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Abstract
Porcine epidemic diarrhea virus (PEDV) is a positive-sense RNA virus that causes infec-

tious gastroenteritis in pigs. Following a PED outbreak that occurred in China in 2010, the

disease was identified for the first time in the United States in April 2013, and was reported

in many other countries worldwide from 2013 to 2014. As a novel approach to elucidate the

epidemiological relationship between PEDV strains, we explored their genome sequences

to identify the motifs that were shared within related strains. Of PED outbreaks reported in

many countries during 2013–2014, 119 PEDV strains in Japan, USA, Canada, Mexico,

Germany, and Korea were selected and used in this study. We developed a motif mining

program, which aimed to identify a specific region of the genome that was exclusively

shared by a group of PEDV strains. Eight motifs were identified (M1–M8) and they were

observed in 41, 9, 18, 6, 10, 14, 2, and 2 strains, respectively. Motifs M1–M6 were shared

by strains from more than two countries, and seemed to originate from one PEDV strain,

Indiana12.83/USA/2013, among the 119 strains studied. BLAST search for motifs M1–M6

revealed that M3–M5 were almost identical to the strain ZMDZY identified in 2011 in China,

while M1 and M2 were similar to other Chinese strains isolated in 2011–2012. Conse-

quently, the PED outbreaks in these six countries may be closely related, and multiple

transmissions of PEDV strains between these countries may have occurred during 2013–

2014. Although tools such as phylogenetic tree analysis with whole genome sequences

are increasingly applied to reveal the connection between isolates, its interpretation is

sometimes inconclusive. Application of motifs as a tool to examine the whole genome

sequences of causative agents will be more objective and will be an explicit indicator of

their relationship.
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Introduction
Porcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae family, and genus
Alphacoronavirus, is an enveloped, single-stranded, positive-sense RNA virus, which causes
infectious gastroenteritis in pigs [1]. The virus has a ~28 kb genome containing a 50 untrans-
lated region (UTR), a 30 UTR, and at least seven open reading frames (ORFs). The ORFs
encode four structural proteins (spike (S), envelope (E), membrane (M), and nucleocapsid
(N)), one hypothetical accessary protein (ORF3), and two polyproteins (1a and 1b), in the
order of 50UTR—ORF 1a/1b—S—ORF 3—E—M—N—30UTR [2,3].

Since late 2010, PED outbreaks, which cause severe diarrhea and high mortality, have
affected 80–100% of piglets in China [4–6]. Although a large proportion of the pig population
had been vaccinated (using a vaccine derived from the CV777 strain), the protection was lim-
ited. Consequently, the outbreaks caused serious economic loss to the pig industry [4–7]. In
the USA, the first case of PED emerged with very high mortality (90–95%) in suckling piglets
in April 2013 [8]. Subsequently, the outbreak spread throughout North America, affecting
more than 31 USA States as of July 2014 [9]. In the analysis of the genomes of the PEDV strains
detected in the USA, most were grouped in the high mortality type similar to the Chinese
PEDV strain (AH2012), and the remaining strains were grouped in the INDEL type, which
have specific insertions and deletions in the S gene [9,10]. During 2013–2014, PEDV was
obtained from farms showing high infectivity and/or mortality in suckling piglets in many
countries worldwide such as South Korea [11], Japan [12], Taiwan [13], Canada [14], Mexico
[15], Germany [16,17], and France [18]. The PEDV strains detected in these countries were
grouped as US-like PEDV strains based on phylogenetic analysis using whole-genome
sequences. The high similarity of whole-genome sequences among these PEDV strains, rather
than the past strains detected in each country, led to the hypothesis that the origin of these vir-
ulent strains may be common [12,13].

Although a phylogenetic analysis was conducted for the PEDV strains discovered in the
recent outbreaks, inconsistencies have arisen when results were compared between different
regions of the genome or between results using partial and whole genome sequences [9,19–23].
Recombination has been suggested as a reason for these inconsistencies [9,19,22,24,25], as it is
assumed to play important roles in escaping from vaccine protection and adapting to the host
species [21,25,26]. For instance, if a specific region of the genome sequence was inserted in
parental strains as a result of recombination, the region will be passed on to the daughter
strains. The hypothetical existence of a partial genome sequence specific to the daughter strains
incited us to explore partial genomic features shared by some PEDV strains as an indicator of
the epidemiological association between PEDV strains detected in different locations.

