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Rhythmicity in heart rate and its surges usher a special period of sleep, a 
likely home for PGO waves 
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A B S T R A C T   

High amplitude electroencephalogram (EEG) events, like unitary K-complex (KC), are used to partition sleep into 
stages and hence define the hypnogram, a key instrument of sleep medicine. Throughout sleep the heart rate 
(HR) changes, often as a steady HR increase leading to a peak, what is known as a heart rate surge (HRS). The 
hypnogram is often unavailable when most needed, when sleep is disturbed and the graphoelements lose their 
identity. The hypnogram is also difficult to define during normal sleep, particularly at the start of sleep and the 
periods that precede and follow rapid eye movement (REM) sleep. Here, we use objective quantitative criteria 
that group together periods that cannot be assigned to a conventional sleep stage into what we call REM0 pe-
riods, with the presence of a HRS one of their defining properties. Extended REM0 periods are characterized by 
highly regular sequences of HRS that generate an infra-low oscillation around 0.05 Hz. During these regular 
sequence of HRS, and just before each HRS event, we find avalanches of high amplitude events for each one of 
the mass electrophysiological signals, i.e. related to eye movement, the motor system and the general neural 
activity. The most prominent features of long REM0 periods are sequences of three to five KCs which we label 
multiple K-complexes (KCm). Regarding HRS, a clear dissociation is demonstrated between the presence or 
absence of high gamma band spectral power (55–95 Hz) of the two types of KCm events: KCm events with strong 
high frequencies (KCmWSHF) cluster just before the peak of HRS, while KCm between HRS show no increase in 
high gamma band (KCmNOHF). Tomographic estimates of activity from magnetoencephalography (MEG) in pre- 
KC periods (single and multiple) showed common increases in the cholinergic Nucleus Basalis of Meynert in the 
alpha band. The direct contrast of KCmWSHF with KCmNOHF showed increases in all subjects in the high sigma 
band in the base of the pons and in three subjects in both the delta and high gamma bands in the medial Pontine 
Reticular Formation (mPRF), the putative Long Lead Initial pulse (LLIP) for Ponto-Geniculo-Occipital (PGO) 
waves.   

Significance statement 

Adding physiological regularities to classical sleep staging reveals 
high arousal periods with bursts of elevated mass electrical activity that 
we name “REM0”. Heart rate increases during these periods are corre-
lated with increases in delta, high sigma and gamma activity in medial 
pontine reticular formation (mPRF), the putative generator of the Long 
Lead Initial Pulse (LLIP) of PGO waves. 

1. Introduction 

The hypnogram is a most valuable summary of a night’s human 

sleep. In its original form it is a succession of 30-s periods, with each 
period assigned to one of seven labels (Rechtschaffen and Kales, 1968): 
undefined/movement, awake, rapid eye movement (REM), and four 
non-REM (NREM) stages that separate into light sleep (NREM1 and 
NREM2) and deep or slow wave (SW) sleep (NREM3 and NREM4). The 
definitions of sleep stages and the criteria for their definitions have been 
continuously updated. However, changes have been minimal over the 
half century of sleep staging. The main differences between the latest 
rules (Silber et al., 2007) compared to the original ones (Rechtschaffen 
and Kales, 1968) are the removal of the movement sleep stage and the 
amalgamation of the two sleep stages SW sleep (old NREM3 and 
NREM4) into the new NREM3 sleep stage. The new classification 
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achieves the primary objective of enforcing more uniformity in sleep 
scoring through visual inspection by different experts. While fully 
acknowledging the tremendous impact sleep staging had in advancing 
sleep medicine (Shepard et al., 2005), we will argue that the improve-
ment made recently are not sufficient. These changes make the hypno-
gram less informative because the new definitions impose boundaries 
between sleep stages which cannot be related to fundamental changes in 
the brain. Also, the established sleep scoring scheme does not take into 
account abrupt changes in physiology, specifically the activity of the 
heart that can be objectively and easily captured with today’s 
technology. 

The assignment of segments into sleep stages is based on the iden-
tification of graphoelements on the electroencephalogram (EEG) that 
are the hallmarks of each sleep stage and of the eyes closed waking 
(ECW) before sleep. These distinctive features are either highly rhythmic 
or large amplitude events. The highly rhythmic events include the 
prominent alpha activity in posterior areas during ECW that drops 
drastically as we enter NREM1 and the spindles of NREM2. The high 
amplitude events include the relatively modest vertex sharp waves 
(VSW) during NREM1 and the saw-tooth waves (STW) of REM and the 
prominent K-complexes (KC) during NREM2. Here, we grouped high 
amplitude events across sleep stages into the family of Global-Local 
Excitations Across the Brain during Sleep (GLEABS) and distinguished 
single unitary GLEABS (labelled as VSW1 and KC1) from multiple 
GLEABS appearing as sequences of such events (labelled as VSWm and 
KCm). 

In addition to the EEG graphoelements, features of three other 
electrophysiological measurements contribute to sleep scoring: the 
electromyogram (EMG), the electrooculogram (EOG) and the electro-
cardiogram (ECG). The EMG monitors the muscle tone, and it is usually 
recorded using bipolar submental electrodes. A drop in muscle tone 
(EMG amplitude) characterises the transition from ECW to NREM1 and a 
further drop the transition from NREM sleep to REM. The EOG uses the 
differential signal of two electrodes for monitoring horizontal (elec-
trodes on the side of the lateral Canthus of each eye) and vertical 
(electrodes on one eye one immediately above the eye and the other in 
the infraorbital ridge) eye movements. The onset of NREM1 is usually 
heralded by slow rolling eye movements on the EOG while fast eye 
movements, or REM saccades (REMS) are often mentioned as one of the 
hallmarks of REM. A horizontal REMS appears as a pair of prominent 
deflections of opposite polarity in the two lateral EOGs, while a vertical 
REMS shows as a prominent deflection on the bipolar EOG of one eye. A 
diagonal REMS has contributions from both horizontal and vertical EMs. 
The ECG uses a combination of electrode pairs (leads) to record the 
spread of the electrical activity through the body (that acts as a passive 
volume conductor) generated by the cardiac muscle depolarization. The 
ECG produces two key outcomes. The first is the sinus rhythm describing 
each cycle and dominated by the QRS complex. The second is the 
changes in the repetition of each cycle, usually expressed in terms of the 
time duration between successive R peaks (the R-R interval) or its in-
verse, the heart rate (HR). 

Sleep staging in sleep laboratories uses visual recognition of the 
rhythmic events and GLEABS to define sleep stages. EMG and EOG 
provide additional information particularly for the transitions from ECW 
to NREM1 and from NREM sleep stages to REM. Both measures of car-
diac activity show changes in awake state and sleep but in only few cases 
these changes are well matched to individual sleep stages (Herzig et al., 
2018; Kontos et al., 2020) and show some specific changes in only a few 
cases (Burgess et al., 1999). The ECG has nevertheless been known to 
relate to periodic changes of arousal with shorter duration than sleep 
stages: the cyclic alternating patterns (CAP) for NREM sleep (Terzano 
et al., 1985). In general, the ECG has consistently been the least used 
component of the standard polysomnography measurements, at least for 
sleep staging. 

In between periods of high activity, with the distinctive hallmarks of 
each sleep stages, there are “unremarkable” quiet periods, which inherit 

the sleep stage of their neighbours. In particular, if the pair of neigh-
bours on either side belong to the same sleep stage, then the quiet 
segment sandwiched in between them is assigned the same sleep stage 
label. Also, a quiet segment showing no evidence (hallmark) of another 
sleep stage or excessive noise inherits the preceding label, if such a label 
is assigned to the previous 30-s period. This “by default” assignment of 
sleep stage label has survived throughout as a key element of sleep 
staging. We further identify within the quiet periods, the periods well 
away of the hallmarks of each sleep stage and any other high amplitude 
events as “core” periods and refer to them as NREMnc with the n is a 
number for the nth NREM sleep stage and REMc for the core period of 
REM. For example, a quiet period sandwiched between two NREM2 
periods is assigned to NREM2, and hence its quiet periods makes up 
what we define an NREM2c. 

Tomographic analysis of core states showed distinct changes in 
spectral powers at widespread brain areas with distinct variations at 
specific cortical sites (Ioannides et al., 2009). The most principled 
change was the increase in gamma band activity from awake state 
through NREMnc periods, culminating to its highest value during REMc; 
to the best of our knowledge this remains the only consistent change 
encountered as sleep progresses in each cycle from light to deep sleep 
and finally REM. This increase in gamma band activity is specific: it is 
most prominent in two left paramedial foci of dorsal brain. The two sites 
are MSRC1 in the left paramedial dorsal frontal cortex and MSRC2 in the 
midline posterior parietal cortex. For reasons explained below, the two 
foci are interpreted as the midline self-representation core (MSRC). 

A detailed study of the whole brain activity for NREM2 has revealed 
a systematic change from NREM2c to the periods just before and during 
spindles and KC1 events (Ioannides et al., 2017, 2019), supporting 
specific interpretations of the roles of KC1 and spindles. A KC1 event has 
a Janus face (Halász, 2016) because it serves simultaneously arousal and 
sleep promoting roles. A spindle emerges as a very special event, arising 
only after extraordinary measures are taken to further dampen in-
fluences from the environment, specifically in the areas that have just 
increased their low frequency activity (increase of NREM2c relative to 
NREM1c) (Ioannides et al., 2017). 

These results together with the continuing relevance of core periods 
for sleep staging imply that far from being “unremarkable”, core periods 
of sleep represent the “foundational elements” of each sleep stage. They 
are analogous to the ground state of a physical system (e.g., an atom) 
from which transitions to different excited states take place. This anal-
ogy becomes highly instructive as the changes from the core state of 
NREM2 are mapped in the periods before spindles and KC1; the changes 
identified are exclusively increases for theta and higher frequencies. 
These increases are modest and specific to a small number of areas in the 
periods just before the hallmarks, with further and much stronger in-
creases for both spindles and KC1 events (Ioannides et al., 2017, 2019). 
The increases in the pre-spindle changes are consistent with a careful 
preparation for sensitive memory consolidation process, which in the 
light of many other studies points to changes in the neural representa-
tion of self and specifically in the two areas identified with increased 
gamma band activity during REMc. These two areas and their individual 
activity are likely to be the closest we can come to a neural represen-
tation of self and hence labelled as MSRC1 and MSRC2 (Ioannides, 
2018). 

In recent years, a great effort was put on the development of auto-
matic classification of sleep stages using biological signals that can be 
used at home in response to the move for self-monitoring of health and 
the obvious advantages of regular sleep monitoring at affordable cost for 
sleep quality monitoring (Scherz et al., 2017). Most new methods use 
ECG and particularly heart rate variability (HRV) as a key component 
(Radha et al., 2019; Sun et al., 2020). Claims have also been made for 
successful sleep staging using only heart rate (Mitsukura et al., 2020). 

The emerging field of Network Physiology (NWP) focuses on the 
interaction between distinct networks representing complex physiolog-
ical systems and particularly the cardiac, respiratory, muscular and 
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central nervous systems. Each of these systems is complex with its own 
organization and processes and sophisticated regulatory mechanisms. In 
addition these systems continuously interact to maintain normal phys-
iological function (Bartsch et al., 2015). Our findings should be viewed 
as part of NWP with good prospects of generalizing the analysis using 
multi-layer graph theory techniques. 

In this work, we use the conventional sleep stages as a broad refer-
ence to study the HRV changes across sleep and how the systematic 
changes in HRV and especially heart rate surges (HRS) relate to core 
states, GLEABS and the other electrophysiological measures used in 
sleep scoring. Introducing the HRV into the description of conventional 
sleep stages separates periods of sleep with well-defined features that 
combine hallmarks of different sleep stages and high arousal. Such pe-
riods are often marked as undefined. They may also be assigned to a 
sleep stage if the hallmarks representing that sleep stage prevail in the 
standard 30-s periods used for sleep staging. We will refer to these pe-
riods of sleep as REM-zero (REM0). 

A first and rather simplified definition for REM0 is “periods char-
acterized by increase in the variability of both HR and the other main 
electrophysiological signals EEG/MEG/EMG”. We examine the role of 
REM0 within the existing sleep staging framework using a unique set of 
polysomnography data with simultaneous whole night MEG recordings 
that allows a description of REM0 in terms of properties of the corre-
sponding electrophysiological signals that define it. 

The work of this paper is not an attempt to propose an alternative 
sleep staging scheme, this will be the subject of future research. We 
simply propose an improvement: we add to the conventional sleep 
staging an additional step, which allows well-defined quantitative 
measures to either reinforce the conventional scoring or to add the labels 
REM0 or REM, to some of the periods defined as ECW, NREM, REM and 
to periods that are undefined in the conventional sleep scoring. There 
are three immediate uses of REM0 as it is proposed here. The first is to 
define a distinct target period, in addition to REM for identifying Ponto 
Geniculate Occipital (PGO) waves in humans. This is not surprising since 
the most consistent correlate of PGO waves are the HRS (Rowe et al., 
1999). The second use is an additional characterization of sleep periods, 
of possible relevance to normal and pathological sleep along the CAP 
classification (Terzano et al., 1985) and the phasic and tonic division of 
REM (Simor et al., 2020). Finally, the further steps beyond sleep staging 
can be used in the process of reconciling the sleep staging of two or more 
sleep experts with minimal human involvement. 

2. Materials and methods 

2.1. Background on sleep staging 

2.1.1. The work in this paper in the context of conventional sleep 
classification 

The original sleep classification scheme (Rechtschaffen and Kales, 
1968) has revolutionise sleep research. It is remarkable that this system 
is still largely intact and serving as the main reference point for sleep 
medicine. Despite the obvious success of the original sleep classification 
there were always some problems that remain till today despite the 
changes introduced so far. One of the problems was that the hallmarks of 
individual sleep stages sometimes appear together in the same 30 s 
period to be scored, thus making a unique and unambiguous definition 
impossible. We now know, that many of the hallmarks used for sleep 
staging are characterized by “widespread intracranial activity with un-
expected synchrony” when studied from either intracranial recordings 
(Frauscher et al., 2015, 2020; Latreille et al., 2020) or tomographic es-
timates of activity extracted with MFT from MEG data (Ioannides et al., 
2017, 2019). One may wonder why so much emphasis is placed on 
obtaining consistency in sleep staging classification which is determined 
by highly variable and wild excursions in the signal. One good reason is 
that the high amplitude events stand out in the EEG. The fact that this 
collective phenomenon arises each time from activity at different brain 

areas has only recently been realized (Frauscher et al., 2015, 2020; 
Ioannides et al., 2017, 2019; Latreille et al., 2020). As long as identifying 
these “hallmarks” leads to some classification of sleep (when there was 
none before) then agreeing on definitions was a great advance for pre-
scribing treatment. However, in pushing for unanimity on the basis of 
the high amplitude and highly variable excursions of the signal may lead 
to adopting arbitrary criteria that may not be optimal in terms of a 
meaningful description of the underlying physiology. One reason for 
introducing changes in sleep staging was the concern about how REM 
can be distinguished from NREM2 periods and periods of large move-
ments. We provide a characteristic extract from the summary of (Silber 
et al., 2007), with R standing for REM; it reads: “R sleep commences 
when chin EMG tone falls, unless K complexes or spindles persist, in 
which case stage N2 persists until rapid eye movements develop. If chin 
EMG tone is low in stage N2 as well as REM sleep, the transition to Stage 
R occurs after the last K complex or spindle. If K complexes or sleep 
spindles are interspersed among what are otherwise epochs of un-
equivocal REM sleep (as may especially occur in the first REM period of 
the night), then stage R should be scored if rapid eye movements are 
present and stage N2 if eye movements are absent. If epochs of REM 
sleep are followed by epochs with low amplitude mixed frequency EEG 
and persistently low chin EMG tone, but no rapid eye movements, K 
complexes, or spindles, then they should continue to be scored as stage R 
until there is a transition to stage W, N2, or N3, where an arousal or 
major body movement is followed by slow eye movements, or an in-
crease in chin EMG tone signifying a change to stage N1.” One may be 
justified in concluding that sleep staging under the new guidelines for 
visual sleep classification may indeed be a good step forward but at the 
same time one may wonder whether sleep characterization should 
consider also a view from a new angle. After all, in the more than half a 
century since the introduction of sleep staging, there were amazing 
advances in mass electrophysiology (EEG and MEG) and neuroimaging 
and these have provided new insights about sleep that have not yet 
influenced sleep staging. 

