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1  | INTRODUC TION

The technological revolution we have been experiencing in the last 
decades impacted medical sciences in various ways. Many results 
from high- throughput experiments and the increased connection be-
tween data scientists have made available an unprecedented amount 
of insights to researchers and practitioners. Consequently, it becomes 
evident that many biological processes, as craniofacial growth, are 
prominent examples of complex systems in which the outcome de-
pends upon the interaction of various components.1,2 Each element 

depends on its past properties, the properties of the other elements, 
and their past. This new scientific paradigm triggered the search for 
mathematical instruments to describe and possibly drive such com-
plex behaviour.3 A complex system of interacting agents takes a natu-
ral mathematical form of a graph where the vertices are the elements 
of the system, and their complex interaction is put in the form of an 
edge (directed, weighted, etc).4 By considering the individual variabil-
ity within patients, network theory makes it possible to optimize and 
individualize the diagnosis in the modelling of precision medicine.5,6 
In the last decades, the evolution of disparate, complex biological 
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Abstract
Procedures and models of computerized data analysis are becoming research-
ers' and practitioners' thinking partners by transforming the reasoning underlying 
biomedicine. Complexity theory, Network analysis and Artificial Intelligence are al-
ready approaching this discipline, intending to provide support for patient's diagno-
sis, prognosis and treatments. At the same time, due to the sparsity, noisiness and 
time- dependency of medical data, such procedures are raising many unprecedented 
problems related to the mismatch between the human mind's reasoning and the out-
puts of computational models. Thanks to these computational, non- anthropocentric 
models, a patient's clinical situation can be elucidated in the orthodontic discipline, 
and the growth outcome can be approximated. However, to have confidence in these 
procedures, orthodontists should be warned of the related benefits and risks. Here 
we want to present how these innovative approaches can derive better patients' 
characterization, also offering a different point of view about patient's classification, 
prognosis and treatment.

K E Y W O R D S

artificial intelligence, big data, complexity, machine learning, musculoskeletal magnetic 
resonance imaging, network medicine, orthodontics

www.wileyonlinelibrary.com/journal/ocr
mailto:
http://creativecommons.org/licenses/by/4.0/
mailto:gabriele.dicarlo@uniroma1.it


     |  17GILI et aL.

systems has been predicted, almost automatically, by using different 
tools and procedures from Artificial Intelligence (AI).7- 10

From an initial data set of patient's characteristics (‘learning set’), 
AI algorithms learn how the features relate to and predict the out-
come. Machine Learning (ML), a sub- discipline in AI, is instead fo-
cussed on the ability to handle noisy or irrelevant data and on the 
capability to predict the outcome of a disease based on data derived 
from similar conditions.11,12 The first attempts to use biomedical 
data to extract prediction resulted in probabilistic models trained on 
a series of case studies, tried to match the individual patient's con-
dition with predefined classes of stratified increasing health risks.13

Using Artificial Neural Network procedures, the correlation be-
tween early craniofacial features and the risk of craniofacial wors-
ening during growth was established in 43 orthodontic patients.14 
As the number of cases available for predicting health outcomes 
increased, new problems related to data incompleteness and inho-
mogeneity and ethical aspects of storage arose.15,16 Using Graph 
analysis, feature covariance across orthodontic patients allowed 
to disentangle Class III subjects from the topological patterns of 
other malocclusions.17 ML algorithms have been adopted to assist 
the orthodontist in treatment plan decision, including premolar ex-
traction.18,19 Indeed, such essential decisions during orthodontic 
treatments can be subjected to different points of view, as they tend 
to be based on the practitioner's experience and intuition. Resorting 
to ML procedures, one can decrease, at least in principle, personal 
biases in the treatment analysis and choices.19

The precision of ML answers crucially depends on the quality of 
data input, both in terms of number and appropriateness. ML algo-
rithms cannot work if provided with raw data, which must be trans-
formed into domain- specific representative and salient information. 
Therefore, choosing the best characteristics (the most expressive of 
the problem) is crucial for predicting. It is also imperative to collect 
and give the machine data expressed as geometric, physiological, 
clinical and anamnestic parameters to make the most of what the 
current technology has to offer.17,20- 22

The integration of biomedicine and computer science is based 
on two concepts: Systems of the body have complex and dynamic 
biological properties that rely on the interaction of molecular agents 
sustaining the physiological functioning, as well as the pathogen-
esis of diseases at different scales; if complex interactions cannot 
be understood or processed by conventional methods, they can be 
investigated and explained using ML. The quantification of imaging 
biomarkers able to witness the status of a system of the body is the 
core business of medical research. Among the multiple choices avail-
able in the field, Magnetic Resonance Imaging (MRI)23 is the one that 
offers high accuracy and reliability at multiple spatial resolutions, 
with the invaluable plus to be non- invasive.

