad
and deleterious effects on the immune response and are associated with a wider array of
infections and other phenotypes.

5. MyD88 and IRAK-4 Deficiency and IEI

As described above, most TLRs, with the exception of TLR3 (and to some extent,
TLR4), signal via the adaptor MyD88, which then complexes with IRAK-4 to initiate the
formation of the Myddsome. In addition to TLRs, the interleukin-1 receptors (IL-1Rs)
utilizes MyD88 and IRAK4 for signaling [45,46]. Inherited defects in both MyD88 and
IRAK4 have been described [47,48], with loss of either factor leading to a similar phenotype
involving a predilection for severe bacterial infections in early childhood.

IEI resulting from inherited defects in MyD88 were initially described in nine children
from five unrelated kindreds with recurrent, severe pyogenic bacterial infections [47]. Four
of the patients were found to have a homozygous in-frame deletion in MYD88 (E52del), one
had compound heterozygous missense variants (L93P; R196C), and two had homozygous
missense variants (R196C). Functional testing of these alleles in patient-derived cell lines
found them to be unresponsive to IL-1β and IRAK-4/MyD88-dependent TLR agonists.
Furthermore, peripheral blood mononuclear cells from patients with MyD88 deficiency
fail to produce cytokines (e.g., IL-1, IL-6) when stimulated with such agonists, suggesting
that these variants are loss-of-function (LOF). Responses to poly(I:C) (TLR3 ligand) were
largely normal. Inherited deficiency of IRAK-4 phenocopies that of MyD88 deficiency,
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and was initially described in three unrelated children with recurrent streptococcal and
staphylococcal infections [48]. One patient had a homozygous deletion in exon 7 of IRAK-4
(821delT), and the other two patients had a single base-pair nonsense variant resulting in a
premature stop codon (Q293X). As with the MyD88 variants, functional studies confirmed
these to be LOF alleles resulting in IRAK-4 deficiency.

Deficiencies in both MyD88 and IRAK-4 are characterized by recurrent, severe pyo-
genic bacterial infections involving Streptococcus pneumoniae, Staphylococcus aureus and
Pseudomonas aeruginosa [47–50]. Infections first occur early in life, usually before the age of
two years, and include cellulitis, meningitis, arthritis, skin abscesses and sepsis. Systemic
signs of inflammation (e.g., plasma C-reactive protein levels, fever) are often weak or
delayed. As discussed above, both syndromes involve loss of protein expression and/or
function and are inherited in an autosomal recessive pattern. Notably, affected individuals
are otherwise healthy, with clinically normal resistance to other microbes including viruses,
fungi, parasites and other bacteria. Furthermore, while MyD88- and IRAK-4-deficient
children are at risk of life-threatening invasive bacterial infections early in life, with a
mortality rate of approximately 38%, the susceptibility to infection decreases significantly
with age. No infectious deaths have been reported in these patients after the age of 8 years,
and no invasive infections have been reported after the age of 14 years (including patients
not on antibiotic prophylaxis) [47–50]. Other features of MyD88- and IRAK-4- deficient
patients include normal serum immunoglobulins, low-normal to normal specific antibody
levels to polysaccharide antigens, normal B cell subsets and function in vitro, and normal T
cell responses to mitogens and recall antigens. They may also have peripheral eosinophilia
and elevated serum IgE [50].

The clinical diagnosis of MyD88 or IRAK-4 deficiency is best made by genetic sequenc-
ing. Functional testing of TLR stimulation is challenging, and multiple factors including
sample handling can alter clinical testing results. Patients are generally treated with an-
tibiotic prophylaxis for bacterial infection. In addition, for those (about 50% of patients)
without adequate responses to the polysaccharide pneumococcal vaccine, immune globulin
replacement therapy may be helpful [49].