In the work we will describe we offer such a new angle. In the new 
approach, we view the conventional hallmarks of each sleep stage as 
wild excursions of the system from equilibrium. This immediately poses 
a new question: what could this new equilibrium be and how can it be 
studied? We have already suggested that the equilibrium period for each 
sleep stage are the core states, as we have originally defined them 
(Ioannides et al., 2009). If core states indeed represent something like a 
ground state for each sleep stage, then one would expect that a detailed 
study of the core states of each sleep stage will provide a more intelli-
gible description of sleep than the seemingly chaotic events that are now 
used to define each sleep stage. Our identification of consistent increase 
in the gamma band activity in medial dorsal brain areas across the core 
periods of the sleep stages provided the initial evidence supporting a 
foundational role for core states (Ioannides et al., 2009). The follow up 
detailed study of changes from NREM2 core periods to the periods 
before and during spindles and KC1s (Ioannides et al., 2017, 2019) 
brought together recent suggestions for a role of sleep in memory 
consolidation, with emphasis on memory consolidation related to the 
neural representation of self (Ioannides, 2018). We do not suggest that 
sleep staging based on the hallmarks of sleep as it is currently defined 
should be abandoned, at least not yet. In this work, we extend conven-
tional sleep staging a little by paying attention to the critical role played 
by arousal influences as these are captured by changes in the EMG, EOG 
and particularly HRV. 

2.1.2. The prominent characteristic graphoelements of sleep 
As already mentioned, sleep staging relies on identification of 

prominent features in the EEG that can be separated into highly rhyth-
mic and high amplitude events. Examples of highly rhythmic events are 
bursts in the alpha (8–12 Hz) or sigma (11–17 Hz) bands. The alpha 
band characterises the awake state with eyes closed before sleep and its 
disappearance is taken as a sign of the start of the transition to sleep. The 
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rhythmic events in the slightly higher sigma band are known as spindles 
and they are one of the two main hallmarks of NREM2. The prominent 
high amplitude NREM2 graphoelement is the KC. As already mentioned, 
we separate single KC (KC1) from multiple KC (KCm) which corresponds 
to 3–5 KCs appearing in a sequence one after the other. For reasons that 
will become apparent later we separate KCms into two types. The first 
type are KCm events with no strong high frequency content and there-
fore denoted as KCmNOHF. The other type of KCm has strong high 
frequency content and it is therefore denoted as KCmWSHF. We will 
show a strong association between KCmWSHF with HRS. It has been 
argued that the “KCs are isolated “down-states,” a fundamental cortico- 
thalamic processing mode already characterized in animals” (Cash et al., 
2009). Our data support this claim but only for KC1 and KCmNOHF 
events. 

2.2. The MEG sleep experiment and subjects 

2.2.1. Participants 
The MEG measurements were the first major experiment of the newly 

established laboratory for the human brain dynamics (LHBD-J) per-
formed around the turn of the millennium at the Brain Science Institute 
(BSI), RIKEN near Tokyo, Japan. After the RIKEN ethical committee 
approved the protocol subjects were selected according to stringent se-
lection criteria that included passing strict requirements for good sleep 
habits. As the final test of the entire procedure, a member of the team 
(AAI), was the subject resulting in the first whole night sleep MEG 
dataset; since this subject did not pass the selection criteria (for regular 
sleep habits) he was helped to sleep through sleep-deprivation. After the 
successful completion of this test and careful inspection of the resulting 
data, the protocol was internally approved for use with external sub-
jects. For the main experiment, the protocol and the experiment were 
explained, emphasizing that subjects were free at any point to ask to be 
released from the recordings and stop the experiment. Each subject gave 
his informed consent and no subject used the opt-out option. Whole 
night, high quality data were obtained for three subjects. The test-data 
from the sleep night of the last test of the procedures (with the sleep 
deprived subject) were of good quality and they were also saved with the 
data of the three main subjects. All four subjects were right-handed, 
healthy males with ages 25, 30 and 31 for the three main subjects and 
48 for the sleep deprived subject. Participants were all free of neuro-
psychiatric illness and medication. Despite the resurgence of sleep 
research and numerous new studies, whole night sleep MEG recordings 
are few. For a review of what is available today, in terms of compre-
hensive recording of electrophysiological data describing neuronal, 
muscular, eye movement and cardiac activity with good monitoring of 
head movement, see Supplementary Table 1 of (Brancaccio et al., 2020). 

2.2.2. Participant acclimatization and main recording 
The first night began with training and placement of auxiliary 

channels. Horizontal and vertical eye movements were detected inde-
pendently using four electrodes. Two electrodes were placed 1 cm from 
the lateral canthus of the left and right eye to measure horizontal EOG 
(EOG-H) and two electrodes were placed 1 cm above and below the left 
eye to measure the vertical EOG (EOG-V). 

After the eye movement data collection, the subject returned to the 
preparation room to sleep in a supine position on a replica of the MEG 
bed with their head in a replica of the MEG helmet. The eye movement 
data of the first (acclimatization) night have not been used in the current 
paper. The instructions to the subject, namely, to sleep keeping his head 
inside the helmet were repeated. A handset next to the bed allowed the 
subject immediate contact with a medically qualified member of LHBD-J 
in an adjacent room (demanded by the RIKEN ethics committee but 
never needed during the sleep experiments). The subject was awakened 
and debriefed after an estimated 8 h of sleep if he had not awoken 
spontaneously. Before the main recording (second night) and while the 
subject was prepared for the experiment, a noise measurement was 

taken with the system prepared as in the main experiment (for supine 
recordings). The data without any subject in the room were used as 
baseline measurements in some analysis. After the preparation, the 
subject was brought to the shielded room and told again that at any time 
he could communicate with the operators, ask to go to the toilet or 
detach the electrodes and stop the experiment if he had become too 
uncomfortable. When the subject was relaxed with the head in the 
helmet-like end of the Dewar, he closed his eyes and prepared to sleep. 
After final checks for safety and working order of devices were 
completed, the lights were switched off and the recording began (eyes 
closed waking, ECW condition). The final checks prevented the defini-
tion of sleep onset time with precision, so the sleep expert present at the 
start of the experiment made a subjective evaluation. The sleep onset 
time was judged a little longer than usual for one subject (S3) but normal 
for the other two. Throughout the recording night, at least two experi-
menters (usually more) were in the laboratory manning (quietly) the 
control console outside the shielded room or in the adjacent and prep-
aration room; at least one experimenter was a native speaker of the 
language of the subject and one was a medical doctor. The subject was 
watched with an infrared camera and the MEG, EEG, and auxiliary 
channels were continuously monitored. 

2.2.3. Partitioning of sleep time periods 
For practical reasons, the entire night of sleep is divided into runs 

and each run is composed of a variable number of 3-min time periods of 
continuous recordings of MEG, EEG and auxiliary channels. For each 
whole night experiment the precise time of each sample of data is known 
by reference to the system clock and its time from the beginning of the 
segment it belongs. Each 3-min continuous recording is separated from 
the next by about twenty (20) seconds which correspond to the time of 
activation of the head localization coils and the integrity checks for their 
localization. If the integrity checks fail a new head localization coil is 
made and hence the separation between periods could be approximately 
twice as long or more. The start of the recording for each 3-min period is 
recorded with the data in absolute time (by the system clock). The 
duration of the run was limited by the capacity of the storage medium 
used to store the recordings. Unexpected, rare events like the need to 
deal with some technical problem with the equipment (e.g. to recali-
brate electrodes), or a request by the subject for use of the toilet (made 
by two subjects) could shorten a run and they were used to upload the 
data from the temporary storage medium. After an interruption that 
required removing the subject from the shielded room, electrode and 
head coil connections were detached but replaced and retested on re-
turn; the long blank period in Fig. 1, starting a little after 1.5 h is one 
such interruption. Both subjects that requested a break to use the toilet 
readily returned to sleep and slept well for the remainder of the night. 

Independently of the operational segmentation of sleep as defined in 
the previous paragraph, sleep is organized into 3 to 5 cycles for an entire 
night’s sleep. A sleep cycle (SC) is a sequence of traversal through light 
and deep sleep culminating in REM; the nth SC is denoted by SCn, e.g., 
SC3 denotes the third sleep cycle. 

2.3. Measurement details 

2.3.1. Preparations for the experiment head localization coils and auxiliary 
channels 

In the first part of the preparation, three head coils were attached to 
each subject’s nasion and left and right pre-auricular points in order to 
record the subject’s head position. EEG electrodes were also placed at C3 
and C4, referenced A1, EOG vertical and horizontal, and chin EMG 
(Ioannides et al., 2004). The EOG’s were calibrated using controlled eye 
movements in the MEG room before the sleep recordings. The recordings 
were made with the whole-head 151-channel Omega magnetometer 
(CTF Systems Inc., Vancouver, Canada). The dewar was completely til-
ted into the horizontal position so the subjects could lie supine on the 
MEG bed, as is normal for sleep, with the head in the MEG helmet. The 
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MEG data was recorded throughout the night, together with auxiliary 
EEG and marker channels on a 100 GB disk. 

The final preparation, before the MEG, five (5) head localization coils 
(HLC) were used. The location of all 5 HLCs was included in the head 
outline scan using the Polhemus magnetic stylus device. The head 
outline was fitted to the MRI of the subject, thus establishing a coordi-
nate system based on each subject’s true brain anatomy. As can be seen 
in Fig. 1 large head movements were present throughout the entire night 
of the sleep MEG experiment. Such movements are perfectly normal 
during sleep and allowing them makes sleep in the MEG less unnatural, 
but at the expense of losing the information necessary for co-registering 
the head relative to the sensors. To address this problem, the continuous 
recording was interrupted every 3 min for head-coil localization. For 
each subject, large head movements occurred intermittently and cannot 
be predicted, so it is critical to define the period between head locali-
zation measurements carefully. The choice of the 3-min period with no 
further restriction for the head inside the MEG helmet (except for the 
provision of a soft small pillow or cloth to support the head if the subject 
wanted one) was made after numerous tests. These tests helped us 
decide the best compromise between the conflicting requirements of 
continuous uninterrupted measurement (the choice of 3 min period) and 
making sure that even during extended periods with head movement a 
continuous segment with no large head movement could be captured. As 
can be seen in the results section, even during long periods dominated by 
large head movement artifacts, there were 3-min intervals of very low 
head movement and some of these were often REM0 periods (e.g., the 3 
min of the first zoom in Fig. 3). 

Large head movements generate high EEG/MEG signal that can 
swamp the usual neuronal activity in the brain; it is almost impossible to 
use such data for identifying neural generators, partly because of the 
high noise and partly because the co-registration between sensors and 
the brain is lost. For this reason, all large signals above a pre-defined 
threshold are often eliminated as part of pre-processing. However, 
neural processes in sleep can also generate relatively large signals. 
Therefore, a blanket elimination of large signals is likely to remove in-
formation, possibly unique and valuable information. A strong artifact 
that does not involve large head movement will have minimal influence 
on the MFT solutions, because MFT focuses on activity from brain areas. 
In the opposite case, i.e. strong activity from a neural generator will be 
properly and easily localized with great accuracy. 

2.3.2. MEG recordings 
The Magnetoencephalographic (MEG) data were recorded using the 

whole-head Omega bio-magnetometer (CTF Systems Inc., Vancouver, 
Canada) inside a 3 × 4 × 2.4m shielded room (NKK, Kawasaki, Japan). 
The raw signals from the 151 primary MEG channels, the 28 reference 
sensors and from auxiliary channels needed for sleep scoring, eye 
movement and heart monitoring were recorded continuously on a 100 
GB disk after low-pass filtering at 208 Hz and digitization at 625 Hz. The 
continuous recording mode was interrupted every 3 min for head 
localization. The same recording parameters were used for the eye 
movements during the first night but with head localization only at the 
beginning and end of each block. Noise runs were also taken before and 
after each full session (evening). In synchrony with the MEG, EEG 
electrodes C3 and C4, referenced A1, vertical and horizontal EOG and 
two (2) electrode ECG along with chin EMG were recorded. As already 
stated, every 3 min during the night experiment, the MEG recording was 
stopped and the HLCs were activated in turn. From these measurements 
the location of each coil relative to the sensor array was determined. By 
comparing the location of the coils at the start and end of each 3-min 
segment period the size of the segment’s head movement was deter-
mined. The procedure allowed us to identify large head movements and 
this information was used for two selections. First, entire 3-min period 
were excluded from the tomographic analysis if it contained a move-
ment above a set threshold (usually above 4 mm). Secondly, when 
summarizing signal properties (from the EEG and auxiliary channels) or 

gross properties across the MEG channels, e.g., Global Field Power (GFP) 
3-min segments were excluded if the head movement was very large, 
typically 5 times or more the threshold for exclusion from tomographic 
analysis (~2 cm). The head movement thresholds are represented as a 
dashed black line on some of the presented Figures that follow. 

2.4. Sleep staging and definition of core periods and sleep graphoelements 

2.4.1. Sleep staging 
A preliminary “on the fly” scoring of the sleep stages was made 

during the experiment, partly for safety to monitor the subject and partly 
for on-line check on signal quality of MEG and EEG channels by at least 
one sleep expert. A more thorough sleep scoring was performed offline. 
First, each of our two sleep experts made an independent hypnogram 
using the same data sets (evaluating independently each one of the six 
30 s segments of each continuous 3 min recording). The two indepen-
dent scores were compared, a common one agreed and the final night 
hypnogram constructed. Sleep stages were noted according to the 
standardized manual (Rechtschaffen and Kales, 1968), (W = wake state, 
MT = subject moving in bed, NREM1–NREM4 = first to fourth sleep 
stages, REM = REM sleep stage). Standard indicators identified REM: 
desynchronized EEG, minimization of muscle tone, and the emergence 
of REMS. 

2.4.2. Core state and event definitions 
We followed our original definition of core states (Ioannides et al., 

2009) as, relatively quiescent periods that are similar to the 
shorter-lasting phase “B” periods of the cyclic alternating pattern in 
NREM (Ferri et al., 2006) and the tonic periods in REM sleep well clear 
of phasic eye movements (Simor et al., 2020; Wehrle et al., 2007). A 
first-order estimate for what might be “core periods” was derived from a 
single EEG channel (C3 to A1). The core periods (ECWc, NREMnc and 
REMc) were then identified for each sleep stage from 3-min segments of 
data with head movement below the threshold for selection (4 mm). For 
each sleep stage, quiescent periods of 4 s duration were identified as 
candidate core periods. The core periods to be used for tomographic 
analysis were then selected from these candidate core periods with 
further criteria that they were clearly separated from large graphoele-
ments of each sleep stage or any other prominent EEG features, obvious 
on any other MEG or EEG record. The GLEABS (and rhythmic) events 
were identified through visual inspection and were selected to be well 
away from each other and away from other events and noise. They were 
also selected to have a clear onset time so that a 4 s GLEABS could be 
extracted and separated into the first half representing a 2-s pre-GLEABS 
period and the second half representing the 2-s during-GLEABS period. 

2.4.3. Sleep staging as a clustering method 
The technical term for attempting to put similar objects into distinct 

groups is called clustering. Clustering is a rapidly advancing field 
receiving input from machine learning and its subdivision deep learning 
(Karim et al., 2021). By definition, sleep staging is an attempt to put 
sleep periods into groups in such a way that each group (sleep stage) 
contains periods that are more similar to each other and less similar to 
those of periods belonging to a different group (sleep stage). It is 
therefore fair to conclude that sleep staging is a form of clustering. The 
classical sleep staging developed as a rule-based clustering technique 
based on the electrophysiological data available in the 1960s. The 
available data then could best discriminate large graphoelements and 
after further processing (e.g. filtering) periods with special properties (e. 
g. highly rhythmic activity). Looked at it from this point of view, the 
development of classical sleep staging in the 1960s and its reliance on 
the wide excursions of the signal during a rather chaotic period of EEG 
seems almost inevitable, given the technical capabilities of EEG at the 
time. Sleep scoring demands human expertise and it is time-consuming; 
it is therefore costly. Consequently, a lot of effort has been expended 
recently in developing (semi-)automatic methods of sleep staging based 
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on modern clustering techniques. While methods of automated sleep 
scoring (using unsupervised learning) are beginning to make an impact 
(Chriskos et al., 2021) most methods use some form of supervised 
learning with human pre-labelled classifications as the teaching set. As 
we already stated, we are not concerned with establishing a new sleep 
staging procedure. Nevertheless, we will use clustering of core periods to 
test our claim that the core states of sleep are not just uninteresting 
periods. We will demonstrate that clustering of spectral density of 
regional brain activity are as capable of characterising individual sleep 
stages as the active periods relying on the characteristic hallmarks of 
each sleep stage. We will further demonstrate that the core states can go 
beyond classical sleep stages and define sub-clusters of REM. The 
resulting framework describes not only core periods of all sleep stages 
but also periods before and during hallmarks of and transitions between 
sleep stages. 