This work aimed to present an essential overview of ML tech-
niques and possible applications in the orthodontic discipline, high-
lighting merits, potentials and potential improvements offered by 
the inclusion of networked multiscale musculoskeletal data con-
gruently segregated for advanced AI procedures. The integration 
of biomedical databases and mathematical models in multiscale and 

multi- physics systems is a well- established research field24,25 that 
discusses dynamic and static mechanical dynamics as essential el-
ements in constructing models of living organisms and diseases. 
Although it is well beyond the ultimate purpose of this paper, we feel 
confident that the inclusion of such modelling in the fusion of bio-
medicine and computer science presented here will be mandatory in 
the next future.

1.1 | The orofacial system as a hierarchical 
multiscale complex system

Orthodontic researchers and practitioners are interested in extract-
ing the most significant possible amount of information from all po-
tential sources to provide the best diagnostic framing and treatment. 
It means mining significant patterns from past studies and tracing 
down the localization of the pathobiology underlying growing tra-
jectories with and without unfavourable dentoskeletal growth. Such 
difference may point towards the prediction of modifiable skeletal 
disharmonies.26 However, it is problematic to understand a priori 
what would be the best data representation, and transform inputs 
into information that the machine could understand.

It is well recognized that bones and teeth structural and mechan-
ical properties,27 and the elastic properties of muscles strongly influ-
ence the post- treatment stability.28

Once conceptualized as a whole, bones, teeth and muscles 
represent a complex system whose physiology is related to their 
multiscale hierarchical structures and the precise organization of in-
organic and organic phases at the nanoscale, microscale, up to the 
macroscopic scale (Figures 1,2).

It is known how the effects of orthodontic treatments can lead to 
significant or poor results, depending on the period of growth during 
which it is implemented and on the quality of the bone and bone- tooth 
interface.29 These latter factors involve both the mineral part and the 
collagen of bone marrow (Figure 1).30- 32 Therefore, it is crucial to inter-
vene with orthodontic treatments in the most appropriate period of 
growth but only to know the characteristics of the cancellous bones. 
Currently, there are attempts to evaluate both the optimal period of 
treatment and the health of the cancellous bone related to vertebral 
maturation. The maturation of the different skeletal segments does 
not happen at the same time. For example, the upper and lower jaw 
complete their development at other times.33 Due to the quality of 
the bone, the teeth can move or rotate unexpectedly, even with a 
technically perfect orthodontic procedure. Parameters that quantify 
the upper and lower jaw spongy bone quality should constitute the 
dataset to be collected for an appropriate and inclusive treatment 
plan. It is worth quantifying MRI parameters such as T2* and Apparent 
Diffusion Coefficient (ADC),34- 38 which are related to spongy bone 
quality. Efforts to translate new dental and bone microstructural in-
vestigations to clinical practice in orthodontics should be devoted to 
making reliable predictions about the evolution of dentoskeletal tis-
sue. It is crucial to understand how the micro and nanoscopic rear-
rangement contribute to the macroscopic bone tissue modification.32
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Cells of the musculoskeletal system reside within complex and 
often interconnected 3D environments, which regulate musculo-
skeletal physiology and homeostasis (Figure 2). Maxillofacial devel-
opment is also regulated by the surrounding soft tissues. Muscles 
affect skeletal components' size and shape with a possible different 
relationship between the muscular pressure and structural configu-
ration in Class I, II and III malocclusions.39 Several orthodontic stud-
ies suggest the usefulness of monitoring electromyographic (EMG) 
activity of the jaw muscles. Moreover, a close correlation between 
skeletal and muscle tissues states has been recently highlighted,40 
and fat increase and decreased muscle function. Parameters such as 
MRI T2 and ADC have proven useful to evaluate the muscles' state 
because of the relationship between the microscopic structure and 
function.41- 44

