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Abstract: Due to timber material’s environmental benefits and satisfactory structural properties,
the studies on providing solutions to the application of timber to mid-rise or even high-rise buildings
have been recently increasing. Among them, the steel–timber hybrid shear wall (STHSW) is one of
the promising lateral resisting systems. However, the application of the system is limited because of
its unsatisfactory earthquake resilience. In this paper, a new system, self-centering (SC)-STHSW, is
proposed by introducing post-tensioned (PT) technology into the STHSW system. The cyclic loading
test of one full-scale SC-STHSW specimen was conducted. The new system was proved to have
both satisfactory self-centering capacity and the sufficient energy dissipation. Within the OpenSees
platform, a numerical model was developed and validated by the experiment result. The model
was further used in the parametric analysis. The system’s self-centering capacity, energy dissipation
performance and the ultimate strength were evaluated under multiple parameters. The parameters
included the initial PT stress ratio, the relative value of the damper’s activation force, the wood shear
wall’s resistance, the beam section height and the wood shear wall’s strength. The lateral wall-to-frame
stiffness ratio was also considered. Each parameter’s effects on three different performances of the
system were analyzed. Based on the analysis results, a design parameter, a self-centering ratio,
was proposed. The ratio was suggested to be larger than 0.5 to ensure a favorable self-centering
performance in the system. This study provides support to the application of the innovative
steel–timber hybrid structural system in practical engineering.

Keywords: steel–timber hybrid structure; earthquake resilience; self-centering; slip friction damper;
parametric analysis

1. Introduction

Wood is one kind of environment-friendly material [1,2]. It has a high strength-to-weight ratio,
high thermal insulation ability and requires low energy consumption during the production. With the
advantages of wood material, timber structure has been earning increasing attention in recent decades.
A lot of research has been focused on making timber structure more applicable to mid-rise or even
high-rise buildings [3–7]. The hybridization between timber and steel material is one of the research
hotspots [8].

For the shear wall system, Tesfamariam et al. [9] proposed a hybrid steel–timber system.
It is composed of a steel frame and a cross-laminated timber (CLT) shear wall. The hybrid system
was taken as the lateral resistance of a nine-story building. Through nonlinear time history analysis,
it was found that the peak inter-story drift of the building was effectively controlled to lower than 2%.
To improve the in-plane resistance of the timber platform-frame shear wall, Trutalli et al. [10] proposed
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a new hybrid system. The system is composed of steel columns, timber beams and oriented strand
board (OSB) panels. Through cyclic loading tests on a full-scale specimen, the system was proved
to have satisfactory in-plane strength and ductility. An innovative timber shear-wall system was
proposed by Scotta et al. [11]. A technoprene plaster-infilled slab was incorporated into the light-frame
wood shear wall. According to the experimental result, it was found that a high ductility and energy
dissipation capacity were available in the system. He et al. [12] proposed an innovative steel–timber
hybrid shear wall (STHSW) system. The system is composed of the light frame wood shear wall and
the steel frame. The two subassemblies are connected by the bolted connection. According to the
cyclic loading test result, the light frame wood shear wall significantly increased the stiffness of the
system and postponed the yielding of the steel frame. To predict the behavior of the STHSW system,
Li et al. [13] developed a detailed ABAQUS model. The accuracy of the numerical model was validated
against the test result. To further change the energy dissipation mechanism, Li et al. [14] changed the
bolted connection of the STHSW system to one innovative slip friction damper. The work of the friction
damper was designed to be three phases, including the before activation phase, the activation phase
and the lock-up phase [15]. Three STHSW specimens with the slip friction dampers were taken to
conduct the hysteretic loading test by Li et al. [14]. According to the test result, the energy dissipation
of the STHSW system was successfully transferred from the nails’ yielding to the sliding friction energy
in the dampers.

However, a large residual displacement was observed after the test. The lock-up of the dampers
led to the accumulation of the damage in the wood shear wall. Extra restoring action is needed in
the STHSW system. Post-tensioned (PT) steel frame has been studied since 2001 [16–22]. The PT
connection is successfully used as the beam-to-column connection to provide a restoring ability to the
steel frame. Recently, the study on the PT steel frame has been focused on the introduction of extra
resistance into the frame system. The PT steel frame can therefore be used in high-rise buildings with
large spans [23–26].

Considering the high resistance of the STHSW system and the need for extra restoring action,
a new system, self-centering steel–timber hybrid shear wall (SC-STHSW), is proposed in this paper.
As shown in Figure 1a, the system is composed of the PT steel frame and the light frame wood shear
wall. The slip friction dampers are used as both the frame-to-wall connectors and the energy dissipaters.