2.5. Data analysis I (signal space descriptions) 

The key physiological signals were studied across widely different 
timescales, ranging from a few milliseconds, to tens of minutes and 
finally across the entire night of sleep. Some quantities can only be 
studied at low temporal resolutions. For example, in our analysis, the 
variability of cardiac activity uses as base unit the R-R interval which is 
of the order of 1 s, therefore it can only be studied with a resolution not 
finer than a few seconds, so enough base units are included to give a 
smooth continuous signal. Almost all other quantities can in principle be 
studied across the entire range of temporal scales we are interested here, 
but the measurements at some ranges are difficult, e.g., MEG measured 
at frequencies below 1 Hz cannot be measured directly because the 
shielded room does not eliminate ambient noise (which is much higher) 
at such low frequencies. As we will see, low frequency oscillations, 
below one Hz can be captured via the changes of GFP (or its variants) 
derived from the higher frequencies, which show marked variations at 
much lower frequencies (well below 1 Hz) reflecting cross-frequency 
coupling and nesting. We use this observation to demonstrate at a 
signal level analysis cross-system coupling and specifically the coupling 
of the cardiac rhythms with CNS oscillatory activity. For this signal- 
based analysis (Figs. 1–8 and 10) we processed each 3-min segments 
using default functions from the Fieldtrip toolbox (Oostenveld et al., 
2011) developed at the Donders Institute for Brain, Cognition and 
behavior (http://fieldtriptoolbox.org). 

2.5.1. Analysis of electrophysiological signals (EEG, MEG, EOG, ECG and 
EMG) 

The MEG, EEG, ECG, EMG and EOG channels were band-stop filtered 
at 47.5–52.5Hz and 95–105Hz to remove power line interference. For 
the EEG and MEG signals additional filtering was made to obtain a wide 
band and signal using a high pass at 0.7Hz and a low pass at 95Hz filters. 
Signals were also studied in the other standard bands. For much of the 
work here we will present results for signals filtered in the wideband and 
in the high gamma (from 55 to 95 Hz) bands. For the EMG we cut the 
frequencies below 20 Hz; we used the signal from 20 to 95 Hz as the 
wideband signal and kept the high gamma band in the range (55–95 Hz). 
Depending on what aspects of eye movements it is to be emphasized 
different filters can be applied. 

The Global Field Power (GFP) was calculated separately for the (151) 
MEG and the (2) EEG channels and the single bipolar EMG channel. GFP 
is calculated using a moving window of N time-slices and M channels. N 
can range from 1 to 33 and M can be again just one channel or all 
channels (151 for MEG, 2 for EEG and 1 for EMG). The GFP is the ratio of 
the sum of the squares of the channel amplitude across all channels (M) 
and window time slices (N) to the total number of elements (N × M). 

The Instantaneous R-R Heart Rate (HR) was computed by first 
forming the difference between the two ECG leads. This difference 
shows clearly QRS signal with its prominent R-wave. The instantaneous 

HR can then be computed as the inverse of the periodicity of R, i.e., the 
inverse of the R-R interval. We will use the mean periodicity over three 
cycles in our computations, i.e., the inverse of the average of three 
successive R-R intervals, R − R ​ . Thus, the heart rate becomes HR = 60

R− R 
and it is presented in the standard medical units of beats per minute. We 
will use this smoothed version of HR for all results reported hereafter, 
simply referred to as HR. 

Measures of variability can provide distinct measures by removing 
the mean and showing only how variable each signal is around that 
mean. The simplest measure of variability is the variance or its square 
root, the standard deviation. The computation of the variance is made 
within a window which defines the timescale over which the variability 
is computed. The variance and SD can be computed for either the signal 
of each channel or the GFP. The results reported in this paper were 
obtained using the standard MATLAB functions movvar() and movstd() 
for the variance and standard deviation respectively, using the formulae 
for a set of values Si shown below. 

V =
1

N − 1
∑N

i=1
|Si − μ|2, where μ=

1
N

∑N

i=1
Si  

SD=
̅̅̅̅
V

√

Boxplots are used to display, in a quantitative way, specific aspects of 
HRV during phasic and Tonic periods of REM0 (Fig. 2B) and during 
GLEABS events and core periods in Fig. 4 (both parts A and B). Boxplots 
were generated using the standard MATLAB function ‘boxplot’. In these 
boxplots the median is shown as a red line (inside the box) with the 25th 
and 75th percentile levels represented by the horizontal blue lines of the 
lower and upper boundaries of the box. Outliers are represented by 
crosses and a dotted line shows the range (excluding outliers). 

2.5.2. Quantification of the heart rate variability 
For the quantification of the HRV, many methods for HRV repre-

sentations use time changes in consecutive R-R intervals also known as 
interbeat intervals (IBIs). In contrast, our analysis uses the measure 
defined earlier which we dubbed variance of the Heart Rate (VHR). For 
each subject, the lower and upper limits are set for the acceptable range 
of HR, usually from about 40 to 120 bpm. We then remove periods 
outside this range and periods with unclear QRS complexes. This pre- 
processing eliminates noisy parts of the ECG and ectopic beats. The 
standard deviation of the HR, SDHR and its square, i.e. VHR are then 
computed for the remaining signal. Our method most closely resembles 
the SDNN method considered as the ‘gold standard’ measure for medical 
stratification of cardiac risk when recorded over 24 h period. SDNN 
measures the standard deviation of accepted R-R intervals hence 
renamed to Normal-Normal intervals (N–N intervals) in each period 
(Malik and Electrophysiology, 1996). Our method provides two (2) key 
advantages: Firstly, the variance rather than the standard deviation 
amplifies differences rapidly and in a non-linear fashion within the 
critical range towards surges where the threshold must be set, making 
regions with high and low HRV easier to distinguish. Secondly, using 
bpm (or its square) instead of ms as a unit of measurement stays closer to 
the familiar clinical units of HR. HRV can also be computed using 
frequency-domain methods. This include calculating the power in each 
of the 3 main frequency bands Very Low Frequencies (VLF ∈(0 0.04] 
Hz), Low Frequencies (LF ∈[0.04 0.4] Hz) and High Frequencies (HF 
∈[0.4 ∞] Hz) (Malik and Electrophysiology, 1996). For frequency 
domain methods two (2) minute-periods should be used for LF (Shaffer 
et al., 2014) and at least one (1) minute-period for HF. In this paper we 
use the HRV for sleep classification using thirty, or even 10 s periods, 
therefore, frequency domain methods are not an option. Delving into the 
different mechanisms of HRV, as these may be probed using frequency 
domain methods for HRV computations, although interesting and worth 
doing, are beyond the scope of the work presented here. 
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2.5.3. Time-frequency analysis 
For the time-frequency analysis of Fig. 4B we used the generalized 

Morse wavelets of Olhede and Walden (Lilly and Olhede, 2012), with 
parameters set to β = 27 and γ = 3. We used default functions from the 
jLab toolbox (http://www.jmlilly.net/jmlsoft.html) made for MATLAB 
to convolve Morse wavelet power and phase for the computations of the 
spectral powers within different bands. 

A Normalized percentage difference was employed to quantify the 
differences between the two types of events, e.g., the two types of KCm 
(Fig. 4B). Time-frequency analysis was run on EEG C3 (C3-A1) channel 
for the whole trials (180 s) with low head movement. The KCm at HRS 
(KCmWSHF) and between HRS (KCmNOHF) were identified. For all 
KCmNOHF power over the time of the second oscillation was averaged 
over time for each frequency bin to obtain mean KCmNOHF power over 
frequency for all KCm events between HRS. The power of each 
KCmWSHF at the second oscillation was subtracted by the mean 
KCmNOHF power over each frequency bin and then normalized by 
dividing the result at each frequency bin by the maximum power 
recorded from both KCmWSHF and KCmNOHF. This analysis gives a 
normalized difference over frequency for each individual KCmWSHF 
compared to the mean power of all KCmNOHF. In order to avoid bias 
from electrode placement and different skin conductivity for each sub-
ject, the normalized difference was calculated for each subject sepa-
rately before the boxplot was computed for each frequency and 
normalized before the percentage change across subjects was computed. 
More formally, let us use the labels x, y and z to stand for subject, epoch 
and frequency, so we label the power of a KCm events by 
KCmWSHF(x, y, z) and KCmNOHF(x, y, z). We also denote the corre-
sponding mean power across epochs by KCmWSHF(x, z) and 
KCmNOHF(x, z). For normalization purposes, we define the maximum 
power of all KCm epochs regardless of type and frequency for the subject 
x, which we denote by K̂CM(x). With these definitions, we can write the 
Normalized Power (ND) of the yth epoch of type KCmWSHF of subject x 
at the frequency z relative to the mean of the KCmNOHF as 

ND(x, y, z)=
KCMHF(x, y, z) − KCMLF(x, z)

K̂CM(x)

and finally, the corresponding Percentage Difference (PD) 

PD(x, y, z)= ND(x, y, z)*100 

The results are plotted in Fig. 4B using boxplot to show the spectral 
differences between KCm events at, and between HRS. 

2.5.4. An approximate semi-automatic identification of REM0 using signal 
properties only 

The REM0 periods of sleep can be approximately defined by intro-
ducing a second iteration of sleep scoring/labelling to the sleep stages 
defined in the classical way (Rechtschaffen and Kales, 1968). We use 
VHR and VEEG to refer to the measures of variability (variance) of HR or 
GFP of the electrophysiological measures, respectively. We compute in 
exactly the same way corresponding thresholds, THR ​ and ​ TEEG, using 
the signal at the beginning of the recordings (with eyes closed and well 
before the first transition to sleep). After the conventional sleep staging 
is completed, each 30-s period is re-examined computing two variability 
measures, one related to the variability of the cardiac rhythm and the 
other related to measures of the electrical activity of the brain that can 
be extracted from the EEG, MEG or EMG channels. For each comparison, 
the expert classification is modified according to the following criteria: 

VHR ≤ THR ̅̅→
yields accept exp ert classification

VHR > THR AND VEEG > TEEG ̅̅→
yields REM0

VHR > THR AND VEEG > TEEG ̅̅→
yields REM 

The critical element for the cardiac criteria is the presence or absence 

of surge, it is therefore necessary to use sufficiently long period for the 
computation of the variance (V) of the HR. We set the lowest duration 
for the window for VHR computation to be ten (10) seconds. The measure 
of other variances (i.e. for EEG, MEG and EMG) can be reduced further, 
and we have used for VEEG windows as small as 200 ms. The HRV defines 
a candidate REM0 period and its duration and this is used to confirm if 
within this period the second criterion (VEEG > TEEG) is also satisfied. We 
will present results using windows for the VHR ranging from ten (10) 
seconds to three (3) minutes. 

2.6. Data analysis II (source space descriptions) 

2.6.1. Magnetic field tomography (MFT) a probabilistic approach to the 
inverse problem 

The actual tomographic analysis employs the non-linear magnetic 
field tomography (MFT) algorithm (Ioannides et al., 1990; Ribary et al., 
1991) which is designed to extract the maximum information out of real 
time MEG data. This is achieved through independent MFT computation 
applied to each snapshot of single trial data MEG data (Taylor et al., 
1999). MFT can also be applied independently to each snapshot of 
average MEG data, the average performed over a time window (or after 
filtering) or across selected clusters of STs. The output of the MFT 
analysis is an estimate of the continuous primary current density vector 
J(r,t). For each snapshot of data, a linear integral expression relates the 
signal dm from the mth sensor (set of coils) to the primary current density 
vector J(r) , where for simplicity the time variable has been dropped 
since each analysis is performed independently for each time point. The 
integration is over the source space, Q, which encompasses all regions 
which can contain active generation of electrical activity (primary cur-
rents) which are the generators of the MEG signal of interest; in our case 
Q is the entire brain: 

dm =

∫

Φm(r) . J(r) dr (the ​ integral ​ is ​ taken ​ over ​ the ​ source ​ space ​ Q)

(1) 

The lead field Φm(r) is a vector function that is completely deter-
mined by the geometric properties of the coils making up each sensor 
and the conductivity details of the biological medium. The above 
equation is the solution of the forward problem (FP) and it shows that 
the FP is linear. However, the inverse problem (IP) is not necessarily 
linear. To see this let us write the general form of the current density 
vector as an expansion in terms of the product of the lead fields (thus 
ensuring that no components can arise in the inaccessible parts of the 
source space) and a weight function w(r, J(r)), where we have explicitly 
allowed our modulating weight function to depend on the unknown 
current density vector. We further simplify the weight function by 
assuming that its dependence on J(r) is through some power of its 
modulus, J(r), J(r) = |J(r)|. This leads to the ansatz, 

J(r)= |J(r)|p+1
∑M

m=1
Am Φm(r) wp(r) (with ​ M ​ the ​ number ​ of ​ sensors)

(2) 

Substituting (2) in (1) yields the general family of MFT solutions, 
with the standard MFT, as it has been consistently used through the last 
three decades corresponding to the choice p = 0. The optimal choice of p 
was first investigated through simulation campaign (Ioannides et al., 
1990) and then again through a detailed analysis of lead field properties 
(Taylor et al., 1999). In both cases the standard MFT (p = 0) was su-
perior: the numerical simulations showed a better performance (Ioan-
nides et al., 1990; Taylor et al., 1999) and the theoretical analysis of the 
lead field had optimal properties for tomographic analysis (Taylor et al., 
1999). The general family of MFT solutions leads to a highly compli-
cated system of equations except for the case with p = − 1, which is the 
only one that leads to a linear system of equations that is J-independent. 
The family of linear solutions (p = − 1) includes the minimum norm 
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(MN), weighted MN (wMN) and LORETTA (where weights are intro-
duced depending on the inverse square Laplacian operator). These 
methods lead to a linear system of equations’ and therefore they are 
popular. The computational simplicity and efficiency of the family of 
linear methods is bought at the expense of physics. The choice p = − 1 
removes the dependence on J and in doing so it makes it possible to use 
the same single scalar function to recover any current density without 
further recourse to the data. The very nature of the non-uniqueness of 
the inverse problem suggest, and the underlying physics shows, that it is 
not possible to recover both the direction and strength of the current 
density anywhere in Q with a kernel that is independent of the current 
density vector (Taylor et al., 1999). The standard MFT corresponds to 
the assumption that only the direction of the unknown J(r) can be 
expressed as a (weighted) linear sum of lead field functions. The full 
current density must be obtained from a highly non-linear system of 
equations for each snapshot of data. Specifically, the strength must be 
determined more explicitly from the MEG signal itself. The sound 
theoretical base brings two more consequences that endow standard 
MFT with properties needed for tomographic analysis. Firstly, the final 
expression to be solved has no dependence on the modulus of the un-
known current density vector, because this appears on both sides of the 
defining equation (2) (with p = 0), a property that allows for sharp 
discontinuities in the current density vector with small values of the 
expansion coefficients. Second, standard MFT satisfies the principle of 
least sensitivity to both variations of the data and iterations of the 
non-linear norm constraints; a more detailed mathematical analysis for 
the two properties can be found in (Taylor et al., 1999). Therefore, 
standard MFT is designed for real time (single trial) analysis because, it 
draws by necessity on all available data: because linearity is lost, the 
direct appeal to the data must be made on every time slice of the data, so 
a new non-linear system of equations must be solved each time. It is in 
this sense that MFT uses all information in the MEG signal. The heavy 
computational load that used to be a problem in the early years when 
MFT was first implemented, is less important today and this is partly the 
reason that the re-analysis of the old data that can be done almost 
routinely today provides so much new information. Throughout the 
manuscript we will refer to standard MFT (i.e., the choice of p = 0, 
amongst the wider MFT family) as MFT. 

2.6.2. Post-MFT analysis in the time and frequency domains 
The methods described above were developed specifically for further 

analysis of the MFT estimates of the instantaneous continuous primary 
current density vector J(r, t). They can be applied in exactly the same 
way for the results of any analysis capable of producing an independent 
estimate of continuous primary current density vector J(r, t) for each 
time slice of data. We first distinguish analysis using either the time or 
frequency domains. The continuous vector field extracted from MFT is 
discretized for storage and further processing as vector time series for 
each voxel (a point on the grid used to store the MFT solutions) and for 
each ST of each condition of an experiment. Post-MFT analysis is per-
formed on the resulting time series. Here we will be concerned with 
statistical comparisons, which are performed voxel by voxel and the 
results are reported after the conservative Bonferroni correction is 
applied for multiple voxel comparisons. The current study employs the 
same methodology and in particular uses the same conceptual frame-
work of using MFT solutions computed in the time domain to obtain 
statistical comparisons either in the time or frequency domain. The time 
domain statistical comparisons are suitable for evoked responses, where 
the onset of stimuli or events provide a time-locking signal that can be 
used to align individual single trials (ST). The frequency domain sta-
tistical comparisons are suitable when state comparisons are to be made, 
and this is the case for studying sleep. Even in the case of events like 
spindles and KCs the onset of the event is not precisely defined; even if 
the onset could be defined accurately, each event has a very different 
pattern of underlying activity so any pooling of similar events must first 

attempt to assign very different individual events into clusters showing 
more within cluster homogeneity. 