As highlighted above, despite the multiscale hierarchical nature 
of the musculoskeletal tissue, only macroscopic cephalometric vari-
ables composed of linear and angular geometric measurements are 
considered in conventional clinical practice. However, due to the 
development of in vivo imaging technology, additional methods can 
be used to obtain a set of multimodal and multi- parametric mea-
surements at different length scales, involving the microstructure, 
the topology of the craniofacial tissue, and also its physiology.45 In 
recent years, in addition to the conventional x- ray computer tomog-
raphy (CT) and the cone- beam computer tomography (CBCT), MRI 
has shown great potential in dentistry.46- 50 Furthermore, as most 
patients receive orthodontic treatment during childhood, further 
development of radiation- free techniques, such as MRI are highly 
desirable.51- 53

F I G U R E  1   Schematic depiction of bone and tooth multiscale hierarchical structure from macroscopic bone (up raw) and tooth (bottom 
raw) to their nanoscopic elements. This hierarchical organization is the genesis of bone and dentine properties, including stress tolerance, 
adaptability and development during the growth process. In dentine, tubules are the prominent structural feature at a micro- level, whereas 
collagen fibres decorated with apatite crystallite platelets dominate the nanoscale. In bone, hydroxyapatite (HA) crystals at nanometer- level 
periodically are deposited within the gap zones of collagen fibrils during the bone biomineralization process. This hierarchical arrangement 
produces nanomechanical heterogeneities, which enable a mechanism for high energy dissipation and resistance to fracture. At a micro- 
macro- level, bone marrow quality in spongy bone and trabecular network rearrangement affects the resistance of bone to mechanical 
stress. Adapted from reference24,26,65- 67 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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Together with the measurements provided by the imaging tech-
niques, it is crucial to collect clinical and anamnestic data from pa-
tients. Some authors use genetic data to obtain a set of priors that 

could better supplement the inputs for correct patient classifica-
tion.54 Modelling malocclusion progression means taking into ac-
count the complexity of the system. The complex interplay of causes 

F I G U R E  2   Schematic representation of muscle multiscale hierarchical structure. Most of the physiological muscle functions are related 
to its hierarchical organization and components. Physical inactivity causes a decrease in muscle mass and an increase in fat mass, but 
a chronic high fat diet also increases muscle fat, limiting full muscle function. Muscles quality is often related to skeletal tissue quality. 
Parameters that quantify the craniofacial muscles quality of an orthodontic patient should constitute the data set to be collected for 
planning treatment. Adapted from references40,41 [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  3   Artificial neural network schematization. An artificial neural network is based on a set of connected nodes, where 
connections, like synapses in a biological brain, can transmit a signal from a node to another. The transmitted signal is a real number, and 
the output of each node is computed by some non- linear function of the sum of its inputs. Connections (also called edges or links) typically 
have a weight that adjusts as learning proceeds. Nodes are aggregated into layers, and different layers may perform various transformations 
on their inputs. Signals travel from the first layer to the last one (the output layer), often after going through the mid- layers (hidden layers) 
multiple times. According to the number of layers included in the neural network, different machines can be realized, from simple machine- 
learning engines to deep learning ones [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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behind atypical growth requires a different perspective about the 
disorders affecting the orofacial biological balance. By enlarging the 
basin of information about the system's chemical, physical and me-
chanical properties, it is possible to enable its description and evo-
lution using more in- depth ML and AI procedures. To achieve data 
more representative of the patient's situation, and therefore, the 
most significant possible amount of information, different in vitro in-
vestigation techniques about orofacial tissue at various scale lengths 
could be of clinical and research interest (Figure 2).55,56 Once the 
most extensive possible spectrum of information has been obtained, 
deciding the best approach to combine the collected data are re-
quired. Here, we present different ML methods that stem from the 
complex network theory to offer the appropriate patients’ classifi-
cation, without drawing on the choice of a specific and predictive 
biophysical model.