Materials and Methods

Ethic statement
All fecal samples of Japanese isolates were submitted from Livestock Hygiene Service Centers
in each prefecture to National Institute of Animal Health during disease control activities of
local official veterinarians during 2013–2014 epidemic [12]. Therefore, all fecal samples had
been collected passively from pigs with clinical signs such as diarrhea, and no aggressive opera-
tion had been conducted against pigs for sampling purpose. All samples were included in our
previous study [12] under sample specific permissions from the local government which pro-
vided the relevant sample. Submission of fecal samples was conducted under the supervision of
Ministry of Agriculture, Forestry and Fisheries. Sequences of non-Japanese isolates were down-
loaded from the GenBank database.
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Whole genome sequence of PEDV strains
From October 2013 to October 2014, intestinal samples from sows and/or piglets showing
vomiting, anorexia, and watery diarrhea at 36 farms ware submitted from Livestock Hygiene
Service Centers in 17 prefectures in Japan to National Institute of Animal Health (NIAH) dur-
ing control activities against PEDV spread [12]. The virus isolation, RNA extraction, and
sequencing were conducted in NIAH as described previously [12]. Whole genome sequences
of PEDV detected in countries other than Japan were obtained from the GenBank database. To
ensure the date of isolation of each PEDV strain was accurate, only the strains with sufficient
information [9,10,14,17,27–31] were selected. As a result, 119 PEDV strains, including 36 Japa-
nese and 83 foreign PEDV strains (76 from USA, 1 from Canada, 2 from Mexico, 1 from Ger-
many, and 3 from Korea) were used in this study. The origins of and the date the pig illness
was diagnosed at the farm as PED (for Japanese PEDV strain) or the date of detection (for for-
eign strains) are summarized in S1 Table. GenBank accession numbers of each PEDV strain
are also included in S1 Table. For further analysis, we aligned all 119 PEDV sequences using
the ClustalW method [32] in the MEGA6 program [33] with default parameter settings. The
length of the aligned sequences was 27,746 nt. Phylogenetic analysis using the entire genome
was performed by the MEGA6 program using the maximum-likelihood method with the gen-
eral time reversible nucleotide substitution model. The confidence level for each branch was
tested by the bootstrap method with 1,000 replicates.

Determination of a sequence motif
Amotif is generally defined as a nucleotide sequence that has some biological significance,
such as a binding site on a regulatory protein. A variety of computational tools [34,35] have
been developed for finding motifs on genome sequences. In this study, we defined a motif as a
highly conserved region at the same position in the genome that was exclusively shared
between several of the PEDV strains, assuming that a region of the genome replaced as a result
of recombination will be passed on to the daughter strains. To find motifs based on our defini-
tion, we developed an original motif mining program using R software version 3.1.1 (R Core
Team (2014), Vienna, Austria. http://www.R-project.org/) and “ape” package [36].

The process of identifying motifs is further detailed here. First, we removed identical sites
among the 119 PEDV strains, and then defined the remaining 1,071 sites as single nucleotide
polymorphism sites (SNPs). These sequences were then scanned using the defined window size
(200 nt as a default value) starting from each SNP to find a motif and to determine the strains
with the motif. For each selected window, every possible pattern of dividing the 119 strains
into two groups was examined and if a statistically significant difference was found between
these two groups, this window was determined to be a candidate motif region. The difference
between these groups was obtained as a minimum value of differences between all possible
pairs of strains from each group. The difference between strains was calculated as the total
number of transitions, transversions, insertions, and deletions in SNPs in the region. The cut-
off value for statistical significance was set as the upper 95% confidence limit of the Poisson dis-
tribution with the expected mean being equal to the mean of all prescribed pairwise differences
in this window. For each candidate motif region, the strains in the minor group were the strains
possessing the motif.