2.6.3. Summary of methods for statistical comparisons between sleep 
periods 

In all our recent sleep studies we have used statistical comparisons 
confined to specific frequency bands. In our first such analysis, we used 
sleep MEG data filtered within different spectral bands (Ioannides et al., 
2009) to compare different core periods. Specifically, we used the time 
domain estimates of activity extracted from band-pass signals filtered in 
two bands: wide (1–200 Hz) and gamma band (25–90 Hz). Each snap-
shot of the band-passed data was analyzed tomographically. The 
strength of the resulting estimates, i.e., the modulus J(r) = |J(r)| at each 
grid point, r, in the brain was used as the basic element of comparison. 
We used 8 trials, each of 4 s duration, extracted from the core periods of 
each sleep stage (NREM1c, NREM2c, NREM3c, NREM4c, REM) and for 
the ECW condition to define the six-core distribution. Since each 4 s trial 
had 2500 samples, the distribution for each core period had (8 × 2500 =
20000 samples). The distributions for each sleep stage were compared 
with that of ECW and with that of each other sleep stage, with separate 
statistical comparisons for the wide and gamma bands. Because of the 
large number of samples, the comparisons gave highly significant re-
sults, typically with p < 0.00001 after Bonferroni correction. 

2.6.4. Simple and complex extensions of spectral statistical parametric 
mapping (sSPM) 

In our more recent studies’ we have standardized the frequency 
domain analysis. The details of the analysis are fully described in Fig. 1 
of (Ioannides et al., 2017). This methodology was applied for studying 
the way the NREM2 hallmarks KC1s and spindles emerge from the 
NREM2 core periods. The results were reported in (Ioannides et al., 
2017, 2019) and some of its implications in (Ioannides, 2018). In sum-
mary, the new method utilizes the MFT time domain reconstructions as a 
basic analysis unit: MFT is applied independently to each snapshot of 
time domain wide-band MEG data. Typically, we cut from continuous 
3-min-long data (with low head movement) segments with duration of 
2, 4 or 8 s. For the work in this paper, all time domain segments were 4 
s-long and were divided into two, 2-s parts for the Fourier analysis. For 
core periods, the two 2-s data from each 4 s segment were equivalent. 
For GLEABS the center of each 4 s (zero of time) was at the onset of the 
first event, e.g., at the onset of the first KC in a KCm sequence. Therefore, 
the first 2 s segment was from a pre-event period, while the second 2-s 
cut was from the post-event period, i.e., it contained the activity 
correlated with the event. Since the MFT reconstructions were per-
formed independently for each sample of data, the collection of samples 
for each voxel (point on the grid used to store the MFT solutions) 
described the time evolution of J(r) continuously from the pre-event 
through the onset and the post-event period for each GLEABS trial. 
Each 2 s segment of J(r) was Fourier transformed, component by 
component and the 3D Pythagoras’ rule was applied to compute the 
spectral amplitude at a given frequency. For each 2 s time domain 
segment we computed the spectral density from 0.2 to 98.4 Hz with step 
of 0.2 Hz. The usual statistical parametric mapping (SPM) analysis is 
applied to the spectral density, what we call simple spectral SPM (sSPM) 
comparing the activity between conditions within a specific frequency 
band. In all statistical comparisons reported in this work, we contrasted 
the spectral power in windows of bandwidth 3.2 Hz and used a step of 
1.6 Hz to cover the range from 3.2 to 94.6 Hz. The result of a statistical 
comparison is reported as (Bonferroni corrected) p-value for the fre-
quency at the center of each bandwidth. In our first analysis with the 
new method (Ioannides et al., 2017) we demonstrated that the new 
analysis reproduced the results of the 2009 study. 

The foundation of our results are simple sSPMs applied separately to 
each subject. For much of the work we will report here, we use the same 
general analysis steps as in our recent sleep studies (Ioannides et al., 
2017, 2019), but in one respect we extend the grand sSPM analysis when 
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we widen the comparisons to combine together sSPMs for events from 
different sleep stages, comparing each one with the same baseline; for 
consistency we will report here comparisons using as common baseline 
the NREM2 core (NREM2c) period. We accommodate this generalization 
by defining two types of grand statistics: the first is obtained from the 
contrast of the spectra of one condition (usually before the event) and 
that of NREM2c; the second is obtained from the contrast of two con-
ditions, both from either the pre-event or both from the period during 
the event. In this work, we will report two composite statistical com-
parisons; these are obtained by demanding that the statistical signifi-
cance quoted is reached at the voxel level by all or a subset of subjects 
and conditions. We will refer to the results of statistical comparison 
across subjects in one condition as grand sSPM (g-sSPM). A g-sSPM map 
provides for each voxel the percentage of subjects that have satisfied 
statistical significance above a given threshold and in a specific direc-
tion. A grand-sSPM comparison can then be generated by finding com-
mon changes across different sSPM comparisons, for example, different 
subjects and/or different conditions. Integrating results across subjects 
requires transforming to a common Talairach space the solutions for 
each subject and then identifying the voxels showing common activa-
tions across subjects and/or conditions either in the pre-event period or 
in the during-event period. We will refer to an even more generalized 
result, where statistical comparisons are satisfied across subjects and 
conditions by Grand sSPM and denote it by Gg-sSPM. In the tomography 
results reported in the paper the Gg-sSPM was used for Fig. 10A while in 
the last case (Fig. 11B) the g-sSPM was employed. 

2.6.5. An example of composite statistical comparisons 
Consider the comparison between conditions A and B. Consider the 

following result for a g-sSPM: +100 for voxel vi and − 75 for a voxel vj. 
This statement means that the statistical comparison between the dis-
tributions for conditions A and B, produced a result satisfying the 
specified threshold for A > B for all subjects for voxel vi and passed the 
same threshold for 75% (e.g., 3 of four subjects) for voxel vj but this time 
for A < B. 

Next, Consider the Gg-sSPM for N subjects and M pairs of conditions, 
i.e., NxM statistical comparisons, with the first, A, condition corre-
sponding to the pre-GLEABS period and the second condition NREM2c. 
Consider the Gg-sSPM results +96 assigned to a voxel vi and − 90 to a 
voxel vj. This means that for voxel vi, the comparison between the dis-
tributions produced a result with A > B at the predefined p-value, in 
95% of the cases (e.g., failed for just one condition out of 5 in only one of 
the 4 subjects). For voxel vj, the result means the same threshold was 
satisfied (but this time with the second condition higher than the first) 
for 90% of the cases (e.g., failed for just two conditions in one subject or 
for one condition in one subject and again for one condition (same or 
different than before) for another subject). 

Key resources Table  

Software and Algorithms 

Interactive Data 
Language (IDL) 

L3HARRIS https://www.l3harrisgeospatial. 
com/Software-Technology/IDL 

FieldTrip 20170912 Oostenveld et al., 
2011 

http://www.fieldtriptoolbox.org/ 

MATLAB R2018a MathWorks RRID: SCR_001622 https://www. 
mathworks.com 

Brainstorm McConnel Brain 
Imaging Center 

http://neuroimage.usc.edu/b 
rainstorm 

C++ Programming 
Language 

Bjarne Stroustrup   

3. Results 

3.1. Sleep quality and details 

The MEG environment is not ideal for sleep and for this reason strict 
selection criteria were used to pick the subjects; strict selection of sub-
jects with good sleep habits was instrumental in ensuring that all sub-
jects selected were able to complete the acclimatization night and actual 
sleep recording night. The details are reported already for the three main 
subjects who were selected for the experiment and passed the selection 
criteria (Ioannides et al., 2004). We copy here the key statistics for the 
sleep quality for the acclimatization and main sleep experiment nights 
for the three main subjects. Despite a slight reduction in total sleep time 
(mean: 369.33 min, SD 41.52 min; efficiency index 0.79) the percentage 
of REM sleep (mean 26.24, SD 11.07) and the latency to REM sleep 
(85.33, 25.77) were within normal ranges for young adults (Williams 
et al., 1974). Although stage 3 and 4 were slightly lower and stage 1 
slightly higher than normal, for each subject all sleep stages were in 
broadly the expected sequence: stage 1 (mean = 15.06, SD = 3.75), stage 
2 (46.12, 6.6), stages 3 and 4 (12.62, 4.34). The hypnograms were 
judged qualitatively physiological, a fact corroborated by the subjects’ 
report of restful sleep similar to their average night. All subjects 
completed a debriefing questionnaire and scored their sleep in different 
aspects compared to their average sleep. The average scores for the three 
subjects for the sleep during the recording night were overall quality 
(87%), refreshing (70%) and of normal depth (80%). Based on the 
subjects’ own evaluation the sleep during the recording night was 
judged better than during the adaptation night (68, 53, and 63%, 
respectively). 

The fourth subject (AAI) did not pass the sleep selection criteria and 
did not had a full acclimatization night before the whole night sleep 
experiment. The subject was sleep deprived and his participation in the 
experiment constituted the final test of the procedures before other 
subjects who satisfied the sleep selection criteria were invited to 
participate in the experiments. Results from this subject were also 
analyzed and were found to be consistent with the results from the three 
main subjects so they have been included in recent publications (Ioan-
nides et al., 2009, 2017, 2019) and in some of the results of this paper, 
but excluded from statistics about duration of sleep and individual sleep 
stages, including REM0, because these may be sensitive to sleep depri-
vation. The bulk of detailed individual results in the figures of this paper 
are mainly from one subject to ensure continuity of presentation, but we 
emphasize that the results from each one of our subjects show similar 
patterns and this is demonstrated by the statistics and figures summa-
rizing across subjects’ results. 

3.2. Coupling of autonomic and electrophysiological phenomena 

Fig. 1 shows for one subject the hypnogram and head movement 
(first and last rows respectively) with the instantaneous HR and the GFP 
for the MEG (151 channels) and EEG (2 channels) in between. The 
Figure covers the entire night sleep showing in one display the vari-
ability of these measures across the night; it is a typical variation we see 
for each one of the four subjects of this study. The increases in HRV are 
clearly seen in the second row as repeated peaks in HR which are 
somewhat intermittent in the first run which contains mostly SC1. The 
HRV increase is stronger in the second run with persistent and long- 
lasting bouts of HR peaks. 

There is some regularity in the prominent patterns seen for the HR 
and the global field power (GFP) for the MEG (row 3) and EEG (row 4) 
signal, but these patterns do not match well the sleep stage periods and 
boundaries. During NREM sleep, the GFP for EEG and MEG tend to in-
crease at different times relative to the HR: the short lasting HRV rise 
just before 3 h (system clock) occurs before the rise in GFP (in the middle 
of a short NREM2 segment). In contrast, the next HRV increase, around 3 
and a quarter hour, is when the GFP are already high (in the middle of 
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long NREM4 segment). On entering REM, we see a sharp drop in the GFP 
for both EEG and MEG while the HRV remains high. During the transi-
tion from REM to NREM, the HRV drops sharply while the GFP remains 
low for a little while, before increasing slowly again. The above changes 
in HRV and GFP are repeated in similar fashion for each sleep cycle. This 
pattern is often masked by large head and body movements, which hide 
some of the variations of the different measures of central and auto-
nomic nervous system. As shown in Fig. 1, during the first cycle (~first 
1.5 h), the sleep is irregular with rapid interchange of sleep stages of 
short duration and numerous assignments of noisy and awake periods. 
This irregular pattern cannot be attributed to large head movements, 
which, as can be seen in the lowest row, is not as big during the first run 
as in the later cycles of sleep. 

Although some consistent patterns are seen in the HR and in the GFP 
of EEG and MEG, there are also abrupt changes in these patterns that do 
not match with any of the conventional sleep stage boundaries. During 
REM, HRV is high and the GFP for both EEG and MEG is low. To make 
these patterns easier to see we mark the boundaries of REM periods by 
red vertical lines, solid for the start and dash for the end of REM. Note 
that these REM patterns can be seen also for the very short REM period 
around 3.5 h into the system clock, when there is no large movement as 
can be confirmed by visual inspection of the last row of Fig. 1. 

3.3. The REM0 periods of sleep 

3.3.1. The characteristics of REM0 periods 
An important feature of conventional sleep scoring is the identifi-

cation of cycles, with each cycle containing a sequences of sleep stages, 
culminating in REM. This is a key feature of the original sleep staging 
(Rechtschaffen and Kales, 1968) and preserved in the revised classifi-
cation (Silber et al., 2007). The cycles culminating in REM can also be 
identified in Fig. 1A, but only after the first sleep cycle. A short REM 
period after about 1 h and a quarter, is a candidate end of SC1 but little 
else of SC1 has the canonical form. For the other SCs, the end of each 
cycle consistently coincides with the end of a REM period, and it is 
marked by a sudden drop of HRV, followed by a slow increase in GFP of 
EEG and MEG. There is however a lack of consistent correlation between 
the features in the different rows and the boundaries of sleep stages 
within each cycle, especially in the periods before REM. The pre-REM 
periods are often the ones most difficult to score. Furthermore, there 
are already suggestions to split REM into two sleep stages: tonic REM 
(REM-T) and phasic REM (REM-P), based primarily on the absence 

(REM-T) or presence (REM-P) of REMS (Simor et al., 2019, 2020). The 
period before REM is often treated separately, sometimes referred to as 
pre-REM period. This period is often lumped together with REM 
(Fernández-Mendoza et al., 2009; Lim et al., 2007; McCarley and Ito, 
1983; Rowe et al., 1999) or defined as transition REM (T-REM) (Brown 
et al., 2012). We also notice that periods like pre-REM are seen in other 
parts of sleep that do not always lead to REM, which often contain large 
movement and often marked as noisy, thus eliminated from further 
consideration. It appears that the description of sleep stages is an 
incomplete characterization. This concern prompted us to examine 
closely the variations in the different measures of electrophysiology in 
general and especially around the REM periods. A cohesive description 
emerged for periods of sleep across the entire sleep sharing some com-
mon features; these periods we group together under the label REM0. All 
sleep stages and REM0 periods have a short duration during early sleep. 
Away from these early sleep periods, the start of a sustained REM0 is 
marked by a rather abrupt rise in HRV during NREM sleep that follows a 
steady rise of the GFP of EEG/MEG. It is noted that this feature describes 
the reverse process to what is seen at the end of REM. The REM0 sleep 
stage is maintained for as long as both HRV is high and peaks are seen in 
the EEG/MEG GFP. During REM0 periods, HRS are strongly coupled to 
EEG/MEG/EMG GFP and REMS. 

3.3.2. Distinguishing REM from REM0 and relative prevalence of REM0 
In this work we are introducing REM0 as a collective term for periods 

of sleep with features that are distinctive enough to separate it out and 
study it in isolation. In all displays we will present, we maintain the 
conventional sleep classification and superimpose on it the periods 
marked as REM0 as an additional, and at least for now, independent 
characterization of sleep. Nevertheless, it is a useful exercise to distin-
guish REM0, as if it was a new sleep stage so we can estimate in addition 
to the overall relative proportion of sleep it occupies, what part it would 
take away from each of the other sleep stages (and the periods that 
cannot be defined as conventional sleep stages). The way HRV correlates 
with the other neurophysiological measures would provide a way of 
distinguishing REM0 and REM: only in REM0 HRS have a regular 
rhythm that is highly correlated with all other electrophysiological 
measures. We designed and implemented a semi-automatic method for 
separating REM, REM0 and NREM, using the most basic elements of the 
properties of REM0 (see Methods). Applying the criteria to each 3-min 
period, we made a coarse quantification of the prevalence of REM0 
and estimated the head movement under each revised sleep stage entry. 

Fig. 1. Whole night record of sleep in the 
system clock’s time for one subject (hbd005). 
Different key measurements, are aligned, 
including the break periods for data upload 
and/or at the subject’s request (longest 
period starting around 1.5 h in the system 
clock and lasting for nearly 1 h). The time 
scale at the top is in hours and at the bottom 
in units of 10,000 s. (A) The Hypnogram. (B) 
Instantaneous heart rate. (C) The Global 
Field Power (GFP) from 151 MEG channels. 
(D) The GFP for 2 EEG electrodes. (E) The 
head movement in successive 3 min of re-
cordings. The horizontal black dotted line 
sets the upper threshold (4 mm) for the se-
lection of data for further tomographic 
analysis.   
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The classification produced fractional prevalence 20.69 ± 8.95% for 
REM and 25.14± 1.56% for REM0. For these identified REM and REM0 
periods, head movement above 4 mm was found in 20.96± 10.94% for 
REM and 35.90± 8.16% for REM0. Excluding the sleep-deprived subject 
(who had long periods with large movements), we computed the per-
centages of periods classified automatically by our tool as REM0 for each 
one of the conventional sleep stages (as classified by human sleep ex-
perts) and the results were: NREM2 33.64%, awake or not specified 
22.73%, NREM4 15.45%, NREM3 11.83%. NREM1 10.00% and 6.36% 
REM. 