The flow chart of the study’s research approach is shown in Figure 1b. In the first part of the paper,
the new system’s hysteresis response and failure modes were analyzed based on the experimental
result. Then, in the second part, a numerical model within the OpenSees platform was developed for
the new system. After the accuracy validation of the developed model, the model was used to do
the parametric analysis. Four parameters and three performance targets were used in the analysis.
The influences of the different parameters on the performance of the SC-STHSW system were explored.
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research approach.

2. Experimental Test

One full-scale specimen of the SC-STHSW system was taken to the cyclic loading test. The details
on the specimen configuration and the test arrangement will be introduced in the first subsection. Then,
the failure modes observed in the test will be presented, followed by the evaluation of the hysteretic
response of the SC-STHSW system.

2.1. Experiment Description

2.1.1. Specimen

As shown in Figure 2, the specimen tested was 3.2 m in width and 2.2 m in height. There were
two subassemblies in the specimen, namely the PT steel frame and the light frame wood shear wall.
They were connected by three slip friction dampers.

In the PT steel frame, H340 × 250 × 9 × 14 (i.e., 340 mm in height, 250 mm in width, 9 mm in
web thickness, and 14 mm in flange thickness) and H300 × 300 × 10 × 15 were used for the beam
and column section, respectively. The steel grade was Q235B, conforming to Chinese Standard GB
50017 [27]. In each side of the web of the steel beam, two high-strength tendons passed through the
prefabricated holes. They were anchored at the columns after the post-tensioning process. Each of the
four tendons was with a diameter of 15.2 mm and a yield strength of 1674 MPa. The initial stress of
each strand was designed as 30% of the yield strength. By multiplying the initial stress by the total
section area of the four tendons (560 mm2), the initial PT force obtained was 280 kN.

The light frame wood shear wall was made of a wooden frame and four sheathing panels. In the
wooden frame, there were vertical studs and horizontal plates as the frame members. They were made
of dimension lumbers with a cross-section area of 38 × 89 mm. The dimension lumbers used in the
test were produced from spruce–pine–fir (SPF) with a kiln-dried No.3 grade (according to National
Lumber Grading Authority NLGA 2014 [28]). The dimension lumbers’ average moisture content was
20.3%. The high moisture content might have been related to the laboratory’s environment. As to the
sheathing panels, four oriented strand board (OSB) panels were used. The panel thickness was 9.5 mm.
Additionally, 82.5 mm long × 3.3 mm diameter nails were used to connect the panel with the frame
members. As to the sheathing-to-framing connections, the spacing was 75 mm along the sheathing
edge and 150 mm along with the intermediate supports of the sheathings. The wood shear wall was
bolted to the foundation beam through fourteen steel angles. The vertical leg of each steel angle was
connected to the wall by the self-tapping screws (60 mm long × 3.5 mm diameter).

Three slip friction dampers were used in the test. Each of them was made of one inner plate
(U-shape), two outer plates (L-shape), and four friction pads. Q235 grade steel was used for the
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inner and outer plates. Non-asbestos organic 780 (NAO780) material was used for the friction
pads. A 12.9 grade M16 high-strength bolt was used to clamp the plates and friction pads together.
The tightening torque was set as 140 N·m. According to [15], the activation force of each damper was
15 kN. As shown in Figure 2, there was a slot hole in the inner plate. It was designed to realize the
relative motion between the PT steel frame and the wood shear wall. Along one direction, the maximum
value of the relative motion was half of the slot length. The slot length was set as 72 mm in the test.
It was determined by the 1.6% inter-story drift. In each of the dampers, M14 high-strength bolts were
used to connect the outer plate to the steel beam. The inner plate was connected to the wood shear
wall with self-tapping screws (60 mm long × 3.5 mm diameter).
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Figure 2. Configuration of the specimen.

2.1.2. Loading Protocol and Data Measurement

The American Concrete Institute ACI Innovative Task Group 5 [29] recommended a loading
protocol with the displacement control pattern for the post-tensioned structures. The loading protocol
was adopted in the test, as shown in Figure 3a. The controlled displacement ∆ was set as 66 mm in
the test, which corresponded to an inter-story drift of 3%. Linear voltage displacement transducers
(LVDTs) were used to obtain the deformation of the SC-STHSW specimen. As shown in Figure 3b,
seven LVDTs were used. The lateral deformation of the specimen and the wood shear wall were
recorded by LVDT 1 and LVDT 2. LVDT 3 and LVDT 4 were used to record the uplift deformation at
the two column bases. LVDT 5 and LVDT 6 were diagonally placed to record the shear deformation
of the wood shear wall. LVDT 7 was placed at the top face of the foundation beam to check the
possible displacement. Four load cells (LCs) were installed at each of the tendons to record the PT
force variation in each tendon.
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2.2. Experiment Result