Since the candidate motifs were identified as genome regions and some of the windows ana-
lyzed contained multiple SNPs, continuous or adjacent candidate motifs were combined if they
were shared with two or more strains that were identical in all relevant motifs. Finally, to reflect
the combination process of motifs, the presence of each combined motif was tested for all 119
PEDV strains. When the difference between strains having the motif was less than 10% of the
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number of SNPs in the motif, the strain was determined to have the motif. Typically, the first
strain to have a particular motif was determined as the reference strain for each motif. Starting
and ending sites for each motif were identified with reference to the whole genome sequence of
the referential PEDV strain, Colorado/USA/2013.

BLAST search for the identified motifs
In order to explore the parental strain of the identified motifs, the nucleotide sequence within
each motif of its reference strain was searched in GenBank by using BLAST (http://blast.ncbi.
nlm.nih.gov) with its default parameters. Similarity of the motif between the reference strain
and strains found by BLAST was calculated as a distance value as described previously.

Results

Overview of detected sequence motifs
As a result of the use of the motif mining program over the genome sequences, eight motifs
defined as M1–M8 were identified. These motifs are listed in Table 1, and a summary table for
the presence of these motifs in the 119 PEDV strains is shown in S2 Table. The longest motif
was M5 (2,032 nt, 79 SNPs), and the shortest motif was M8 (34 nt, 5 SNPs). Differences
between the reference strain and the motif-positive and -negative strains was distinct. For
example, the difference between the reference strain and the 14 strains having motif M6 was
0–7 (99.6–100.0% agreement), while that to the 105 strains without motif M6 was 149–153
(92.2–92.4% agreement). The position of the detected motifs was identified in the reference
genome of the USA PEDV strain, Colorado/USA/2013 (Fig 1). All eight motifs were distributed
along with the ORF 1a, 1b, S, and ORF3 genes. M6 was the only motif spanning different genes
(i.e., from the 30 end of the ORF 1b gene to the 50 end of the S gene).

Table 1. Summary of sequencemotifs identified within the genomes of 119 PEDV strains isolated from 2013–3014.

ID Nucleotide
positiona

Length (nt) SNPsb Referencec Strainsd Distance within motif Agreement with reference strain

Positive
strains

Negative
strains

Positive
strains

Negative
strains

Start End Min Max Min Max Min Max Min Max

M1 2,759 3,463 705 37 I 41 0 - 3 19 - 21 99.5 - 100 97.0 - 97.3

M2 12,016 12,541 526 27 I 9 0 - 1 5 - 8 99.8 - 100 98.5 - 99.1

M3 14,052 14,469 418 11 I 18 0 - 0 4 - 7 100 - 100 98.3 - 99.0

M4 15,594 16,503 910 37 I 6 0 - 3 16 - 19 99.7 - 100 97.9 - 98.2

M5 17,340 19,371 2,032 79 I 10 0 - 2 49 - 56 99.9 - 100 97.2 - 97.6

M6 19,569 21,530 1,968 203 I 14 0 - 7 149 - 153 99.6 - 100 92.2 - 92.4

M7 22,110 22,204 95 15 O 2 0 - 0 6 - 8 100 - 100 91.6 - 93.7

M8 25,282 25,315 34 5 K 2 0 - 0 5 - 5 100 - 100 85.3 - 85.3

a Positions in Colorado/USA/2013;
b Number of sites with one or more inconsistency within the 119 strains.;
c The first isolated strain having the sequence motif. Abbreviations are for the following strains: I, Indiana12.83/USA/2013; O, Oklahoma35/USA/2013; K,

KNU-1305/KOR/2013.
d Number of strains having the motif.