We explore the similarities and differences between REM0 and REM, 
by computing the mean and standard deviation of HR during periods 
when saccades in REM (i.e., REMS events) are present or absent. For the 
purposes of this comparison, we follow (Simor et al., 2019, 2020) and 
define phasic (P) or tonic (T) periods by presence or absence of REMS 
respectively; we make this distinction separately for REM sleep stage 
and REM0 periods. For this analysis we used periods with head move-
ment below 2 cm because for the separation into phasic and tonic we 
employed only electrophysiological signals and not tomographic solu-
tions (where we usually employ as threshold 4 mm). The results of this 
comparison are displayed in Fig. 2, for each of the four subjects on the 
left (Fig. 2A) and the collective results across subjects in the boxplot on 
the right (Fig. 2B). The results show that the relationship between the 
presence and absence of REMS (phasic and tonic distinction) with HRV 
during REM0 is opposite to that during REM: the phasic part of REM0 is 
like the tonic part of REM, while the tonic part of REM0 is similar to the 
phasic part of REM. 

3.3.3. Zooming onto a more detailed description of REM0 (3 min and 50 s 
periods) 

Fig. 3 displays the second (and longest) continuous run of the entire 
night’s recording (Fig. 1). The top display includes REM0 periods 
defined automatically as described in the Methods section using a single 
sleep stage assignment for each 3-min window. The results of the new 
iteration after classical sleep staging (using the criteria above) are 
superimposed in between parts A and B, showing the additional labels 
REM or REM0 that the second iteration produces: a solid and dash 
vertical line marks the onset and offset of REM (red) and REM0 (green) 
with the duration of the re-classified segment printed above a solid line 
of the corresponding color drawn between the start/end vertical lines. 
Note that the classification used very broad and simple tools: we used 
the variance of the HR and the variance of the EEG channels. Similar 
results were obtained using the variance of the MEG channels and the 
variance of the EMG. We deliberately chose the most elementary clas-
sification (just two channels of EEG) because it is easy for others to apply 
the same procedure to their sleep EEG data. We maintained the 3-min 
intervals in the second sleep staging iteration because we only wanted 
to show first an approximate but robust estimate for the prevalence of 

REM and REM0. 
Two successive zooms highlight details easier to see in different 

timescales. The entire 3-min period of Zoom 1 has low head movement 
and is within a wider 36-min REM0 period. It shows an underlying infra 
low frequency (ILF) oscillation with periodicity around 20 s (frequency 
0.05 Hz), seen particularly well in the HRSs of Fig. 3E. This ILF oscil-
lation is also seen in the high amplitude peaks in the GFP of the MEG 
(Fig. 3C) and EMG (Fig. 3D) traces, which begin just before each HRS 
(Fig. 3E). The set of Zoom 1 suggests a coupling between HRS and other 
brain electrophysiology (i.e., increases in the variance of the EEG, MEG 
and EMG) during REM0. Zoom 2 goes down to fifty (50) seconds (almost 
twice the 30-s conventional sleep staging), showing well the graph-
oelements used for visual sleep scoring, particularly KCs and REMS. For 
easier reference to the previous results, each of the four traces of Zoom 2 
contains the vertical dash lines marking each HRS and down oriented 
triangles marking the peaks of the EMG of Zoom 1. Fig. 3F, shows the 
two horizontal EOG channels; clear eye movements can be seen in each 
KCm with amplitude that does not seem to correlate with the KCm 
strength, or the HRS. The EEG trace (wide band) shows a sequence of 
high amplitude features that we interpreted as KCms. Some of these 
KCm events are clearly associated with HRS. Other KCm events are 
identified in between HRS, with very similar EEG amplitudes as the ones 
at HRS. The separate displays of the moduli of the EEG signal show that 
each KCm linked to HRS has a clear increase in both wide (Fig. 3H) and 
high (Fig. 3I) gamma band (55–95 Hz) ranges. Since the wide band 
signal in Fig. 3H is dominated by low frequencies, it is clear that high 
frequencies are only present for the KCm events during HRS. Conse-
quently, as described in methods section, we label the KCm events close 
to HRS as KCmWSHF. Correspondingly, KCm events in between HRS 
have REMS but no increases in either high gamma EEG or EMG signals 
and are therefore labelled as KCmNOHF. 

Fig. 4 and Table 1 shows the clear dissociation: KCm close to HRS 
have significant HF increase and KCm far from HRS do not. Therefore, 
the same clusters will be obtained if we group KCm events according to 
how close they are to HRS or presence/absence of high frequencies. 
Fig. 4B unfolds the spectral power difference between KCmWSHF and 
KCmNOHF in the frequency domain. The results confirm the increase in 
gamma band identified in Fig. 3H and show that the increase is 
consistent across our subjects. The spectral unfolding in Fig. 4B shows 
distinctively different variance and average patterns for low (up to the 
beta band) and gamma band frequencies. In the low frequencies the 
difference at, and between, the HRS attains high values but with no 
preponderance of increases or decreases thus averaging around zero. For 
high frequencies there is a consistent positive excess (higher spectral 
power at the HRS than between) which rises a little in the low gamma 
band and becomes more prominent in the high gamma band; the dip 
around 50 Hz is due to the notch filter around the mains frequency. 

Fig. 2. Measures of mean HR and HRV 
(represented by the standard deviation of 
HR) shown as scatter diagrams for individual 
subjects and Boxplot for across subject mea-
sure of HRV. 
The computations included only periods with 
head movement less than 2 cm and lasting 
for more than 4 s. (A) (A1-A4) Scatter dia-
grams for each subject (1–4 respectively). 
Filled and empty shapes correspond to REM0 
and REM respectively, while triangles 
represent tonic and kites phasic periods. (B) 
Grand-measure of HRV shown as Boxplots of 
standard deviation divided by mean HR of 
each period across all four subjects. Median 
is shown by a red line, 75th/25th percentile 

shown by upper/lower blue lines, crosses represent outliers and a dotted line the range (excluding outliers). Separate Boxplots show each of the four pairs of REM/ 
REM0 and phasic/tonic period. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)   
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3.4. Sleep characterization at a finer detail for periods of stable sleep 

The results presented so far were obtained using smooth assign-
ments, i.e., using a single sleep stage label for each 3-min period (cor-
responding to the duration between head coil activations). Such a long 
window is appropriate for stable periods of sleep like the sleep period of 
run2 which contains the second and third cycles of the night’s sleep. 

Such long windows are not suitable for unsettled sleep or even for stable 
periods if finer details of transitions between stages are to be studied. We 
will present next computations of sleep stages and the variations of the 
EEG signal and heart rate using shorter windows for the computation of 
the variances, first for the stable periods of run2 and then for run1. 

Fig. 5 displays the first two sleep cycles of run2 (SC2 and SC3), each 
lasting about ninety (90) minutes. Each SC is represented in 3 successive 
rows, showing in turn the output of sleep staging, i.e., the hypnogram 
(rows 1 and 4, for SC2 and SC3 respectively), and the two inputs: the 
variances of the GFP of the EEG (rows 2 and 5, for SC2 and SC3 
respectively) and the variances of the HR (rows 3 and 6, for SC2 and SC3 
respectively). In each row representing the input a dash horizontal line 
sets the threshold for the application of the criteria for (re-)defining REM 
and REM0. The threshold chosen is simply the value of the mean vari-
ance of either the EEG GFP or of the HR at the beginning of sleep (i.e., 
the beginning of run1 well before the start of SC1). As can be seen the 
changes in the variance are huge, so there is a clear demarcation of 
values well above and well below the threshold. Clearly, the results will 
not change much if we had chosen for each thresholds the values at the 
beginning of run2, i.e., well before the start of SC2. The hypnogram rows 
(rows 1 and 4) show both the human experts’ definition (in the low 
resolution of 3-min as used so far). The additional REM and REM0 labels 
produced by the second iteration are marked as red and green blocks 
respectively, placed at the top of the hypnogram (the noise level of the 
old hypnogram). Different windows were used for the variance of the 
EEG GFP (ten (10) seconds) and for the variance of the HR (thirty (30) 
seconds). The thirty (30) second assignments set the overall limit for 
invoking the use of the criteria of iteration 2 and it is determined by the 
HRS. Within this thirty (30) second window a finer resolution can be 

Fig. 3. Key features of electrophysiological signals 
at different time scales within the 4 h long second 
continuous segment of data (run 2); same subject as 
in Fig. 1. 
The revised automatic marking for REM and REM0 
are included as red and green bars respectively. 
Vertical lines represent the start (solid) and end 
(dotted) of REM (red) and REM0 (green) periods. 
The first zoom (Zoom 1) focuses on the marked 3- 
min period that fulfils the requirements for REM0 
and also has a very small head movement, less than 
1 mm. The second zoom (Zoom 2) focuses on the 
marked 50 s period containing three clear HRSs and 
is sufficiently detailed to relate to the graphoele-
ments that are the hallmarks of each sleep stage. (A) 
The hypnogram for run 2. (B) The headmovement 
in successive 3 min of recordings for run 2. (C) 
Zoom 1: the GFP of MEG from 151 MEG channels. 
(D) Zoom 1: The square of the bipolar EMG channel 
averaged over a moving window of 33 timeslices 
(52.8 ms). (E) Zoom 1: Instantaneous heart rate 
with the vertical dash lines marking the peak of 
each HRS. (F) Zoom 2: A finer view of the 50-s 
period mark by the heavy outline in part (E) and 
containing 3 clear HRS: Superimposition of the two 
horizontal EOG electrodes. In this and the other 
Zoom 2 rows below, the displays include the verti-
cal dashed lines marking the HRS peaks and down- 
facing triangles narking individual high peaks in the 
EMG channel (of row D). (G) Zoom 2: The mini-
mally filtered EEG (C4-A1). (H) Zoom 2: The 
modulus of wide band (0.7–95 Hz) filtered EEG (C4- 
A1) averaged over moving window of fifty-one (51) 
time-slices (81.6 ms). (I) Zoom 2: The modulus of 
high gamma band (55–95 Hz) filtered EEG (C4-A1) 
averaged over moving window of 51 timeslices 
(81.6 ms). (For interpretation of the references to 
color in this figure legend, the reader is referred to 

the Web version of this article.)   

Table 1 
The p-values for the comparison of percentage difference in HR, for each KC type 
and NREM2c.   

Subject # 
Event comparison (p-value) 

KC1 vs 
NREM2 
Core 

KCm NoHF vs 
NREM2 Core 

KCm WSHF vs 
NREM2 Core 

KCm WSHF 
vs KCm NoHF 

1 9.32× 10− 2 8.23× 10− 2 4.60× 10− 12 8.19× 10− 7 

2 7.46× 10− 2 3.15× 10− 1 2.97× 10− 3 3.80× 10− 3 

3 2.94× 10− 1 4.45× 10− 2 4.89× 10− 3 3.30× 10− 4 

4 5.47× 10− 1 8.20× 10− 1 4.66× 10− 9 1.32× 10− 5 

Across 
subjects 

1.09× 10− 2 5.75× 10− 2 ≈ 0 1.11× 10− 16 

Table 1 shows the value of the p-value when carrying a two-sample student’s t- 
test of the percentage difference in HR as described in the Methods section using 
the standard MATLAB function ttest2. Using null hypothesis that the percentage 
difference in HR for the two events for the specified subject(s) (Rows) pop-
ulations are independent random samples following a normal distribution with 
equal means and equal but unknown variances. The alternative hypothesis is 
that the percentage difference for the two event populations have unequal 
means. 
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achieved through recourse to the variance of the EEG GFP computed 
over ten (10) seconds. Note that the gap between 3-min sessions is 
largely artificial; it is forced by the interruption of recordings due to the 
activation of the head localization coils (lasting for twenty (20) or more 
seconds) to which fifteen (15) seconds must be added (half of the win-
dow used for the HR variance computation). Direct comparison of Figs. 3 
and 5 shows the small changes made using the shorter window of thirty 
(30) seconds (for Fig. 5) rather than three (3) minutes (for Fig. 3). 

The display in Fig. 5 demonstrates how the criteria for the second 
iteration are applied, and as already mentioned it demonstrates the 
robustness of the procedure. In fact, a case can be made for increasing 
the threshold for the variance of the HR to 1.5 or 2 times the value 
chosen (i.e., 1.5 or 2 times the value average of the HR variance at the 
first few minutes of run1). The results with this new threshold will be 
almost identical to the ones presented in the figure, with only exception 
the elimination of the first few REM periods of SC2 which fall within 
ECW and NREM1 periods. The way the results are presented in Fig. 5 

does not show well the yoking of the HRV and especially the surges to 
the rapid changes seen in the EEG, MEG and EMG. To allow for this 
yoking of different electrophysiological measures to the cardiac rhythm 
and especially the HRS we return to the presentations showing the HRV 
and the GFP in the next two displays. 

Fig. 6, shows again the two main sleep cycles of run2 this time in 
pairs of rows, starting with the hypnograms (rows 1 and 2) including 
REM and REM0 definitions from the second iteration and ending with 
the head movement (rows 9 and 10). We show also the GFP for the EEG 
(rows 3 and 4) and EMG (rows 7 and 8); we note that there were some 
large movements during run2 which are likely the cause of a partial 
detachment of the EMG electrode early in run2 that continued 
throughout this run; this showed as an increase in low frequency noise 
that nevertheless is not affecting the location of the EMG peaks that are 
the element we wish to highlight in Fig. 6. Finally, the HR is displayed in 
two middle rows (5 and 6). The peak of each HRS is identified, and its 
position marked by a pair of upward and down facing arrows at the top 

Fig. 4. Physiological and spectral differ-
ences between KCmWSHF and KCmNOH-
FAcross 
subjects changes relating HRV for GLEABS 
and core periods and changes in spectral 
power for KCm periods in REM0. In the 
boxplots, the median is shown by a red line, 
75th/25th percentile shown by upper/lower 
blue lines, a cross represents an outlier and a 
dotted line represents the range (excluding 
outliers). We compute separately the 
changes for the two types of KCm, the ones 
close to HRS, which have strong high fre-
quency spectral power (KCmWSHF) and the 

ones in between or well away from HRS, which have NO strong high frequency spectral power (KCmNOHF). (A) Percentage change in maximum computed heart rate 
(computed for each event separately) during the first 4 s starting at the onset of GLEABS or start of core period relative to the mean heart rate of the 2 s before. This 
percentage difference is computed separately for each member of the GLEAB family and the quiet periods of each sleep stage. The statistical significance of the result 
for each subject and across subjects is listed in Table 1 (B) Boxplot of normalized difference for each subject. The power of the KCm periods at the HRS relative to the 
mean power of KCm in between HRS for each frequency bin. In order to avoid bias from electrode placement and different skin conductivity across each subject the 
percentage normalized difference was calculated for each subject separately before the boxplot was computed for each frequency. More details and formulae for this 
case (B) can be found in methods. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)   

Fig. 5. Using variances of EEG GFP and HR to 
reclassify sleep 
Sleep classification by the experts and after our 
additional iteration step (run2). The figure shows 
the results for the second run of the same subject as 
in Fig. 1, classifying with each method succesive 30 
s windows (six such windows in each 3 min 
continuous recording). For the second iteration we 
used the variances of the EEG and Heart rate. New 
sleep classification is shown on the top row of the 
hypnogram (corresponding to the NS level in the 
conventional hypnogram) with red and green block- 
lines indicating REM and REM0 respectively. In the 
rows displaying the EEG and HR variances, dotted 
black lines mark the thresholds used by the auto-
matic scoring routine. The plot is composed of 2 
triplets (A,B,C) and (D,E,F) each presenting the 
same measurements for the 2nd and 3rd sleep cycle 
of HBD005 respectively. Top and bottom triangles 
represent Heart rate surges as identified from the 
program. A green set of triangles is shown if the 
identified surge corresponds to an increase to the 
power of both EEG and EMG, a blue set is shown if 
the surge corresponds to an increase in either the 
power of EEG or EMG while a red set of triangles 
shows no corresponding increase in the power of 

EEG or EMG within a minute window of the identified surge. (A, D) Hypnogram; (B, E) Variance of Global Field Power of the two EEG channels (C3-A1, C4-A1) 
between 0.75Hz and 95Hz and displayed using a log scale. (C, F) Variance Instantaneous Heart rate. The representation of Fig. 5 shows the quantities used in 
the criteria of the second iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)   
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and bottom of the display. The period from 1 min before to 1 min after 
each HRS is searched for peaks in the EEG and EMG GFP and the result is 
quoted in the color of the corresponding downward and upward facing 
arrows of each peak: (green → if a peak is found in both EMG and EEG), 
(blue → if a peak is found in either the EMG or EEG, but not in the other) 
and (red → if no peak is found in either the EMG or the EEG). The dis-
tribution of arrows shows clearly that the periods defined as REM0 
correspond to the green triangles showing convincingly the yoking of 
the EEG and EMG to the HRS. The display of Fig. 6 shows well the highly 
regular HRS sequence with corresponding regularity in the peaks of HR 
(row E) for the duration of the long REM0 period (row A) between 200 
and 230 min of the system clock, followed by an abrupt dissolution of 
this regularity as REM proper begins. While the regular HRS lasts, there 
is a strong association of peaks in the EEG and EMG with HRS, but this 
becomes weak or non-existent abruptly with the end of REM0 and re-
mains so for the duration of REM. 