The relatively narrow susceptibility to infection in humans contrasts with MyD88-
deficient mice, which are much more broadly vulnerable to bacterial, viral, fungal and
parasitic infections under experimental conditions (reviewed in reference [51]) [51]. While
the reason for this discrepancy is not clear, it could be due to differences in experimental
versus natural acquisition of infection, as well as differences in the biology of the immune
system between mice and humans [52]. The fact that patients with MyD88 and IRAK-
4 deficiency do not suffer from a wider variety of infections suggests that additional
innate mechanisms exist to compensate for their loss in the detection of pathogens, and
emphasizes the importance of identifying and studying such defects of the immune system
in patients. Furthermore, the fact that the infections that they do acquire are largely confined
to early childhood suggests that maturation of the innate and/or adaptive immune system
diminishes the reliance on these factors for pathogen resistance with age.

6. TLR3 Pathway Variants and IEI

TLR3 is an endosomal TLR that binds to double-stranded RNA (dsRNA), which is
produced during the replication of many viruses, and TLR3 signaling is thus important for
the immune response to certain viral infections. TLR3 is expressed on myeloid dendritic cells
and macrophages, as well as non-immune cells including neurons, astrocytes, microglia,
fibroblasts and a variety of epithelial cells [53–62]. As detailed above, TLR3 signals via
TRIF, which bind to TRAF3, recruit the IKK-related kinases TBK1 and IKKε, and ultimately
activate IRF3 and IRF7 to stimulate the production of type 1 IFNs [27,29]. TRIF also interacts
with TRAF6, promoting the MyD88-independent activation of NF-κB and MAPKs [30].
Given its role in viral recognition and the production of IFN, individuals with deficiencies in
TLR3 signaling are susceptible to certain viral infections. Specifically, infections with HSV-1,
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influenza, and, most recently, SARS-Co-V2 have been attributed to pathogenic germline
variants in TLR3 pathway genes.

7. TLR3 Pathway Variants and Herpes Simplex Encephalitis

Germline variants in TLR3 pathway genes including TLR3 [63–67], UNC93B1 [68],
TRIF [66,69], TRAF3 [70], TBK1 [66,71], and IRF3 [72], as well as two genes important for
type I IFN signaling (IFNAR1 and STAT1), have been linked to increased susceptibility
to herpes simplex virus encephalitis (HSE). Herpes simplex virus type I (HSV-1) is a
double-stranded enveloped DNA virus that typically causes asymptomatic infection or
benign self-healing infections (e.g., stomatitis, gingivitis, labialis). dsRNA occurs as an
intermediate in the replication cycle of HSV-1, which is then recognized by TLR3. TLR3
is expressed on CNS-resident cells permissive for HSV-1 infection, including microglia,
neurons and oligodendrocytes [73–75], and can invade the CNS via the olfactory bulb
or trigeminal nerves causing forebrain or brainstem HSE. Upon infection (primary or
reactivation) with HSV-1, activated TLR3 signaling leads to production of IFNs which then
initiate an adaptive immune response. Lack of IFN production by infected cells allows for
increased viral replication and cell death. Genetic susceptibility to HSE was suggested by
a series of case reports of familial HSE [76–79]. Furthermore, a French study of children
with HSE identified a high frequency of consanguinity in affected children, supporting
an autosomal recessive susceptibility to this infection [80]. Notably, people with HSE
and TLR3 pathway deficiency are usually resistant to other types of infections, including
HSV-1-related diseases outside of the CNS.

The connection between TLR3 deficiency and HSE was first described by Zhang
and colleagues from the Casanova laboratory [63], who identified a dominant-negative
heterozygous variant in TLR3 (P554S) in two unrelated otherwise healthy French children
with HSE. Interestingly, three relatives of these affected children were also found to be
heterozygous for the variant; however, they had not suffered from HSE in spite of HSV-
1 seropositivity. Thus, the P554S TLR3 variant confers a predisposition to HSE with
incomplete penetrance. This variant is located in a region thought to be important for
ligand binding and TLR dimerization. Fibroblasts from individuals bearing the P554S
variant displayed impaired NF-κB and IRF3 activation and cytokine responsiveness to the
TLR3 ligand polyinosine-polycytidylic acid (poly(I:C)), as well as defective IFN-dependent
control of viral replication and enhanced cell mortality upon infection with HSV-1. While
monocyte-derived dendritic cells, NK cells and CD8T cells from affected individuals
similarly displayed impaired response to poly(I:C), their blood DCs and keratinocytes
responded normally. Furthermore, the peripheral blood mononuclear cells of affected
individuals produced cytokines normally in response to most other viruses. Thus, TLR3-
independent pathways appear to prevent the dissemination of HSV-1 outside of the CNS
and provide resistance to most other viruses in TLR3-deficient patients [80]. Since this initial
discovery of a TLR3 germline variant is associated with HSE, several additional variants
conferring a loss of TLR3 activity and susceptibility to HSE have been described [64–67].