doi:10.1371/journal.pone.0147994.t001
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Motifs in the 119 PEDV strains
The phylogenetic tree of whole genomes from all 119 PEDV strains is shown with the annota-
tion of clades reported by Vlasova et al. [9] in Fig 2A. In Fig 2B, the presence of motifs in each
strain is shown by squares. The motif M1 appeared most frequently (41 strains) and motifs M7
and M8 appeared least frequently (2 strains). No motif was shared by an identical subset of
PEDV strains. The motifs M1, M2, M3, and M8 were found in both the non-INDEL and
INDEL strains, while M4, M5, and M6 exclusively appeared within INDEL strains. Among the
motifs that were exclusively observed in the INDEL strains, motif M6 was present in all INDEL
strains. Moreover, the number of strains that possessed a motif decreased in the order of M6,
M5, and M4. The maximum number of motifs in one PEDV strain was six, and this was
observed in two strains: Indiana12.83/USA/2013 (detected in the USA in 2013) and L00719/
GER/2014 (detected in Germany in 2014). The motifs M7 and M8 were found in only two
strains from USA and Korea, respectively. To validate the functionality of our motif mining
program, the presence of these motifs was graphically compared with the actual nucleotide
sequences within PEDV strains using the strain Indiana12.83/USA/2013 as a reference (Fig
2C). Regarding the six motifs found in Indiana12.83/USA/2013 (M1–M6), the presence of
nucleotides that were identical to those found in the reference strain (densely colored area) at
the position of each motif was clearly consistent with the presence of the corresponding motif.
Conversely, with respect to motifs M7 and M8, which were not found in Indiana12.83/USA/
2013, nucleotides that were inconsistent with the nucleotides present in the reference strain
(sparsely colored area) were found at the position of these motifs.

BLAST search for the identified motifs
Since the strain Indiana12.83/USA/2013 had six motifs (M1–M6), it was provisionally defined
as the reference strain for the six motifs in the BLAST search. The motifs M3, M4, and M5
were almost identical to the corresponding sequence in ZMDZY (KC196276), which was the
PEDV strain detected in 2011 in China [37]. The differences between the reference strain and
the strain ZMDZY at these three motifs were between 0–3 nt (i.e., 99.8–100% identical). For
the M6 motif, some global INDEL strains [9] such as virulent DR13 (JQ023161) detected in
Korea in 1999 [38], CH/S (JN547228) detected in China in 1986 [37], and CV777 detected in
Belgium in 1977 [39] were found nearest among the strains detected before 2013. The differ-
ence between these strains and the reference strain for M6 was 38–66 nt (i.e., 96.7–98.1% iden-
tical). The motif M1 was similar to the strain PEDV-1C (KM609203) detected in China in
2012 [20] with a 2 nt difference (i.e., 99.7% identical), and M2 was similar to the PEDV strains
detected in China in 2011–2012 [21] such as GD-1 (JX647847), 7C (KM609204), CHGD-01

Fig 1. Location of the sequencemotifs in the genome of PEDV. The numbers on the x-axis represent the position of the motifs in the PEDV genome as
the number of nucleotides from the 5’UTR.

doi:10.1371/journal.pone.0147994.g001
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(JX261936), GD-A (JX112709), and ZJCZ4 (JX524137) with a 2 nt difference (i.e., 99.6%
identical).

Discussion
Elucidation of the relationship between strains of causative agents during a disease epidemic
can help reveal transmission routes and allow for adequate control measures to be put in place
to prevent further spread [40,41]. Phylogenetic tree analysis and whole-genome sequencing are
the most recent and powerful tools for deciphering this relationship [40,41]. However, the
interpretation of the results obtained from phylogenetic analyses can be controversial,

Fig 2. Phylogenic tree for 119 PEDV strains and identified motifs. (A) Phylogenetic tree based on the
genomes of 119 PEDV strains isolated in 2013–2014. Phylogenetic analysis was performed using a
maximum-likelihood method with general time reversible nucleotide substitution model and with a bootstrap
test using 1000 replicates in the MEGA6 program. Notations on the very left side represent the clades shown
by Vlasova et al. (9). (B) The presence of sequence motifs in each strain. (C) Color chart of nucleotides in the
sites having inconsistencies within the 119 PEDV strains. Nucleotides in agreement with the sequence of
Indiana12.83/USA/2013 are colored with respect to the type of nucleotide (a: red, t: blue, c: green, and g:
yellow). To increase the discriminability of motifs, nucleotides in sites with only one inconsistent strain were
not colored.