3. 5. Sleep characterization at a finer detail for periods of unsettled sleep 

Run1 contains the first cycle of sleep which, as is often the case, is 
characterized by many transitions between awake state and sleep stages 
of light sleep with brief duration. The first sleep cycle of the night 
usually ends with a brief REM period and lasts between sixty (60) to one 
hundred (100) minutes a somewhat shorter duration than the other 
sleep cycles that usually last between ninety (90) and one hundred and 
twenty (120) minutes. The three subjects that were not sleep deprived in 
our study all had a first sleep cycle lasting between sixty-five (65) and 
eighty (80) minutes, ending with a short REM period lasting between 
one and 3 min, under the conventional sleep staging procedures. Fig. 7 
shows the SC1 for HBD005 in the same format as that used in Fig. 6 for 
the first two sleep cycles of run2 (SC2 and SC3). Using a single sleep 

stage classification, i.e., forcing the single sleep stage assignment for 
each 3-min continuous recording, shows only glimpses of the canonical 
form, starting with light sleep and apparently jumping into a brief REM 
session at the conclusion of the short (~75 min) sleep cycle. The 
introduction of the new iteration after the sleep staging process (using 
thirty- and 10-s windows for the computations of the variance of HR and 
EEG GFP respectively) brings forth numerous occurrences of intermit-
tent short periods with the additional second iteration labels of either 
REM0 or REM. The additional new labels are displayed in Fig. 7, in 
exactly the same way as in Fig. 6: as red (REM) and green (REM0) blocks 
placed at the top part of the first row. The third row in Fig. 7 shows the 
HRV and uses the arrows to mark the presence of peaks within 1 s of the 
HRS; as before, a green arrow is used to mark the presence of a peak in 
both the GFP of EEG and EMG while a blue arrow marks the presence of 
only one GFP peak, either for the EEG or the EMG and finally a red arrow 
when there is no GFP peak. These arrows show that during the first cycle 
of sleep of HBD005, the peaks of the GFP for EMG and EEG are tightly 
yoked with HRS during REM0 and more weakly, usually to only one of 
the two, during REM. This yoking is established early during sleep and it 
is already evident in the newly labelled REM0 and REM periods defined 
during what the human experts identified as awake (ECW). For early 
sleep in particular, we resist the temptation to proceed with proposing 
these newly labelled periods as putative REM0 and REM periods, 
because more work is needed to clearly distinguish these periods from 
each other and from the awake state. Nevertheless, it is worth noting 
that, if our REM0 classification for SC1 is counted as sleep then the 
duration of SC1 increases from 65 to 80 min approaching the canonical 
SC length of the later parts of sleep. 

The REM0 periods are often associated with head movements and 
strong EMG activity and for this reason they often correspond to periods 
marked as noisy by experts. Careful inspection of the data however 

Fig. 6. The regular Heart Rate Surge rhythmicity of 
REM0 in run2. 
The figure shows again the results for the second 
run as in Fig. 5, classifying with each method suc-
cesive 30 s windows. For this figure we keep the 
same conventions for the different displays as in 
Fig. 5, but we show in successive rows the same 
measure for the SC2 (rows A, C, E, G and I) and SC3 
(rows B, D, F, H and J), with successive pairs as 
follows. Rows A and B show the hypnograms. Rows 
C and D show the actual EEG GFP (C3-A1,C4-A1) 
between 0.75Hz and 95Hz using a window of 3 
time-slices (4.8 ms). Rows E and F show the actual 
instantaneous HR. Rows G and H show the GFP of 
chin EMG electrode between 20Hz and 95Hz using 
a window of 3 time-slices (4.8 ms). Rows I and N 
show the head movement within each 3 min. The 
representation in this Fig. 6 shows well the regular 
HRS sequence during REM0 periods, which stand 
out prominently during the extended REM0 periods 
from 200 to nearly 240 min.   
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shows that this is not always the case as there are clear REM0 periods 
corresponding to very small head movements well below the threshold 
of 4 mm we have used for acceptance for tomographic analysis. Spe-
cifically, SC1 has relatively low head movement except for a short period 
just after sixty (60) minutes and at the very end of the REM period (as 
defined by experts) marking the end of SC1. The large head movement at 

the end of run1 seen prominently in Fig. 1 is beyond SC1, just outside the 
period displayed in Fig. 7. 

During the sleep cycles of run2 (SC2 and SC3) the REM0 and even-
tually REM periods coalesce into longer continuous periods, justifying 
the use of single sleep label for most of the intervals of 3 min continuous 
recordings. In contrast, during run1 sleep stages, and the additionally 

Fig. 7. Using REM0 to assign sleep stages for hard 
to classify early sleep in run1 
The figure shows the results for the first run of the 
same subject as in Fig. 1, classifying with each 
method succesive 30 s windows (six such windows 
in each 3 min continuous recording). For the second 
iteration we used the variances of the EEG and 
Heart rate. The conventions and displays are the 
same as in the last Figure (6). The rows show in 
turn: (A) Hypnogram. (B) Global Field Power EEG 
(C3-A1, C4-A1) between 0.75Hz and 95Hz using a 
window of 3 time-slices (4.8 ms). (C) Instantaneous 
Heart rate. (D) Global Field Power of chin EMG 
electrode between 20 Hz and 95 Hz using a window 
of 3 time-slices (4.8 ms). (E) Distance head moved 
compared within each 3 min segment of continuous 
recording. Dotted black line on subplot (E) show the 
0.4 cm MFT threshold.   

Fig. 8. The third iteration around a classical 
NREM2 → NREM1 transition 
More detailed zoom in into a 90 s period during 
early sleep (run1). The above 90 s period starts 
around 2030 s (~34 min) after the onset of the sleep 
experiment. Time in x-axis is shown in seconds. The 
Figure shows the sleep classification as done by the 
experts and the modifications after the automatic 
second iteration is applied; for both steps the stan-
dard 30 s windows are used. The second iteration 
uses the variances of the EEG GFP and HR. (A) 
Hypnogram (black line and labels) with the new 
sleep classification shown in both the lower (awake) 
and highr (NS) rows as red and green block-lines 
indicating REM and REM0 respectively. (B) EOG 
horizontal electrodes(EOGH1-A1), (EOGH2-A1) 
band-pass filtered between 0.5 and 15 Hz. (C) EEG 
C3 electrode(C3-A1)) band-pass filtered between 
0.7 and 95 Hz additionally to removing power line 
noise along with its harmonics. (D) EOG vertical 
electrode(EOGV-A1) band-pass filtered between 0.5 
and 15 Hz. (E) EMG bipolar chin electrodes band- 
pass filtered between 20 and 95 Hz and removing 
power line noise and its harmonics. (F) Instanta-

neous Heart rate. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)   
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labelled periods as REM0 and REM by the second iteration, maintain 
separate and distinct presence for only short time intervals. Fig. 8 dis-
plays a zoom on ninety (90) seconds of data (roughly from 33.8 to 35.4 
min in Fig. 7) which contains 3 successive thirty (30) second periods 
which experts classified as (NREM2, NREM2 and NREM1); these periods 
were re-assigned by our second iteration to the labels (REM, REM and 
REM0). The remaining rows demonstrate the difficulty one faces when 
one tries to do sleep staging during periods that our second iteration 
assigns to either REM or REM0, like the periods used in Fig. 8. The 
presence of REMS in the horizontal EOG channels in all three thirty (30) 
second periods would justify the REM label; on the other hand, the EEG 
(C3) channel has graphoelements that would also pass as graphoele-
ments of NREM2 (spindles and KCs) or NREM1 (VSWs). There are also 
high frequency activities consistent with muscular artifacts, especially 
around the end of the period. While in the conventional classification the 
conundrum is difficult to resolve, the second iteration uses the presence 
of surges in the HR and the simultaneous presence or absence of high 
variance in the EEG and EMG GFP to determine whether these periods 
should have the additional new labels of either REM0 or REM, respec-
tively. The distinction of REM or REM0 is further confirmed by the 
presence of a peak in the EEG and MEG GFP for REM0 and only in one of 
them in REM (not shown in Fig. 8). 

3. 6. Characterization of sleep through clustering of core periods and 
REM0 prevalence 

3.6.1. Sleep staging and clustering 
We present here the simplest form of clustering analysis using feature 

extraction with PCA analysis of the sleep staging as these are classically 
defined. The starting data are regional spectra of 8 or more exemplars of 
core periods for each sleep or awake category of data to be analyzed. In 
addition to actual measurements from the brain, the measurements with 
the empty room are also analyzed with MFT, as if a subject was in place 
inside the helmet, and 8 exemplars of baseline, or ghost, regional spectra 
are obtained and used in the PCA analysis. Two distinct computations 
are presented. For both computations the same set of ROIs is used; this 
set has 29 ROIs, which are spread throughout the cortex, the length of 
the cingulate cortex and brainstem; these ROIs have been identified 
during earlier sleep studies. 

In Fig. 9, we show the results of the two computations using displays 
in the feature space of the reduced 3D space, defined by the three ei-
genvectors in the ranked list of PCA eigenvalues. For each computation, 

the exemplars of each category (noise, each sleep stage and/or pre-and 
post-periods of KC1 and spindles and EC, EO and EF conditions) were 
collapsed to a representative center point. The center point describes the 
centroid of the 8 exemplars (defined by human experts according to the 
classical sleep staging process), in the reduced space of the PCA analysis. 
The full set of exemplars and the centers were then clustered using the k- 
Means algorithm (Kanungo et al., 1992), providing a data driven 
partition of the data. Finally, the centers representing core sleep stages 
were expanded one by one and if more than one clusters were evident, 
separate centers were made for each sub-cluster. Evidence for 
sub-clusters was strongest in the case of REM and we will represent 
them, together with the nodes of the 8 exemplars of REM in the displays 
of Fig. 9. We use the feature space for the displays of the results so that 
both centers and individual exemplar nodes can be represented in a way 
that preserves the natural metric of the data. Note that the k-Means 
analysis was made without any influence exerted on sleep stage mem-
bership, so the placement of exemplars, clusters and sub-clusters pro-
duced by k-Means was unbiased. The node naming defines a priori 
definition of category, e.g. sleep stage defined by classical sleep scoring 
by human experts. The color of each node identifies the k-means cluster. 
The centers of a set of exemplars is shown as big filled circles with the 
prefix C in the label. For the case of REM three centers are shown: the 
one using all exemplars (C REM) and the centers for the two sub-clusters 
(C REM-a and C REM-b). In addition, the display includes the nodes for 
individual REM exemplars (with the label rem). 

The first computation uses only the noise, ECW and sleep core pe-
riods, so there are 56 exemplars. The maximum frequency resolution is 
used for the regional spectra (i.e. from 0.2 to 100 Hz with step of 0.2 Hz 
making a total of 50 frequency points). The PCA analysis is therefore 
performed with approximately 80,000 points. Fig. 9A shows the results 
of the PCA in the 3D space defined by the first three eigenvectors. The k- 
means clustering with the number of clusters set to four (4) shows the 
following as we traverse the display from C NOISE to C ECW. The first k- 
Means cluster (blue) is composed of C NOISE, C REM-b and two of its 
three exemplars. The second k-Means cluster (red) contains C S2 and the 
two centers of deep sleep (C S3 and C S4), with C3 and C4 very close to 
each other. The third k-Means cluster (cyan) has the center of all REM 
exemplars plus the remaining exemplar of C REM-b and one of the five 
exemplars of C REM-a. Finally, the fourth k-Means cluster (green) is 
composed of The C ECW, C REM-a and the remaining four of its 
exemplars. 

For the second computation two more distinct groups of data are 

Fig. 9. PCA and clustering analysis of core sleep 
stages and other periods 
A) The feature space representation showing with 
large filled circles the nodes representing the 
centroid of the exemplars of each sleep stage and 
noise, and the centroids of the two sub-clusters of 
REM. In addition the centroid of the noise exem-
plars (that can be represented as proxy origin of the 
coordinate system) and the centroids of the two 
subclusters of REM are also shown as large filled 
circles. The display also shows the actual eight (8) 
exemplars of REM as smaller filled circles. The la-
bels and centroids represent the classical sleep 
staging output of the human experts. The color of 
the nodes is the independent clustering result of the 
k-means algorithm using 4 clusters. B) The same as 
(A) but with the addition of centroids for the EC, EO 
and EF conditions (36, 34 and 34 exemplars 
respectively) and the pre- and during KC1 and 
spindle periods (8 exemplars each). The three 
principal axes in (B) are not related to the three 
principal axes of (A). (For interpretation of the 
references to color in this figure legend, the reader 

is referred to the Web version of this article.)   
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added. The first group consists of 4 sets, each with 8 exemplars: a set 
from the period before and a set for the period after, for each of the two 
main hallmarks of NREM2, KC1s and spindles, selected to be well away 

from NREM2c periods. The second group consists of exemplars from a 
different experiment with the same subject, performed some 8 years 
after the sleep study. In this experiment the MEG recording was used 

Fig. 10. The Relationship of REM and REM0 
through the night sleep 
Cycles of REM0 across subjects. The display 
shows the duration of REM0 as this was 
defined by the automatic scoring routine. 
The criteria of the second iteration were 
applied to 30 s 
windows for EEG and Heart rate variances 
for the whole sleep for the 3 subjects 
excluding the sleep-deprived subject. The 
results are displayed in the following order. 
(A) Mean duration in minutes of REM0 pe-
riods in each sleep cycle. (B) Percentage of 
each sleep cycle being classified as REM0 in 
each sleep cycle. (C) Ratio of REM0 to REM 
for the subject HBD005 throughout sleep.(D) 
Ratio of REM0 to REM for the subject 
HBD002 throughout sleep. (E) Ratio of REM0 
to REM for the subject HBD012 throughout 
sleep.   

Fig. 11. MFT tomography identifying pre-KCm ac-
tivity: generators common to all GLEABS and for 
the contrast between KCmWSHF versus KCmNOHF. 
Tomographic analysis of 2-s periods before KCm 
events. Three orthogonal views for common 
changes in spectral power before the onset of KCm 
(2-s period before KCm, i.e. the 2 s ending at the 
onset of the first KCm). (A) The only area showing 
increases sommon to each one of 12 comparisons 
relative to NREM2 core period at p < 0.05 after 
Bonferroni correction. The 12 comparisons corre-
spond to 3 active conditions one for each KCm type 
(KC1, KCmWSHF and KCmNOHF) for each one of 
the four subjects. The increase is identified only in 
the alpha, the same pattern (displayed in the figure) 
is obtained for the bands centred at 9.6 and 11.2 Hz. 
The identified area is in the Basal nucleus of Mey-
nert and its overlap region with the ventral stria-
tum. (B) The only two areas showing increases for 
each one of the four subjects for the contrast 
[KCmWSHF vs KCmNOHF] at p < 0.05 after Bon-
ferroni correction, in the pre-event period. These 
two areas are in the same left paramedial sagittal 
plane (single figurine on the left), one in the lower 
brainstem at the lower posterior border of the pons 
and the other at the border of the brainstem and 
cerebellum at the level of the posterior vermis and 
uvula. The two columns on the right of the sagittal 
image show coronal and axial views through each 
area, as indicated by the solid and dash color codes 
lines on the sagittal slice. Both these areas show the 
displayed pattern in only two bands (centers at 16 
and 17.6 Hz) i.e. falling on the upper sigma and the 
lower beta bands. (For interpretation of the refer-
ences to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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with eyes closed (EC; 36 exemplars), and two conditions with eyes open, 
one just looking straight ahead but not focusing on anything in partic-
ular (EO) and the other fixating on a dot placed at the center of gaze 
(EF), each with 34 exemplars. The second computation uses as input the 
same 29 ROIs but only the averages within each of the eight (8) standard 
frequency bands from delta (1.5–4 Hz) to high gamma (55–95 Hz) for 
the augmented set with more than three times the exemplars (192). The 
PCA analysis is therefore performed with approximately 45,000 points. 