TLR3 is an endosomal TLR, and in resting cells co-localizes with UNC93B, a trans-
membrane protein that is important for transportation of all endosomal TLRs [81]. Variants
in UNC93B therefore lead to defective signaling via TLR3, TLR7, TLR8 and TLR9. While
UNC93B-deficient mice are susceptible to murine cytomegalovirus as well as bacterial
infections [82], humans with recessive deficiencies in UNC93B are typically affected only by
HSV-1 (despite impaired TLR3, TLR7, TLR8 and TLR9 signaling) [68]. Casrouge et al. [68]
described two unrelated patients, each born to first-cousin parents, who presented with HSE
but no other unusual infection history. Peripheral blood mononuclear cells (PBMCs) from
these patients stimulated with HSV-1 produced significantly lower levels of IFN-α and IFN-
β, and marginally lower IFN-λ than cells from healthy control individuals. They also had
impaired production of these cytokines in response to a host of other viruses. Patient cells
displayed normal cytokine production to LPS, but impaired IFN-α, -β, -λ, IL-1β, TNF-α and
IL-6 production in response to agonists of TLR7, TLR8 and TLR9. Patient 1 was homozygous
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for a 4 nucleotide deletion in exon 8 of UNC93B1 (1034del4), and patient 2 was homozygous
for single nucleotide substitution at the last nucleotide of exon 6 (781 G > A). UNC93B-
deficient fibroblasts infected with VSV or HSV-1 showed high rates of viral replication and
cytolysis. Cell viability was rescued if cells were treated with recombinant INF-α–2b before
viral infection, demonstrating that cell death results from enhanced viral growth in the face
of impaired IFN-α/β production. These findings implicated UNC93B deficiency as the
cause of HSE in these patients.

TLR3 signals via the adaptor TRIF, and both autosomal dominant (AD) and autosomal
recessive (AR) deficiency of TRIF have been attributed to inherited predisposition to
HSE. Sancho-Shimizu and colleagues [69] described two different unrelated children with
variants in TRIF, including a homozygous nonsense variant (R141X) that results in a
lack of detectable protein, and a heterozygous missense variant (S186L), that leads to
the production of dysfunctional, hypomorphic protein. Notably, the S186L variant was
also found in unaffected relatives, suggesting that this variant confers a predisposition
to HSE with incomplete clinical penetrance. Fibroblasts from the patients with R141X
and S186L variants failed to produce IFN-β, IFN-λ and IL-6 in response to poly(I:C),
HSV-1 or VZV infection, and were susceptible to HSV-1 viral growth and cell death.
Mork and colleagues [66] identified two additional unrelated patients, both adults, with
HSE and heterozygous TRIF variants (A568T and S160F). The PBMCs from both patients
displayed impaired IFN-β responses to HSV-1 infection, indicating that these are loss-of-
function variants.

An autosomal dominant, de novo germline TRAF3 LOF variant was described in a
young adult with a history of HSE in childhood [70]. The variant (R118W) was associated
with reduced TRAF3 protein expression and impaired fibroblast cytokine production
(IFN-β, IFN-λ and IL-6) in response to poly(I:C). The R118W allele was found to exert a
dominant-negative effect on overall TRAF3 protein expression, possibly via inhibition of
trimer formation and the promotion of protein instability. In addition to TLR3-TRIF, TRAF3
interacts with various TNF receptors, influencing signaling via pathways such as CD40,
LT-βR, and BAFFR [83,84]. Indeed, R118W mutant monocyte-derived dendritic cells and B
cells showed impaired production of cytokines in response to activation with CD40L, and
patient-derived fibroblasts were resistant to lymphotoxin-B receptor (LT-βR)-induced cell
death. Of note, the R118W variant has also been described as a somatic variant in multiple
myeloma [85,86]. In spite of the experimental effect of this variant on multiple pathways,
the patient was clinically healthy, off antimicrobial prophylaxis, with the exception of a
history of HSE.