doi:10.1371/journal.pone.0147994.g002
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especially when results were compared between different regions of the genome or between
results using partial and whole genome sequences[9,19,22]. Thus, we utilized whole-genome
sequencing to identify motifs that would reveal the genetic relationship between the 119 PEDV
strains detected in PED outbreaks worldwide during 2013–2014. In doing this, we discovered
eight sequence motifs. The agreement between the prevalence of these motifs and the sequence
similarity between strains (Fig 2C) suggests that these motifs reflect actual genetic similarity
among these PEDV strains. Considering the size of the motifs (34–2,032 nt) and the number of
SNPs discontinuously included in each motif and identical to strains having the motif (smallest
was 4 nt in motif M3), it is reasonable to suppose that the presence of these motifs was a result
of an epidemiological connection between strains having the same motif and not the result of
random genetic evolution in each distinct strain. Therefore, even if a motif is shared by strains
in distant phylogenetic clusters, this analysis would suggest the presence of an epidemiological
relationship between these strains. Moreover, the interpretation of the results from a phyloge-
netic tree analysis sometimes requires arbitrary aggregation of a complicated structure of roots
into inclusive subgroups such as clades [9]. However, utilizing sequence motifs is a more objec-
tive and explicit indicator of the relationships between strains and will provide new insights
into the route of disease transmission.

With regard to the features of motif-based analysis, its results were both consistent and
inconsistent with the result of conventional phylogenic tree analysis. Among the 119 PEDV
strains included in this study, 72 strains from the USA and 2 strains fromMexico were already
analyzed by phylogenic tree analysis in a previous study [9]. An example of the consistency
between the two methods can be observed with all eight strains grouped as a single clade
named US INDEL strains by phylogenic analysis, which were also found to have the same
motif M6 in this study (Fig 2B). Although the five US strains, Ohio59/USA/2013, Ohio75/
USA/2013, Ohio60/USA/2013, Wisconsin55/USA/2013, and Iowa103/USA/2013, were
grouped in the same sub-branch in North American clade I by phylogenic analysis, the differ-
ence between these five strains and the other strains in the same clade was not clear. However,
as a result of the motif-based analysis, these strains were found to exclusively share motif M3,
which was also found in some INDEL strains such as Minnesota58/USA/2013. This may sug-
gest a possible epidemiological relationship between these strains although this was not obvious
in the phylogenic tree analysis.

The motifs M1–M6 were shared by the PEDV strains from two or more countries and the
most frequently observed motif (M1) was found in the PEDV strains from all six countries
included in this study. Consequently, the PED outbreaks in these countries in 2013–2014
might be closely related, and may be a result of multiple transmissions of PEDVs between these
countries and not a single invasion across their borders. This is similar to the results presented
by Vlasova et al. [9] who suggested that there were multiple transmissions of PEDV from
affected countries into USA by showing that several strains grouped into different clades were
sourced from different countries. These results bring attention to the possibility of a non-acci-
dental route of virus transmission between countries, such as commodities that are excluded
from border control measures.

Interestingly, all six motifs (M1–M6) were found in the two strains: Indiana12.83/USA/
2013 and L00719/GER/2014. Since Indiana12.83/USA/2013 was the first strain detected (in
June 2013) among the 119 strains included in this study, this strain may be the source of all six
motifs. There were strains that were detected in the USA earlier than Indiana12.83/USA/2013
(i.e., Iowa/16465/2013, KF452322 and USA/Indiana/17846/2013, KF452323), which occurred
in April and May of 2013, respectively [8]. However, they were not genetically similar to Indi-
ana12.83/USA/2013, but were similar to strains that had no motif in this study such as Iowa28/
USA/2013. We conducted a BLAST search for the parental strain of the motifs M1–M6, and
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the strain ZMDZY detected in China in 2011 was assumed as the parental strain for motifs M3,
M4, and M5 but not for M1, M2, and M6. The motifs M1 and M2 were thought to originate
from the other Chinese strains detected in 2011–2012, such as PEDV-1C, GD-1, and PEDV-
7C. The parental strain for M6 was not clear because no previous strain possessed a high iden-
tity with this motif. The inconsistency in the putative parent strains for each motif may suggest
a complexity to the origin of these motifs found in the strain Indiana12.83/USA/2013.