1.2 | Learning features from data

Biomedical data, such as growth data, are constantly evolving. 
The related information is disseminated in a network of intercon-
nected pieces of local information (nodes), and memory is encoded 
in the topology and the strength of such multiple connections 
(edges), rather than stored in the single information as in statisti-
cal databases. The power of such networks resides in their capac-
ity to learn.57 Both in living beings and computer algorithms, the 
strengthening of connections is the microscopic mechanism for 
elaborating the information.58,59 Artificial neural networks (ANN) 
use multiple layers of calculations to imitate the human brain's 
reasoning and draw conclusions from initial information. ANN 
can deal with complex intertwined problems (Figure 3). Different 
types of signs, symptoms, X- rays, risk factors, imaging results 
enter into ANN algorithms to find the most predictive combination 
of variables. ANN assign weights to some combination of nodes 
(the features chosen to ‘train’ the machine) to repeatedly optimize 
the model's predictive performance.60 According to the number 
of layers included in the neural network, different machines can 
be realized, from simple machine- learning (ML) engines to ‘deep’ 
learning ones.61,62

The canonical ML workflow involves four steps: (a) data gath-
ering, cleaning and pre- processing, (b) feature extraction, (c) model 
training, (d) evaluation of results. Refining these steps can be 
complicated by intuition alone. The ability to separate patient's 
outcomes requires more targeted diagnostics, as to subgrouping 
patients with significantly different growth trajectories and clin-
ical courses despite the similar early diagnostic frameworks.60,63 
Once ML approaches are matched to orthodontic data, challenges 
arise from data incompleteness, high- dimensionality, heterogene-
ity, dynamicity, sparseness and statistical noise that can be par-
tially mitigated by Network representation.15,64 Due to such data's 
complex and interconnected nature, any single model can deepen 
only a tiny part of the entire orthodontic domain.65,66 Whilst the 

conventional medical approach is based on the careful recruitment 
of clinical and laboratory data, testing of a diagnostic hypothesis, 
causes and effects of phenomena, significance, checking the initial 
hypothesis and so on, ML workflow focuses instead on the fast 
predictive performance of models and iterative improvement of 
the algorithms, coping with high- dimensional spaces, variability of 
features and formats.60,67

1.2.1 | Data gathering and Feature transformation

Feature engineering (FE) is the process that transforms raw data into 
features to feed into the prediction models. Therefore, features sit 
between data and models in the ML workflow (Figure 4). Moreover, 
being interested in defining the quality of growth, in the beginning, 
it has to decide how to assign each patient to the proper category: 
as an example, favourable/unfavourable growth often represents 
the label of interest. Then, patients' clinical and cephalometric data 
can be imported into the training data, together with the specific 
labels. It is the beginning of the supervised learning approach. The 
algorithm will find the function that links the patient's input data 
with the outcome, minimizing the number of errors. However, raw 
data can rarely be entered without a preliminary selection to discard 
redundancies and simplify the system.68

1.2.2 | Learning

Regularization is the crucial attribute for high- quality learning data 
from a large number of features. The process does not aim to pre-
dict labels within data of the learning dataset optimally but rather 
generalize the prevision about new, previously unseen patients. 
Accordingly, data regularization is equivalent to imposing a penalty 
for the system's complexity to improve performance.69 When the 
algorithm has few patient samples available from which it can learn 
the connection between the characteristics and the outcome, it 
ends up memorizing the training data set instead of learning general 
features of data (over- adaptation to data, a.k.a. ‘overfitting’). For this 
reason, a model will perform well on the training set and poor with 
new patient's data. On the other hand, a small number of patient's 
characteristics in the learning set provides an inadequate descrip-
tion of the problem at hand and may result in learning difficulties 
(‘underfitting’). Thus, there is a trade- off between the model perfor-
mance and the size of the training set, that is, the patient coverage, 
the per cent of potentially eligible patients for that risk assessment 
can be completed.69

Supervised ML learning is used when the output is known. The 
learning procedure primarily deals with regression and classification 
problems. It focuses on classification, which involves choosing be-
tween subgroups to describe a new patient best, and predictions, 
which consists of estimating an outcome of interest, such as the 
quality of future craniofacial growth.63,69
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In contrast, unsupervised learning is not intended to find out-
puts to predict, and it tries to find naturally occurring patterns 
within data.10 The patterns identified have to be evaluated for utility. 
Unsupervised models aim to discover groupings from data samples 
‘x’ without knowing the label output ‘y’. The algorithm is provided 
with unclassified data records to recognize whether any existing la-
tent patterns are present. Clustering, dimensionality reduction, like 
principal component analysis are leading examples of unsupervised 
learning approaches. The preliminary subdivision into subgroups of 
patients may lead to the subsequent estimation of specific risk fac-
tors. In particular, clustering refers to the extraction of group latent 
similarities within data that allow subjects to be grouped into sub-
sections. The clustering assumption states that such subsections of 
subjects often exhibit the same outcome.70 In orthodontics, because 
of the complexity of medical data and heterogeneity of patients, 
identifying subsections of patients by intuition can be difficult.20