The binding of TRIF and TRAF3 recruits the TBK1 and IKKε kinases, which subse-
quently activate IRF3 and NF-κB. Two heterozygous variants in TBK1 (D50A and G159A)
were described in two unrelated children with HSE [71]. Both alleles were associated with
autosomal-dominant inheritance, but via different mechanisms: the haploinsufficient D50A
allele confers protein instability, and the dominant negative G159A allele displays impaired
kinase activity. Both alleles sensitized fibroblasts to viral (HSV-1 and VZV) infection, and
were rescued by IFN-α–2b treatment. A third variant (I207V) was identified in a 50-year-old
previously healthy female with HSE. PMBCs from this patient displayed impaired CXCL10
and TNF-α production in response to HSV-1 infection, but increased induction of IFN-β in
response to poly (I:C) [66].

A heterozygous LOF variant leading to haploinsufficiency of IRF3 was described by
Andersen et al. [72] in an adolescent female with HSE. The variant (R285Q) interfered
with IRF3 phosphorylation and dimerization, resulting in deficient IRF3 transcriptional
activity and impaired IFN response of fibroblasts and PBMCs to synthetic TLR3 agonists
and HSV-1 infection. The patient’s father was noted to be a healthy carrier of the same
variant, indicating incomplete penetrance. A second heterozygous IRF3 variant (A277T)
that similarly impaired PBMC response to poly (I:C) and HSV-1 infection was detected in a
34-year-old with HSE [66].
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8. TLR3 Pathway Variants and Influenza

In the past several years, inherited defects in TLR3 and type 1 IFN signaling have
been linked to severe influenza A virus (IAV) infection in work from the Casanova labora-
tory [87–90]. Lim et al. [88] identified three unrelated children with influenza A-associated
acute respiratory distress syndrome (ARDS) and heterozygous TLR3 variants leading to
AD TLR3 deficiency. Two of these patients carried the P554S variant, which was previously
associated with germline susceptibility to HSE [63]. The third variant (P680L) is a loss-of-
function variant that results in misfolded, uncleaved protein that is largely retained in the
ER [88], and which also is deficient in dimerization and ligand binding [91,92]. Five healthy
relatives of these affected children were found to carry the variants as well, indicating
incomplete clinical penetrance for severe influenza A infections. Notably, while TLR3 mu-
tant fibroblasts and the patients’ iPSC-derived pulmonary epithelial cells (PECs) displayed
enhanced susceptibility to IAV infection and reduced IFN-β and IFN-λ production, their
peripheral blood leukocytes produced normal amounts of IFNs in response to IAV. As
pulmonary epithelial cells are a primary target of IAV, specific loss of IFN-β and IFN-λ
upon IAV infection likely underlies the pathogenesis of severe IAV-ARDS in TLR3-deficient
patients. Indeed, pre-treatment of TLR3 mutant PECs with IFN-α-2b or IFN-λ rescued
their vulnerability to IAV infection [88]. Ciancanelli and colleagues [89] reported on a
7-year-old girl with life-threatening ARDS from pandemic H1N1 2009 influenza A virus
who was found to have compound heterozygous IRF7 variants leading to a loss of IRF7
function and impaired production of type I and III IFNs in response to influenza infection.
Interestingly, there are no reports to date of patients suffering from both IAV and HSE,
despite the overlap in genetic etiologies [87].