Fig. 9B shows the results of the PCA analysis using the augmented 
data, in the 3D space defined by the first three eigenvectors. The k- 
Means clustering with the number of clusters set to five (5) shows the 
following as we traverse the display from C NOISE to C S4. The first k- 
Means cluster (cyan) is composed of C NOISE, C REM-b all its four ex-
emplars and all the centers of the EC, EO and EF. The second k-Means 
cluster (red) is composed of C ECW, CS1, C REM, C REM-a and all its four 
exemplars. The third k-Means cluster (yellow) groups together C S2 and 
the period just before KC1 events (C S2-KC1-bef). The fourth k-Means 
cluster (green) puts together the pre-spindle centers (S2-SP-bef) and the 
periods during the NREM2 hallmarks (S2-KC1-dur and S2-SP-dur) with 
the first of the two deep sleep centers (C S3). Unlike part A of the 
Figure the center for the second deep sleep center NREM4 (C S4) is far 
away and it is the only member of the final fifth k-Means cluster. 

3.6.2. The REM0 periods across sleep stages 
Fig. 10 shows the variation of REM0 properties across sleep cycles for 

each subject. The first row shows the mean duration of REM0, on the left 
in absolute terms (in minutes) and on the right as a fraction of each sleep 
cycle. The general trend is for REM0 as a percentage of the total duration 
of each SC to be high in the first two cycles and to reduce in the last three 
cycles. The next three rows show the ratio of REM0 to REM across SCs 
for each subject. We show the result for each subject on a different 
subplot because the range is very different across the subjects. The 
overall pattern though is similar across subjects, with high values (more 
REM0 rather than REM) in the first two cycles and much reduced ratio in 
the last SCs. In summary the results in Fig. 10 show greater periods spent 
in REM0 in the first two cycles which reduces to near parity (HBD002 
and HBD012) or even well below unity (HBD005). 

3.7. Statistical analysis of spectral power of GLEABS derived from MFT 
solutions 

We finally turn to the tomographic analysis to explore which areas 
are activated in the 2 s before the start of GLEABS. We first ask whether 
one or more areas are activated for each one of the four subjects, before 
each one of the three types of KC events (KC1, KCmWSHF and 
KCmNOHF). We then narrow the question, for the same pre-event 
period, to a direct contrast between KCmWSHF and KCmNOHF. Since 
KCmWSHF occur only at the HRS, i.e., at the peaks of HR and KCmNOHF 
in between HRS, i.e., when HR is at its lowest, the [KCmWSHF vs 
KCmNOHF] contrast probes also the contrast at the HRS relative to the 
low HR periods between HRS. All results reported in section 3.7 are from 
3-min segments with very low head movement (<4 mm) and they are for 
common increases in activity identified in each one of the four subjects, 
with some additional cases seen in three of the four subjects. For both 
cases, i.e., the ALL (4 subjects) and 75% (3 of 4 subjects), statistical 
significance was demanded at p < 0.05 after the conservative Bonferroni 
correction for multiple voxel comparisons is applied. 

3.7.1. The Nucleus Basalis of Meynert (NBM) is activated before each type 
of K-complex 

Fig. 11A shows the only Gg-sSPM single cluster, surviving all 12 
simple sSPMs contrasts between the pre-KC and NREM2c. This cluster is 
identified for each of the four subjects in each of the three contrasts [KC1 
vs NREM2c], [KCmNOHF vs NREM2c] and [KCmWSHF vs NREM2c] 
with higher spectral power in the alpha band for the pre-KC1 period 
compared to NREM2c with p < 0.05 after the conservative Bonferroni 

correction. The cluster center has Talairach coordinates (TC) at: x = − 7, 
y = 6 and z = − 6. The cluster encompasses the Nucleus Basalis of 
Meynert (NBM) in its caudal part, while its rostral part is in the overlap 
of NBM and the ventral striatum (VS) (Li et al., 2014). 

3.7.2. The KCmWSHF differ from KCmNOHF deep in the brainstem 
The pre-event investigation was concluded with the single condition 

contrast [pre-KCmWSHF vs pre-KCmNOHF]. This g-sSPM had only one 
common increase across all four subjects in two successive bands (of 
width 3.2 Hz) centred at 16 and 17.6 Hz with two foci both on the left 
paramedian sagittal plane (Fig. 11B), one in the mid-brainstem and the 
other in the adjacent anterior part of the cerebellum. The dorsal area was 
on base of the pons (TC: 8 -33 -31) consistent with the Raphe Magnus 
nucleus; the second focus on the left posterior uvula and its adjacent left 
tonsil of the cerebellum (ULTC) (TC: 7 -51 -44). 

Relaxing the criterion to three of the four subjects the g-sSPM iden-
tified more foci across the frequency spectrum. In the left paramedian 
locations the increases seen in all four subjects in the high sigma/low 
beta range (16 and 17.6 Hz) were expanded for three subjects in the two 
lowest bands, centred at 3.2 and 4.8 Hz. Increases were also identified in 
companion locations in the mid-sagittal slice at medial Pontine Reticular 
Formation (mPRF) (TC: 1–31 -33) and uvula (TC: 3–54 -48), but only in 
the delta band (3.2 Hz). In more lateral areas, common increases for 
three subjects, were identified in low frequencies (3.2–6.4 Hz) in the left 
(TC: − 31 0–28) and right (27 0–30) amygdala. Increases common to 
three subjects were also identified in the high gamma band (56–94.4 Hz) 
in the same areas as above, most prominently in the mPRF (60.8 and 
62.4 Hz and again from 83.2 to 94.4 Hz), uvula (60.8–67.2 Hz), uvula 
and ULTC (73.6–94.4 Hz) and the areas immediately in front of the left 
NBM (from 80 to 94.4 Hz) that included NBM in the high end of this 
band (89.9–94.4 Hz). During a similar period as the mPRF increase, a 
group of areas along the right lateral aspect of Anterior Cingulate Cortex 
(ACC) and frontal cortex were also activated: right paramedial anterior 
lobe from 60.8 to 64 Hz (TC: 7 52–10); right rostral ACC (rACC) from 
60.8 to 62.4 Hz; (TC: 6 46 8); right pre-genual ACC from (TC: 6 27 22). 

4. Discussion 

In this work we analyzed whole night MEG sleep data together with 
the auxiliary electrophysiological signals that are recorded during pol-
ysomnography, across a wide range of temporal scales. Critically for our 
analysis, the data included a recording of the head location every 3 min, 
allowing the clear identification of continuous 3-min segments of data 
with very low head movement (below 4 mm). Focusing our investigation 
within segments with small head movement, we identified time periods 
for which sleep staging was problematic when the conventional sleep 
staging criteria are employed (Rechtschaffen and Kales, 1968). Even if 
the new sleep staging criteria (Silber et al., 2007) were applied to force 
agreement, this agreement will simply hide the inconsistency of finding 
distinct graphoelements, each used already as hallmarks of a different, 
single sleep stage; this seems arbitrary with no obvious explanation in 
terms of underlying mechanisms or processes. In line with the Research 
Domain Criteria (RDoC) framework (Insel et al., 2010) we introduced 
objective measures as an addition to the conventional sleep staging: a 
second iteration is added, which uses quantitative properties that can be 
objectively computed from the raw electrophysiological signals, 
particularly the HRV and specifically the presence of HRS. In an effort to 
maintain continuity with the well-established and vast sleep-scoring 
literature, we introduced the second step as a refinement of sleep stag-
ing. The new iteration is particularly effective in labelling periods of 
sleep that conventional sleep staging either has difficulty or even 
completely fails to unambiguously assign to a single sleep stage; the 
second iteration either leaves the assignment the same (hence no new 
label), or adds an additional label (either REM or REM0) to that already 
assigned by human experts. With the head movement under control, we 
could retain periods of moderate even fairly high signals that 
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nevertheless are likely to have neural origin. Focusing on these low head 
movement periods allows us to describe in some detail the properties of 
a range of neurophysiological signals during REM0 periods and define 
its prevalence during each of the classically defined sleep stages. We 
finally proceeded to compare the tomographic estimates of activity 
before GLEABS, focusing here on comparisons between each KC type 
with NREM2c. We followed in this analysis the methodology we used in 
recent studies separately for spindles (Ioannides et al., 2017), and for 
spindles and KC1 (Ioannides et al., 2019). In the analysis presented here, 
we focused on KCm events that are the prominent high amplitude 
feature of REM0 that is often eliminated by threshold setting ostensibly 
to eliminate noisy segments. We were able to include KCm events with 
confidence that the high amplitude signal was not due to head move-
ment by analyzing only events from 3-min continuous segments with 
head movement below 4 mm. 

We first point out four general results generated by the analysis at the 
level of signals. Firstly, the comparison of the results of our signal-based 
analysis, particularly the way HRS relate to other electrophysiological 
signals, with conventional sleep stages highlights periods where con-
ventional sleep staging is challenging or even problematic. These are 
periods early in the night’s sleep during SC1 or periods around REM 
sleep. Our interest in HRS was motivated by one of the original aims of 
this work: the identification of PGO waves in humans. In animal ex-
periments, it has been demonstrated that the generation of hippocampal 
theta waves and PGO activity is highest during REM and pre-REM pe-
riods peaking around HRS (Rowe et al., 1999). As already discussed in 
subsection 3.3.1, we found prominent HRS in periods before REM, 
which have been referred to as pre-REM and transition REM in previous 
studies, but also in other parts of sleep that do not always lead to REM. 
Introducing the label REM0 gathers together these periods into one 
concept, and simply adding this label to conventionally defined sleep 
stages, makes sleep staging less ambiguous and subjective, particularly 
in early sleep and around REM. The periods carrying the label REM0 are 
characterized by the presence of HRS and they have in general increases 
in activity in all electrophysiological measures exceeding the levels 
recorded during ECW periods. The second iteration after conventional 
sleep staging uses two simple quantitative and objective criteria to easily 
and cleanly separate out REM0 periods. The criteria require high vari-
ances in the HR and one other (usually all) electrophysiological mea-
sures, suggesting that REM0 is a period of sustained high arousal. REM0 
periods are not easily accommodated by conventional sleep staging, 
partly because they contain a combination of features with each of these 
features individually used as hallmarks of distinct sleep stages. REM0 is 
also distinct from REM in terms of the coupling between HRS with EMG 
and the EEG/MEG GFP. Finally, REM and REM0 phasic and tonic pe-
riods, defined purely in terms of REMS (Simor et al., 2016, 2019), have 
opposite attributes as shown in Fig. 2. 

Secondly, the duration of REM0 is not negligible, we find it to occupy 
a significant part of sleep, about 25%, with about one third of the 
original classification as NREM2 and slow wave sleep (NREM3 and 
NREM4) switching to REM0. The corresponding switch is less for 
NREM1 10.00% and lowest (but not zero) for REM with 6.36%. Using 
head movement up to 2 cm as threshold for accepting segments for the 
second iteration, we find about 23% of periods originally marked as 
awake or not specified to be assigned the extra label REM0 by the second 
iteration step; this may well be an underestimation, since much of the 
remaining classification, as awake or not specified, is because of large 
movements which may also contain a good fraction of REM0. REM0 
absorbs the “difficult to score periods” under one umbrella with clearly 
defined and objective characteristics, leaving for classification periods 
that are easier to classify to one of the classical sleep stages. 

Thirdly, during REM0 the HRS are tightly coupled to periodic in-
creases in other electrophysiological signals and the head movement 
data. This coupling reveals an ILF oscillation around 0.05 Hz. We note 
that an ILF oscillations in the range 0.01–0.2 Hz is also observed in the 
fMRI BOLD signal, with the most stable amplitude seen in the slow 

(0.027–0.073 Hz) band as defined by Buzsáki (Buzsáki and Draguhn, 
2004; Zuo et al., 2010). These quasiperiodic patterns in fMRI have been 
attributed to changes in neuromodulation initiated in the reticular for-
mation and they were shown to modulate sensory processing (Belloy 
et al., 2020). Our results point to an additional contribution to the fMRI 
slow oscillations due to increased blood flow during rhythmic surges 
generated during REM0 periods. This hypothesis can be verified or 
falsified with fMRI. In a recent EEG/fMRI sleep study, the spectra of the 
BOLD response was separately studied for the awake state and for light 
and deep sleep, see Fig. 1 of (Song et al.). It was found that the mixed 
frequency rather low-amplitude BOLD activity of the awake state 
showed two peaks a modest peak at low frequency during NREM1 (0.05 
Hz) and stronger peaks at low and high (0.17 Hz) frequencies during 
NREM2, with the low frequency reducing a little and the high frequency 
increasing further during deep sleep. In the (Song et al.) no significant 
correlation was found between cardiac (or respiratory) activity with 
either the low or high frequency Bold oscillation power, but the outcome 
may be different if HRS or the variance of HR is tested against the 
variation of BOLD signal. 

Fourthly, REM0 makes unsettle and early sleep easier to handle. 
There is an ongoing debate about the nature of falling asleep (Ogilvie, 
2001) with suggestions of separating the transition from awake state to 
sleep into sub-stages. In Hori’s nine-stage EEG system the conventional 
separation of awake and light sleep has about 3 sub-stages for each one 
of ECW, NREM1 and NREM2. For early sleep both the standard (30 s) 
and the longer 3-min scoring fail to describe large parts of the signal, 
usually labelling much of the signal as noise or awake. In contrast, our 
description of early sleep, as seen in Fig. 5, shows for the same period 
many transitions between short sleep stages and periods labelled as 
REM0. For later sleep cycles succession of sleep stages is smoother, so 
much so, that many of the 3-min of continuous sleep with low head 
movement coalesce to the same sleep stage. Further characterization by 
the additional second iteration introduced in section 2.5.4 identifies 
long REM0 periods during the middle part of sleep. 

Inspection of identified REM0 periods on the signal level at finer 
temporal resolution (Figs. 3 and 8) identifies periods of HRS containing 
large graphoelements that we identified as KCm events, which cluster 
either just before or between successive HRS. These two types of KCm 
events have similar durations and amplitudes and they are similar in the 
low frequencies but distinctly different at high frequencies: KCm events 
just before HRS have strong high frequency oscillations and hence the 
label KCmWSHF, while those in between HRS do not and hence the label 
KCmNOHF. Further analysis revealed a strong coupling between KCms 
and eye movements identified through the EOG channels with only 
KCmWSHF being found near HRS and EMG excursions. 

One may well ask why not use clustering techniques (based on either 
supervised or unsupervised machine learning techniques) to objectively 
set the borders of sleep stages. This is indeed what we are doing in 
separate research projects and a glimpse of the results already obtained 
presented in section 3.6.1 and Fig. 9. Two key results are obtained. 
Firstly, a vindication of the hypothesis that the core periods are foun-
dational states of each sleep stage: using the spectral properties of the 
core states representing sleep stages obtained from the hallmarks of each 
place preserves the identity of each sleep stage and provide further 
support for separation of REM into more than one sleep stage as already 
suggested (Simor et al., 2020). Secondly, the results also show that a new 
framework is established as soon as we allow into a clustering scheme 
other data (e.g. awake resting state measurements or periods just before 
and during large graphoelements). A clustering approach can be useful 
for exploring further aspects of REM0, but without proper inclusion of 
the HRV into the clustering scheme it is unlikely that a complete picture 
could emerge. The ongoing graph theoretical work suggests that REM0 
may be an important conduit period facilitating the transitions between 
the sleep stages as these are defined by the classical sleep staging 
conventions. 

We used post MFT sSPM analysis to ask what is common across all 
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three types of KCs, and what makes KCmWSHF different from, other 
GLEABS and specifically KCmNOHF. The pre-KC Gg-sSPM identified a 
single area encompassing the NBM and its overlap with the VS 
(Fig. 11A); in this area activity in the alpha band was increased for all 
subjects for all pre-KC events (12 simple sSPM comparisons). The results 
are consistent with a cholinergic model for the generation of GLEABS 
(Everitt and Robbins, 1997; Irmak and de Lecea, 2014; Obermayer et al., 
2017): alpha band activity in the NBM sends an arousal wave across the 
cortex that promotes all KC types and possibly most if not all VSWs 
(results not shown). The different types of GLEABS may then emerge as 
different manifestations of this arousal wave. The appearance of a spe-
cific type of GLEABS is likely to depend on the background neuro-
modulation levels in each sleep stage (Hobson, 2009), especially the 
availability of other neurotransmitters like noradrenalin (Lelkes et al., 
2013). All the areas identified before GLEABS, the ones we reported here 
and the ones with lower threshold including the VSW events and the 
ones in our earlier studies focusing on NREM2 sleep stage with KC1 and 
spindles (Ioannides et al., 2017, 2019) are known to be connected with 
the NBM, as recently documented using resting state fMRI measure-
ments (Li et al., 2014): one of the strongest connections reported was 
with the Dorsal caudal part of ACC (dcACC)/Supplementary Motor Area 
(SMA)/pre-SMA complex, almost exactly matching our identification of 
the key generator area of KC1 (Ioannides et al., 2019; Voysey et al., 
2015). In Fig. 3 of the recent EEG/fMRI study of (Song et al.) the 
strongest correlation between both the low (0.05 Hz) and high (0.17 Hz) 
frequency BOLD oscillation is seen in the subgenual area, which is 
amongst the areas showing the strongest positive correlation in the 
resting state functional connectivity BOLD activity with the NBM (Li 
et al., 2014). 