Semi- supervised learning (SSL) is a mixture of supervised and 
unsupervised models. It analyses several unlabelled cases (patients) 
whilst augmenting its pattern recognition capacities with a small 
quantity of labelled data.71

This approach is promising in orthodontic longitudinal studies 
since it is laborious to find data that refer to many patients followed 
closely over time, at comparable regular intervals; even more, un-
treated patients followed longitudinally.

Finally, reinforcement learning (RL) is an approach where soft-
ware agents take actions in an environment to maximize a cumula-
tive reward. RL differs from SL in not needing labelled input/output 
pairs to be presented without requiring sub- optimal actions to be 

corrected. The goal is finding a balance between exploration (of un-
charted territory) and exploitation (of current knowledge).72,73

1.3 | Learning features from networks

Learning techniques rely on networked environments to conduct 
the learning process on data of interest. What if data are not gener-
ated from grid- like Euclidean structures (like images and videos) and 
represented as graphs with complex interdependencies between 
objects? For network- based methods, the learning procedure is per-
formed by navigating in networks built from the input data according 
to some similarity criterion.74 As networks naturally contain topo-
logical information of data relationship, network- based methods 
take advantage of typical algorithms that use raw data. It must be 
stressed that network- based methods can be considered a general 
solution for learning tasks, even for data sets not represented by 
networks. One can apply network construction techniques to that 
data set to generate a network from the input data. Once the net-
work is constructed, the learning process can be run. Patient strati-
fication is a general target of network- based methods of machine 
learning. For example, cancer somatic mutation profiles are highly 
coupled with the biomolecular network,5,75 in fact, somatic muta-
tions of a cancer driver gene may lead cancer genome evolution to 
mutations in other genes.76 Therefore, each patient with its somatic 
mutation profiles can be identified, and the similarity between pa-
tients can be used to mine for tumour stratification. Analogously, 
information about malocclusion within the orofacial system can 
be extrapolated from the correlation matrix of the orthodontic 

F I G U R E  4   Machine learning. Different 
approaches to the learning process 
produce different machine- learning 
schemes. According to the number of 
features used to train the machine, one 
can obtain supervised learning (labelled 
data sets are used to train the machine), 
unsupervised learning (unlabelled data 
sets are used to train the machine), semi- 
supervised learning (a mix of labelled 
and unlabelled data sets are used to train 
the machine) and reinforcement learning 
(there are not data sets to train the 
machine). According to the quality of the 
target data (continuous or categorical), 
different tasks can be performed by the 
learning processes [Colour figure can be 
viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/


22  |     GILI et aL.

features. The correlation matrix relates to a network whose vertices 
are associated with the features and the edges to their covariance 
across patients,17 allowing the visualization of malocclusion informa-
tion (Figure 5A). The networks are obtained by fixing a threshold 
value T: if the Pearson correlation between two vertices (features) 
is larger than T, they are considered connected (“linked”).17 Several 
topological network metrics are typically considered to convey bio-
logical meaning to cephalometric correlations (Figure 5A), as ‘be-
tweenness’20 (a node centrality index) or modularity (the capacity 
of nodes to form communities characterized by similar properties).77 
Once the graph is computed, the topological structure of the input is 
encoded in simpler structures (eg vectors of reals), and then the ML 
algorithms can be run.

The application of ML to graphs can be generally divided into 
two categories78:

• Node- focussed applications, where the final task is associated 
with specific properties of each node (examples include node clus-
tering, link prediction, semi- supervised node classification).

• Graph- focussed application, where the model to be realized is 
dependent on the whole graph structure (examples include estima-
tion of properties of graphs and graph classification).