9. TLR3 Pathway Variants and COVID-19

Zhang and colleagues [93] considered that similar variants in TLR3 and IFN produc-
tion or response may underlie susceptibility to lethal coronavirus disease 2019 (COVID-19).
Indeed, they reported that inborn errors of TLR3- and IRF7-dependent type IFN produc-
tion predispose individuals to life-threatening COVID-19 pneumonia. Specifically, they
identified LOF variants governing TLR3- and IRF7-dependent type I IFN production in
3.5% of a group of 659 hospitalized COVID-19 patients, with a significant enrichment
in these variants in individuals with life-threatening pneumonia compared to a control
group with asymptomatic or benign infection. Eight different genes were represented by
these variants, including TLR3, TRIF, UNC93B1, TBK1, IRF3, IRF7, IFNAR1 and IFNAR2.
Among these, both autosomal recessive and autosomal dominant inheritance patterns were
found, including known (AR IRF7 and IFNAR1 deficiencies, and AD TLR3, TRIF, TBK1
and IRF3 deficiencies) and novel (AD UNC93B, IRF7, IFNAR1 and IFNAR2 deficiencies)
disorders of these pathways. As predicted, plasma levels of IFN-α were significantly lower
in patients with these genotypes compared to those without during an acute phase of
COVID-19. Finally, the authors demonstrated experimentally that plasmacytoid dendritic
cells from IRF7-deficient patients failed to produce type 1 IFN in response to SARS-CoV-2
infection, and patient-derived fibroblasts deficient for TLR3, IRF7 or IFNAR1 are suscep-
tible to SARS-CoV-2 infection in vitro. Notably, two SARS-CoV-2-infected patients with
known inborn errors of TLR3 and IRF3 were successfully treated with IFN-α–2a [94]. In
both cases, the patients presented at the early stage of clinical manifestations with high
viral loads based on nasal swab PCR, and were given a single dose of Peg-IFN-α–2a. Both
patients had a rapid resolution of symptoms following IFN administration, suggesting that
early treatment with exogenous type 1 IFN may benefit SARS-CoV-2-infected patients with
known defects in TLR3- and IRF7-dependent IFN production.

TLR3 pathway defects thus predispose humans to a narrow collection of viral infec-
tions. Notably, despite the overlap in the types of variants associated with different viral
susceptibilities, most patients do not present with more than one type of infection. Further-
more, incomplete penetrance was observed in multiple cases, with clinically unaffected
relatives carrying pathogenic variants. Thus, while TLR3 signaling variants confer an
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increased risk of certain viral infections, redundancy within the immune system for viral
detection and other mitigating factors (e.g., age of exposure, variants within other immune
related genes) likely restrict the clinical phenotype.

10. TLR8 Gain-of-Function Variants and IEI

Toll-like receptor 8 is an endosomal pathogen sensor that recognizes single-stranded
RNA including viral ssRNA such as Influenza [95], Sendai [96], and Coxsackie B [97] virus
and bacterial RNA such as Mycobacterium bovis [98] and Helicobacter pylori [99]. It can also
detect synthetic oligoribonucleotides or chemical analogs such as imidazoquinolines [100].
The gene encoding TLR8 is located on the X-chromosome and there are two splice variants
of TLR8—TLR8v1 and TLR8v2—of which TLR8v2 is the most conserved form of TLR8
expressed in human cells [98]. TLR8 is primarily expressed in monocytes, macrophages,
myeloid dendritic cells and neutrophils and, like TLR3, requires UNC93B1 for its endo-
somal targeting [101] where it exists as a pre-formed dimer. It possess a leucine-rich
repeat (LRR) region, a transmembrane domain, and a Toll–IL-1 receptor homology (TIR)
domain [102]. Ligand binding induces a conformational change in the TIR dimer interface
that causes the cytoplasmic domains to contact each other to initiate the TLR8-MyD88
signal transduction pathway. This leads to NF-kB activation, IRF-7 and IRF-5 activation via
the IRAK pathway. This subsequently leads to production of pro-inflammatory cytokines
and type I IFNs. TLR8 is one of the least-studied members of the TLR family, primarily
due to a lack of small animal models. For instance, mouse TLR8 lacks a five amino-acid
residue motif that is highly essential for human TLR8 ligand binding and function [103],
hence murine TLR8 does not recognize ligands that activate human TLR8. Murine TLR8
is functional and mice deficient in TLR8 have increased TLR7 signaling due to the lack
of inhibition by TLR8, and DCs produce high amounts of cytokines causing spontaneous
autoimmunity, autoantibodies, splenomegaly, and reduced B cell numbers [104].