As expected, a wider set of activations is seen when the VSW were 
included and the threshold for acceptance was reduced to 3 of the four 
subjects. These activation reflect the struggle between balance excita-
tion bouts with a sleep promoting action, which is seen as suppression of 
brain regions that respond to reward in a circuit involving the ACC, the 
OrbitoFrontal Cortex (OFC) and the ventral striatum (Haber and Knut-
son, 2010). An alternative view of this tussle is activity at the interface of 
cognitive control and decision making (Botvinick and Braver, 2015), 
along the lines of our recent observation that the dcACC1, that generates 
KC1 events, coincides with the generation of the error related negativity 
(ERN), thus suggesting that the same area (dcACC1) performs the same 
task (monitoring the environment) during sleep (through KC1) and in 
awake state (through ERN) (Ioannides et al., 2019). 

The critical comparison between the two types of KCm produced 
common increases across all subjects in the pre-event contrast 
[KCmWSHF vs KCmNOHF] in two places: in the midbrain, possibly the 
Raphe Magnus nucleus and the other at ULTC (Fig. 11B). Lowering the 
threshold to three subjects revealed more areas notably in the mid- 
sagittal slice at mPRF (TC: 1 –31 -33) and uvula (TC: 3 –54 -48), but 
only in the delta band (3.2 Hz) and more laterally in low frequencies 
(3.2–6.4 Hz) in the left (TC: − 31 0 –28) and right (27 0 –30) amygdala. 
Increases common to three subjects were also identified in the high 
gamma band (56–94.4 Hz) in the same areas as above, most prominently 
in the mPRF (60.8 and 62.4 Hz and again from 83.2 to 94.4 Hz). The 
increases in the pre-KCm period are consistent with a conflict between 
inhibitory tendencies (increases in delta band) presumably acting in a 
sleep promoting role to prevent wakening up by the excitatory in-
fluences in the lower brainstem (in the high sigma and low beta bands); 
this is a recurring theme; it is also seen before spindles in the rACC 
(Ioannides et al., 2017) and in the dcACC1 area in the pre-KC1contrast 
with NREM2c (Ioannides et al., 2019). 

Our results show that KCmWSHF events occur when there is high 
amplitude EMG, EOG and ECG activity; it is therefore legitimate to ask 
whether the KCmWSHF events are really of neural origin or are they 
mostly collections of muscular, eye movement and cardiac artifacts? In 
particular, the strong EMG activity raises the possibility that the high 
frequency content of the KCmWSHF is entirely due to muscle artifacts 

(Muthukumaraswamy, 2013). Of course, correlation does not imply 
causation. As we already stated REM0 has all the hallmarks of high 
arousal; therefore, a high muscular activity is indeed to be expected 
during REM0. However, a closer look at the features of EMG, ECG, EOG 
and KCm events, e.g., as these are exhibited in Fig. 3, shows higher 
activity in these channels but no evidence that any one of them is 
necessarily tightly yoked to any other or to the heartbeat. For KCm 
events in particular, both the signal-based and the tomographic analyses 
show neural origin. At the signal level, Figs. 3 and 8 the overall 
morphology of the wide band signal (dominated by low frequencies) is 
very similar for KCmWSHF and KCmNOHF, with KCmNOHF clearly 
away from HRS and with no strong association to high EMG, EEG, MEG 
or EOG. Also, after entering REM, a decoupling is observed between eye 
movements, muscular activity, HRS and EEG/MEG graphoelements 
especially in the low frequency spectrum. HRS in REM differ greatly 
from HRS during REM0 as they are not regular, they are instead disor-
ganized, leaving no significant artifact to the EMG or EEG electrodes and 
they do not occur in coincidence with eye movements. The same is true 
for eye movements as well, there are no KCm events near REM saccades. 
It is therefore difficult to interpret the KCmWSHF during REM0 as a 
reflection of other, mainly muscular activity, since no such reflection is 
seen in REM around REMS which are known to generate one of the 
strongest EEG and MEG artifacts. The more parsimonious explanation is 
that the precursor activity is a general arousal wave (marked by an alpha 
band oscillation in the NBM) that alerts areas of the brain involved in 
cognition and motivation, possibly reaching the muscles but not enough 
to generate a huge activation as seen near HRS. The same stimulation 
that gives rise to increases in brain and muscle activity during REM0 
fails to do so during REM (proper) possibly because muscular activity is 
suppressed by a range of mechanisms leading to atonia which are still 
poorly understood (Brooks and Peever, 2008). 

The increase in EOG and EMG just before HRS suggest that increasing 
HR has a strong and fast influence on muscular excitability. In this way 
symmetry in heart-muscle interaction is restored, because fast increase 
in HR (faster than corresponding blood pressure increase) has been 
shown to be caused by increase in muscle (Voluntary isometric 
contraction of triceps Surae) activity (Gladwell and Coote, 2002). The 
results presented in Fig. 11 relate to the 2 s before the start of the 
GLEABS events. As already discussed, the common focus of alpha band 
increases identified from each and every KC event, KC1, KCmWSHF and 
KCmNOHF is the NBM in the basal forebrain, the key provider of 
cholinergic input to the cortex and limbic system. It is therefore neces-
sary to turn our attention to this property of NBM as the main provider of 
the neurotransmitter Acetylcholine (ACh). ACh is a neurotransmitter 
involved in both sympathetic and parasympathetic autonomic nervous 
system and the only one that continues to exert an influence when all 
others stop during REM. In this effort we are hampered by the scarcity of 
evidence and the different models used in the detailed studies available. 
Much of the related work is performed in rats and mice including ex-
periments where optogenetic techniques are used to identify and record 
from cholinergic neurons in the basal forebrain. Bridging the homology 
gap is not easy in general, and particularly so in our case because rats 
and mice do not have alpha activity, at least not the alpha activity as 
defined in humans. It is therefore difficult to explain the NBM arousing 
alpha wave we identified in all pre-KC periods for each one of the KC 
types by drawing information from data obtained from rats, even from 
data performed separately in humans and rats by the same group 
(Corsi-Cabrera et al., 2000, 2001). The arousal generated by KC1 and 
KCmNOHF events is not enough to increase muscle excitability (as this is 
seen in the EMG). To identify the extra push for the increase in muscle 
tone we used the direct comparison [KCmWSHF vs KCmNOHF] which, 
for the pre-event period identified increases in activity in the caudal 
Raphe complex and uvula/cerebellum in the high sigma/low beta band 
(16 and 17.6 Hz), just a little higher (by 2–3 Hz) than the frequency of 
posterior mid-parietal increases during spindles during NREM2. From 
the other areas identified when the criterion was reduced to identifying 
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increases common to three subjects, we note the increases in the delta 
(sign of inhibition) and high gamma (sign of excitation), at the mPRF the 
putative Long Lead Initial Pulse (LLIP) for the generation of PGO waves. 
If the increase in mPRF is indeed the LLIP for PGO generation then this 
adds another possible cognitive role of KCmWSHF activity: a 
PGO-initiated memory consolidation process (Gott et al., 2017; Walker 
and Stickgold, 2004) played out as an elaboration of the corresponding 
operation by spindles in NREM2. 

Many of the areas identified in our tomographic analysis are known 
to be involved in autonomic control, e.g. Ventromedial OrbitoFrontal 
Cortex (vmOFC), dcACC, Amygdala, medullary nuclei (Green and 
Paterson, 2020) inferior colliculus (Iigaya et al., 2012), uvula (Nisimaru, 
2004), ACC and anterior insula (Medford and Critchley, 2010). This is 
consistent with the prominent role played by the HRV in our analysis 
and the demonstrated ability to identify brain correlates of autonomic 
modulation using HRV in fMRI (Napadow et al., 2008; Park and Thayer, 
2014), including the role of vagal tone in top-down and bottom-up 
modulations of cognition and attention (Thayer et al., 2012). 

The main limitation of our work is the low number of subjects. It is 
this limitation which makes us cautious to suggest REM0 as a future 
candidate for a putative new sleep stage. The addition of the second 
iteration to sleep staging allows REM0 periods to be displayed as an 
additional label to the conventionally defined sleep stages. We feel this 
is a fair beginning; it paves the way for the many further studies that 
need to be completed to characterize REM0 in normal sleep and pa-
thology. At the time the experiment was designed it was a compromise 
between a study with more subjects but severely limited by the con-
straints of MEG and the detailed study we did with few subjects and all 
preparatory activity to ensure acclimatization and making as comfort-
able sleep environment as possible for MEG, using all polysomnography 
channels and particularly introducing the first capability for whole night 
sleep with regular head localization. Getting right the recording of head 
movement throughout the night proved to be the critical element for our 
analysis to produce useful results. Even today, the expense and difficulty 
of performing a whole night sleep MEG study is formidable (Brancaccio 
et al., 2020) and the additional difficulties introduced by the COVID-19 
pandemic make it even harder. 

5. Conclusions and outlook 

At the theoretical level, the strong association we found between 
HRV and central and motor system activity is very much in line with 
reports of interaction between distinct networks representing complex 
physiological systems and particularly the cardiac, respiratory, 
muscular and central nervous systems in the emerging field of NWP 
(Bartsch et al., 2015). Sleep offers itself as an excellent natural labora-
tory for NWP: sleep allows one to study how the dynamics and topology 
of the overall network changes within and across the different sleep 
stages which are the exemplars par excellence of primary physiological 
states. Already pioneering studies have revealed relationships between 
network topology and physiological function (Bashan et al., 2012; Liu 
et al., 2015). It is likely that REM0 will play a particularly strong in-
fluence in future NWP studies and that NWP results may eventually force 
restructuring of sleep staging. 

The areas identified in the tomographic analysis reported here are 
targets for varied interventions with deep brain stimulation. The NBM is 
already a candidate target for reducing the loss of memory and cognitive 
function in dementia (Kumbhare et al., 2018) while areas related to PGO 
waves, the Pedunculopontine Nucleus (PPN) and Sub-Thalamic Nucleus 
(STN), which receive the LLIP from mPRF, are already targeted for 
Parkinson’s Disease (PD) patients (Stein, 2009). Other critical applica-
tions where our findings may be useful are cases where sleep staging is 
difficult either because of pathology or because of the conditions, such 
as situations when brain activity monitoring is needed during highly 
demanding tasks or missions, for example long space missions which 
was a prime motivation for carrying out this work. 

In summary, we demonstrated the non-invasive identification of 
precursors of GLEABS in the vmOFC and the NBM for each and every KC 
type, while the direct contrast of KCmWSHF with KCmNOHF identified 
precursor activity deep in the brainstem. KCm events within REM0, 
particularly those just before HRS, are candidates for PGO-related ac-
tivity (Rowe et al., 1999). The clear differences between REM0 and 
REM, implies that PGO waves during periods carrying the REM0 label 
may be generated by different mechanisms and have different roles than 
the PGOs in REM without the REM0 label. A recent multi-structure re-
cordings in macaque monkeys during conditions of anesthesia as ana-
logues of sleep, provided evidence for two distinct types of PGO waves, 
corresponding to opposite hippocampal spike-field coupling (Ramir-
ez-Villegas et al., 2020). 

The current paper was confined to a description of REM0, focusing in 
particular the tomographic analysis on the pre-KCm period where pu-
tative precursors of PGO waves may be found. It is left to future works to 
search for PGO waves, separately in REM0 and REM periods. Ongoing 
work in our team focuses on understanding how the precursor activity of 
KCmWSHF develops into activity in deep brainstem structures during 
KCmWSHF in two midline bands one including the mPRF and the other 
including what we provisionally identified as the Raphe Magnus of the 
lower pons and medulla. During KCmWSHF new activations are also 
seen in the amygdala and wider amygdala/hippocampus area. Accessing 
such information non-invasively is significant not only for demon-
strating unambiguously the existence of human PGO waves but also for 
sleep medicine and psychiatry (Arnulf et al., 2010; Gott et al., 2017). 
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Abbreviations List 

ACC Anterior Cingulate Cortex 
dcACC Dorsal caudal part of ACC 
dcACC1 First dcACC area; it is identified as the only precursor of KC1 

events and it was found to produce KC1-like response when 
stimulated in awake state 

rACC Rostral ACC 
sgACC Subgenual ACC 
NBM Nucleus Basalis of Meynert 
CAP Cyclic Alternating Patterns 

ECG Electrocardiography 
ECW Eyes Closed Waking 
EEG Electroencephalography 
EMG Electromyography 
EOG Electrooculography 
ERN Error related negativity 
HLC Head Localization Coil 
NWP Network Physiology 
fMRI functional Magnetic Resonance Imaging 
GFP Global Field Power 
GLEABS Global Local Excitations Across the Brain in Sleep 
HR Heart Rate 
HRS Heart Rate Surge or Surges 
HRV Heart Rate Variability 
ILF Infra-Low Frequency 
KC K-complex 
KC1, KCm Unitary, multiple KC 
KCmNOHF KCm with No Strong High Frequency 
KCmWSHF KCm with Strong High Frequency 
LGN Lateral Geniculate Nucleus 
LLIP Long Lead Initial Pulse (putative PGO related) 
MEG Magnetoencephalography 
MFT Magnetic Field Tomography 
mPRF medial pontine reticular formation 
MSRC Midline Self-Representation Core 
NREMj jth non-REM sleep stage 
NREMjc Core period of NREMj sleep stage 
PD Parkinson’s Disease 
PGO Ponto-geniculo-occipital 
PPN Pedunculopontine Nucleus 
REM Sleep stage: Rapid Eye Movement 
SD Standard Deviation 
SMA Supplementary Motor Area 
SPM Statistical Parametric Mapping 
sSPM spectral Statistical Parametric Mapping for a single subject 

and one condition comparison 
g-sSPM Across subjects sSPM (single condition) 
Gg-sSPM Across subjects and conditions sSPM 
STN Sub-Thalamic Nucleus 
TC Talairach coordinates 
ULTC Ovula and adjacent left tonsil of the Cerebellum 
vmOFC Ventromedial OrbitoFrontal Cortex 
VS Ventral Striatum 
VSW Vertex Sharp Waves 

References 

Arnulf, I., Ferraye, M., Fraix, V., Benabid, A.L., Chabardès, S., Goetz, L., Pollak, P., 
Debû, B., 2010. Sleep induced by stimulation in the human pedunculopontine 
nucleus area. Ann. Neurol. 67, 546–549. 

Bartsch, R.P., Liu, K.K.L., Bashan, A., Ivanov, P.C., 2015. Network physiology: how organ 
systems dynamically interact. PLoS One 10, 1–34. 

Bashan, A., Bartsch, R.P., Kantelhardt, J.W., Havlin, S., Ivanov, P.C., 2012. Network 
physiology reveals relations between network topology and physiological function. 
Nat. Commun. 3. 

Belloy, M.E., Billings, J., Abbas, A., Kashyap, A., Pan, W. ju, Hinz, R., Vanreusel, V., Van 
Audekerke, J., Van der Linden, A., Keilholz, S.D., et al., 2020. Resting brain 
fluctuations are intrinsically coupled to visual response dynamics. Cerebr. Cortex 
1–35. 

Botvinick, M., Braver, T., 2015. Motivation and cognitive control: from behavior to 
neural mechanism. Annu. Rev. Psychol. 66, 83–113. 

Brancaccio, A., Tabarelli, D., Bigica, M., Baldauf, D., 2020. Cortical source localization of 
sleep-stage specific oscillatory activity. Sci. Rep. 10, 28–30. 

Brooks, P.L., Peever, J.H., 2008. Unraveling the mechanisms of REM sleep atonia. Sleep 
31, 1492–1497. 

Brown, R.E., Basheer, R., McKenna, J.T., Strecker, R.E., McCarley, R.W., 2012. Control of 
sleep and wakefulness. Physiol. Rev. 92, 1087–1187. 

Burgess, H.J., Kleiman, J., Trinder, J., 1999. Cardiac activity during sleep onset. 
Psychophysiology 36, 298–306. 
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