The machine- learning methods that operate on graph domain are 
known as Graph Neural Networks (GNNs). Due to its convincing per-
formance, GNN has become widely applied to infer data described by 
graphs.78- 80 In GNN, the concept of Node Embedding is implemented. 
It means to map nodes to a d- dimensional embedding space (low di-
mensional space rather than the actual dimension of the graph) to 
embed close to each other similar nodes in the graph. The procedure 
aims to map nodes, so the similarity in the embedding space approx-
imates similarity in the network.81,82 Training can be unsupervised, 

F I G U R E  5   Complex Networks and 
data analytics. (A) Network analysis 
pipeline for orthodontics data. Once 
cephalometric variables are standardized 
to Z- values, they are entered in a 
cross- correlation process that returns 
a symmetric matrix, whose entries are 
the intervariable Pearson's correlation 
coefficients across subjects. A threshold 
is set to the matrix according to the P- 
values associated with the coefficients. 
The final matrix (a weighted adjacency 
matrix) is translated into a network 
whose nodes are the cephalometric 
variables and the weights of the links the 
Pearson's correlation coefficients that 
survived the thresholding process. Finally, 
different metrics have been calculated 
from the network topology: centrality 
measures, modules or communities and 
the core- periphery structure. (B) GNN. 
Low- dimensional node representations 
are first learned from networks by graph 
embedding and then used as features 
to build specific classifiers for different 
tasks [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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semi- supervised or supervised. The supervised setting provides la-
belled data for training and is used for node classification. The semi- 
supervised setting gives a small number of labelled nodes and many 
unlabelled nodes for training. In the test phase, the transductive set-
ting requires the model to predict the labels of the given unlabelled 
nodes, whilst the inductive setting provides new unlabelled nodes 
from the same distribution to infer. Most node and edge classification 
tasks are semi- supervised. The unsupervised setting only offers unla-
belled data for the model to find patterns. Node clustering (features/
patients grouping) is a typical unsupervised learning task.

1.4 | Perspectives

The parameters necessary to understand and predict the evolution 
of an orthodontic condition (such as a malocclusion) cannot be cap-
tured by a single measurement modality or using a few data type (as 
an example, geometrical data from cephalometrics, from CBCT or 
anamnestic data). The dental- musculoskeletal tissue complexity lies 
in the interconnection of morphological progression, functional and 
genetic data. Nowadays, new and more sophisticated AI algorithms 
can deepen these aspects. Unfortunately, they do not give a clue 
about the reasoning that led to deciding the saliency, the relevance or 
the causal importance of the variables.83,84 Interestingly, theoretical 
advancements with methods from statistical physics will also allow 
determining partial information as estimating longitudinal data from 
cross- sectional to create individual prognosis.70 Humans are brilliant 
at clinical pattern recognition in dimensions equal to or less than 
three. However, most medical data's dimension is much higher than 
three, making cognitive analysis problematic or even impossible.6

Multiple perspectives are required to study complex phenomena 
formed of parts in a non- random organization, in which our knowl-
edge can only be partial and idealized. Forcing biological explanatory 
pluralism into the narrow computational framework appears to be a 
misleading strategy. The complexity of the musculoskeletal craniofa-
cial system requires the use of novel sources of information. In vivo, 
MRI matches this framework optimally, providing the elucidation of 
geometrical and physiological tissue features, even at length scales 
smaller than voxel resolution of X- ray CT and CBCT in a radiation- 
free modality. The computational models applied to orthodontics 
must include the skeletal characteristics change over time (even at 
the end of growth) and the relationship between the mechanical 
properties of the complex system composed of bones and teeth and 
their multiscale hierarchical structures, whose precise organization 
orchestrates the whole physiology. The question is to what extent 
this new ‘deep’ reasoning leads to reliable and responsible decisions 
in the global growth of the skeletal bases and the maturation of the 
dentition. The course of events almost always deviates from what 
was predicted and planned. There may be areas of local densification 
of skeletal disharmonies that can act as growth attractors. These 
areas are difficult to detect clinically and neither be easily detected 
by computational systems.

The future of orthodontics inexorably will pass through a 
Copernican revolution that will lead algorithms to optimize thera-
pies (‘personalized medicine’). Nonetheless, the process will not be 
complete until the complexity of the problem is fully addressed. The 
need for new imaging techniques (in vivo and in vitro) to characterize 
teeth, bones and muscles structures and physiology, the availability 
of genetic data, and the filtration of helpful information from them 
will be the route to a new vision of orthodontics.
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