Recently, we described germline and somatic variants in TLR8 as an underlying mono-
genic cause of IEI in patients with recurrent infections, neutropenia, lymphoproliferation,
hypo-gammaglobulinemia, and bone marrow failure [105]. In our cohort of six unrelated
male patients, five patients harbored somatic mosaic variants in TLR8, with four patients
having the same mosaic variant (P432L) and the fifth patient with a different mosaic variant
(F494L). TLR8 mosaicism was detected at similar allelic frequencies in DNA samples from
whole blood, fibroblast, saliva and/or sorted immune subsets in 4/5 patients, indicating
that the post-zygotic mutational event leading to mosaicism occurred at an early stage of
embryonic development in these patients. Patients with mosaicism had less than 30% cells
harboring the variant in their peripheral blood samples (range, 8–26%), suggesting that the
variants exert a “dominant” phenotype. The sixth patient harbored a de novo germline
variant and died at a young age due to severe fungal infections associated with refractory
neutropenia. Functional testing of the variants in a TLR8-deficient NF-κB reporter cell line
revealed that all the variants result in a gain-of-function (GOF) phenotype.

We hypothesize that TLR8 GOF variants lead to a hyperinflammatory state and
immune dysregulation. Supporting this, analysis of serum cytokines demonstrated signifi-
cantly increased TNFα, IL-1β, IFNγ, BAFF, IL-2Rα, IL-12/23 p40 and IL-18. Immunological
evaluation revealed an inverse CD4:CD8 ratio, a skewed CD45RA/CD45RO ratio, a high
percentage of CD8+ TEMRA cells in multiple patients, presence of a dominant T cell clone
in one patient and a T-cell large granular lymphocyte (T-LGL) phenotype in one patient,
suggesting an activated T cell phenotype. Multiple patients had low B cell numbers, with re-
duced class-switched memory B cells, suggesting a B cell maturation defect. The functional
consequence of the GOF variants on patient-primary cells with mosaicism was established
using patient-specific iPSCs. Differentiation of myeloid cells from patient-specific iPSCs
identified cells with the variant as having increased phosphorylation of NF-κB to low doses
of TLR8 stimulation. Additionally, enhanced production of pro-inflammatory cytokines
like IL-6, TNF-α and IL-1β was also observed, supporting the presence of cytokine-driven
mechanisms of disease pathogenesis.
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Patients with TLR8 GOF were all relatively refractory to standard therapy for neutrope-
nia, including G-CSF treatment. All patients were trialed on various immune suppression
agents, and three patients required hematopoietic stem cell transplantation (HSCT) due to
evolving bone marrow failure. The optimal therapy for these patients is still unclear, but
may include inhibiting cytokine signaling and ultimately HSCT.

Notably, this recent discovery of mosaic, GOF TLR8 variants associated with severe
immune deficiency and multiple cytopenias suggests that while the immune system can
largely compensate for the loss of individual TLRs (including multiple TLRs simultane-
ously, as with MyD88 or IRAK-4 LOF), sustained hyperactivation of TLR signaling can have
more broadly deleterious effects on immune system function. In addition, mosaic variants
may be missed on standard exome and genome analyses, begging the question of whether
additional such variants will be identified in the future to account for previously unex-
plained cases of IEI. Moving forward, sequencing of patients with immunodeficiency of an
unknown etiology should consider mosaic variants (e.g., those with low allele frequencies)
as potentially pathogenic.