Since the presence of motifs are the result of expression of certain unique genome sequence
(s) in a subgroup of PEDV strains, their presence may influence viral characteristics of host
strains. For instance, the S gene of PEDV, in which two motifs (partial M6 and M7) were found
(Fig 1), is reported to regulate growth adaptation and pathogenicity [15,42,43], as well as
induce neutralizing antibodies [15,42,44]. Likewise, motif M8 was found in the ORF 3 gene,
which is reported to related to attenuation and virulence [42,45]. In addition to the application
of motifs as epidemiological markers, elucidation of the relationship between motifs and viral
features should be a target for future study.

Some things should be considered when attempting to utilize sequence motifs as an indica-
tor of the epidemiological relationship between causative agents of infectious diseases. First,
since uniqueness of the nucleotide sequence in a subgroup of examined strains is important in
identifying a motif, the strains that are extremely different from the other strains should not be
included in the examined strains. The reason for this is that such strains may increase the num-
ber of inconsistent sites, which may not contribute to the discrimination of a motif. For this
purpose, the year of isolation for the target strains in this study was limited to a short period of
time between 2013 and 2014. In addition, in the case where strains form a single focal epidemic
such as an outbreak of highly transmissible exotic disease within an area, finding a motif might
be difficult because the difference between strains would be small throughout all strains and
finding a significant difference that separates the strains into subgroups would be difficult.
Finally, estimation of a strain’s evolutionary history based on the profile of detected motifs is
not plausible in this study as some of the identified motifs are in close proximity to each other
on the PEDV genome, and thus the possibility of more than one motif being inserted or
removed on a single occasion cannot be discounted. With this in mind, future studies will need
to develop a reliable model to estimate the evolutionary history of these motifs from the differ-
ence in the pattern of the identified motifs.

Conclusions
We identified eight sequence motifs from the genomes of PEDV strains detected in six coun-
tries during the 2013–2014 epidemic. Using the motifs as an indicator of an epidemiological
relationship, we suggested that there may have been multiple transmissions of PEDV between
these countries. While the recent advances in next generation sequencing have provided an
opportunity to use whole-genome sequencing in epidemiological research, a technique to
reveal relationships that are hidden in the information available in huge datasets are still being
developed [40,41]. The analysis of sequence motifs shown here is a novel tool to evaluate the
relationship between strains of causative agents using whole genome sequence data.

Supporting Information
S1 File. R codes for finding motifs. The zip file contains two R code files. “SNP scan” code is
for finding candidate motifs from a set of viral sequences. The “Motif scan” code is for identify-
ing motifs found by “Motif scan” code in each sequence. Sequences should be aligned and
trimmed such that all sequences have the same length and should be saved in the fasta format
(.fas file). All candidate motifs should be aggregated when adjacent motifs were shared by the
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same subgroup of sequences and written in the “Motif address_xxx.csv” file before running
“Motif scan” code.
(ZIP)

S1 Table. List of PEDV strains and motifs. Detail of 119 PEDV strains examined in this study
with motifs in each strain. All strains listed in the order of identified country and date of identi-
fication. GenBank accession numbers are also included.
(XLSX)

S2 Table. Detail of nucleotides in the motifs. Excel workbook with spreadsheets for the detail
of nucleotides in SNPs contained in each motif. Location of each SNP is shown as the number
of nucleotides from the 5’UTR of PEDV strain Colorado/USA/2013. Nucleotides identical to
the reference strain for each motif at each site is shown as dots. Notations for nucleotides fol-
lows IUPAC rule; a: adenine, g: guanine, c: cytosine, t: thymine, n: a, g, c or t, k: g or t, m: a or c,
y: c or t.
(XLSX)
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