11. IKK Complex and NFKBIA (IKBA) Variants and IEI

NF–κB is important for multiple innate and adaptive immune pathways (e.g., TLRs,
nucleotide-binding oligomerization domain (NOD)-like receptors, T- and B-cell receptors,
CD40 and others), as well as developmental pathways (e.g., receptor activator of NF-κB
in osteoclasts and ectodysplasin A in ectoderm). NF-κB activity is regulated by NF-κB
inhibitor proteins alpha and beta (NFKBIA and NFKBIB), also known as inhibitor of kappa
B alpha and beta (IKBα and IKBβ). These inhibitors sequester NF-κB in the cytoplasm,
and upon their degradation after phosphorylation by IKK (a heterotrimer of alpha, beta
and gamma chains), NF-κB can enter the nucleus. Variants that effectively reduce NF-κB
activity, including hypomorphic variants in the IKK beta chain (encoded by IKBKB) or the
IKK gamma chain (also known as NF-κB essential modifier, or NEMO, encoded by the
IKBKG gene on the X chromosome), or activating variants in NFKBIA, cause a combined
immunodeficiency with associated bone and skin findings.

Complete LOF variants of NEMO result in embryonic lethality in males and a severe
genodermatosis known as incontinentia pigmenti in females. Hypomorphic variants,
however, result in X-linked anhidrotic ectodermal dysplasia with immunodeficiency
(XL-EDA-ID). Approximately 100 patients with 43 different NEMO variants have been
reported, all of which impair NF-κB signaling [106–108]. These variants have a varying
impact on NEMO function, and are therefore associated with diverse clinical and im-
munologic phenotypes [109]. All patients have some degree of immune dysfunction, with
variable susceptibilities to pyogenic bacterial, mycobacterial, fungal and viral infections.
Most (though not all) patients with NEMO deficiency display features of EDA (including
skin abnormalities, hypoplastic or absent sweat glands, sparse hair, tooth abnormalities
and nasal or forehead dysmorphology), and they may also present with autoimmunity
and inflammatory conditions, particularly inflammatory bowel disease [109].

An autosomal dominant form of EDA-ID (AD-EDA-ID) results from GOF variants
in the gene that encodes the IkBα subunit (NFKBIA), preventing its phosphorylation and
subsequent degradation and thus enhancing its activity to inhibit the nuclear transloca-
tion of NF-κB [110,111]. Eleven different variants have been identified in 14 unrelated
patients [110,112–121], including missense variants affecting phosphorylation sites (S32,
S36, or neighboring residues), and nonsense variants upstream from S32 associated with
re-initiation of translation downstream from S36. Patients suffer from severe pyogenic,
mycobacterial, fungal and viral infections beginning in infancy. They all display severe
B-cell deficiency with impaired antibody production, as well as varying degrees of other
features including lymphocytosis, dysfunctional α/β T cells, lack of circulating γ/δ T cells,
and lack of peripheral lymph nodes. Finally, almost all patients with these GOF NFKBIA
variants display features of EDA, including absent or dysfunctional sweat glands, abnormal
teeth, and sparse hair. Of the fourteen known patients described by Boisson and colleagues
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in 2017 [111], 11 had received HSCT. Six of these transplanted patients died (three from
bacterial sepsis, one from neurodegenerative disease, one from acute respiratory distress
and one from cerebellar hemorrhage), and 5 were successfully transplanted, 3 of which
have persistent partial immunodeficiency [111].

Cuvelier et al. [122,123] described a series of 16 patients with homozygous IKBKB
variants (1292dupG), resulting in a complete loss of IKKβ expression, that presented in early
infancy with severe bacterial, viral, fungal and mycobacterial infections. Unlike individuals
with IKK/NEMO variants, none of these patients exhibited ectodermal dysplasia. Thymic
hypoplasia, minimal lymph node and tonsillar tissue, and an absence of splenic germinal
follicles were noted in all patients. T and B cells, while quantitatively normal, were
phenotypically naïve, and the patients had hypogammaglobulinemia. Eight of the affected
infants underwent HSCT, and the other eight died of overwhelming infection before HSCT
could be performed. Of those transplanted, 3 remained alive 6 months, 6 years and 7 years
post-transplant. Two patients died from complications of infections present at the time of
the transplant and three died of new infections acquired post-transplant (two in association
with graft failure).

12. TLR Pathway Polymorphisms and Disease

In addition to the monogenic disease discussed in the sections above, numerous single-
nucleotide polymporphisms (SNPs) in TLR pathway genes with more subtle effects on
protein function have been associated with altered susceptibility to infection and inflam-
matory diseases. Discrepancies exist in the literature regarding the impact of various
TLR-related SNPs on disease, and their influence on the immune system often depends
on environmental factors, sex, ethnic background and the presence of polymorphisms in
other immune-related genes. A comprehensive review of clinically significant TLR poly-
morphisms is beyond the scope of this review, and may be found in several other excellent
publications [124–126]. Herein, we will briefly review just a few of the more commonly
studied TLR polymorphisms associated with infection susceptibility.

A number of studies have identified polymorphisms in TLRs that are associated
with increased risk of severe fungal infections [127–131]. In a study of 338 patients with
severe invasive candida infection (candidemia) and 351 non-infected controls, Plantiga
and colleagues [127] found 3 TLR1 SNPs (R80T, S248N and I602S) that were significantly
associated with susceptibility to candidemia, particularly in white individuals. PBMCs
from patients carrying these SNPs displayed reduced cytokine production upon incubation
with the specific TLR1/2 agonist PAM3CSK4. In a separate study [132], the TLR1 602S
variant was shown to impair trafficking on TLR1 to the cell surface, and monocytes
homozygous for this variant produced significantly less TNF-α in response to PAM3CSK4
compared to those with at least one 602I allele. Interestingly, the 602S allele, which is
common in Caucasians, was found to be underrepresented in a population of 57 Turkish
leprosy patients compared to 90 asymptomatic controls recruited from areas where this
disease is endemic. Specifically, the homozygous 602S genotype was associated with a
significant reduction in leprosy incidence (odds ratio of 0.48), suggesting that reduced
TLR1 surface expression and function is protective against symptomatic leprosy.

Polymorphisms in TLR2 have been associated with a risk of various infectious diseases.
The R677W and R753Q SNPs, for example, have been linked to impaired TLR2 signaling
and enhanced susceptibility to tuberculosis infection. Consistent with its known role in
viral recognition, TLR3 polymorphisms have been linked to susceptibility to viral infection.
The L412F SNP, for example, has been associated with resistance to HIV infection in an
Italian population [133]. Polymorphisms in TLR4 have been variably linked to increased
risk of sepsis infection with gram negative bacteria, RSV bronchiolitis and disseminate
candidiasis. A common stop codon SNP in the ligand-binding domain of TLR5 (329STOP)
that is unable to mediate flagellin signaling has been associated with susceptibility to
Legionella pneumophila pneumonia [134]. Finally, polymorphisms in TLR7 and TLR8
have been linked to susceptibility to HCV infection [135,136].
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13. Discussion

TLRs are key pathogen-sensing receptors that play a central role in both the develop-
ment and activation of the immune system. Not surprisingly, dysfunctional TLR signaling
predisposes to infections, and a growing number of single-gene variants in the TLR path-
ways have been associated with inherited immune system defects. Most of the known
TLR-associated immune deficiencies involve constitutional LOF variants in TLR pathway
genes, and, with the exception of the IKK complex and IKBα variants, confer a relatively
narrow susceptibility to infection with minimal effects on the immune system overall. Fur-
thermore, many of the identified variants associated with infection susceptibility are not
fully clinically penetrant. The reason for this narrow susceptibility and limited penetrance
is not clear. Further research is needed to better understand the role of TLR signaling in
different cells of the immune system, to identify redundancy within the TLR signaling
pathways and among other pattern recognition receptors, and to understand how the
roles of TLRs change with maturation and aging of the immune system. Furthermore, the
cell-autonomous and cell non-autonomous effects of enhanced TLR signaling (e.g., in the
case of TLR8 GOF variants) on the development and function of the immune system awaits
further study. Finally, while studies in mice over the years have provided an invaluable in-
sight into the role of TLR signaling in the immune system, the discrepancies in phenotypes
between TLR signaling-deficient mice and humans (e.g., the much more broad infection
susceptibility in MyD88-deficient mice compared to humans with MyD88 LOF variants)
highlights the importance of utilizing patient samples whenever possible to help answer
the outstanding questions regarding the role of TLR signaling in pathogen recognition and
immune system function.
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