2.2.1. Hysteretic Response and Failure Modes

The hysteretic response of the SC-STHSW specimen is shown in Figure 4a. The force value was
taken as the actuator force, while the displacement was taken as the data from LVDT 1. The general
shape of the hysteresis curve was a flag shape. It was similar to the peculiar response from the
self-centering steel frame as reported in [20,30,31], which means that the satisfactory restoring and
energy dissipation capacity were obtained in the SC-STHSW system. Compared with the hysteresis
curve of the STHSW system reported in [14], the largest residual deformation of the SC-STHSW
specimen was only 12.9 mm. The satisfactory restoring capacity was due to the successful gap opening
and closing (Figure 4b) in the beam-to-column connections. In the test, the three slip friction dampers
were activated (Figure 4c) around the displacement of 20 mm. The sliding friction in these dampers
provided sufficient energy to the specimen. In Figure 4a, it was observed that there was an increase in
the stiffness and the lateral force at the displacement of 40 mm. The reason was that the lock-up of
the friction dampers forced the shear wall back to work with the PT frame, which led to the increase.
The ultimate load at the positive and negative loading directions, labeled as a red square and a
blue square, respectively, was 331.25 kN and −302.77 kN. The hysteretic curve of the specimen was
asymmetrical. It could be explained that the bolt in the slot of the damper could not return to the
original position after each loading cycle. The SC-STHSW specimen had an efficient self-centering
ability, while the energy dissipation was simultaneously sufficient.
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PT connection; (c) the activation of the slip friction damper.

After the test, it was observed that the serious damage was at the connection between the dampers
and the wood shear wall. As shown in Figure 5a, the heads of many self-tapping screws in the
connection were stripped. It is understandable since the dampers were also the shear connectors in the
specimen. A large amount of shear force was accumulated in the three dampers, so the deformation
between the PT frame and the wood shear wall could be coordinated. In addition, there were only
minor damages observed in the wood shear wall. In the corner of the sheathing panels, the nail head
embedding (Figure 5b) and the relative displacement between panels (Figure 5c) were observed. As to
the common failure modes, e.g., nail pull-through, nail withdrawal and the pull-out of the vertical
studs, as reported in [12,32–35], they were not observed in this test. The yielding in the PT frame was
also not observed.
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relative displacement between the panels.

The better performance of the slip friction damper was available if the capacity design method [36]
was used. For illustration, the application of the capacity design method is presented.

In each slip friction damper (Figure 6), the damper-to-wall connection was the brittle element.
The plastic deformation in the damper could be fully utilized if an overstrength value was used, as
given by Equation (1). The characteristic value is used in Equation (1) instead of the design value.
The reason was that the partial material factor (γM) was taken as 1.0, according to Eurocode 8 [37].
As shown in Figure 6, the thickness of the inner plate was 6 mm. It was larger than the diameter of
the self-tapping screw (3.5 mm). Therefore, the steel plate was taken as the thick plate, according to
Eurocode 5 [38]. The corresponding expression was used to calculate the characteristic strength of
the damper-to-wall connection (RBr,k) as given by Equation (2). The required parameters are listed in
Table 1. The slip friction damper’s overstrength value (γRd) was taken as 2.0, according to [39].
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Table 1. Parameters for the characteristic strength of the damper-to-wall connection RBr,k.

n t1 (mm) d (mm) ρk (kg/m3) f h,k (MPa) My,Rk (N·mm) Fax,Rk (N)

381 6.0 3.5 450.02 53.73 5990.64 6188.95

1 Note: the total screw quantity at two sides of one damper is used. 2 Note: the density value is taken as the
common value of spruce–pine–fir (SPF) according to [40]. 3 Note: characteristic embedment strength is calculated
based on Equation (8.15) of Eurocode 5 [38]. 4 Note: characteristic screw yield moment is calculated based on
Equation (8.14) of Eurocode 5 [38]. 5 Note: characteristic withdrawal capacity is calculated based on Equation (8.38)
of Eurocode 5 [38].

RBr,k was calculated as 41.8 kN. Since the overstrength value was 2.0, the upper limit of the
characteristic value of the friction force in the damper (RDu,k) was 20.9 kN. The value is 39% higher
than the activation force (15 kN) of each damper used in the test. It means that before the activation
of the dampers, the damper-to-wall connection was sufficiently rigid. However, the lock-up of the
dampers increased the requirement on the resistance of the damper-to-wall connection. In the design
of the slip friction damper, the characteristic value of the friction force (RDu,k) can be taken as a larger
value. In turn, the screw quantity was increased to ensure the rigid connection in the damper-to-wall
connection:

RBr,k ≥ γRd·RDu,k (1)

RBr,k= n·min


fh,kt1d

[√
2+

4My,Rk

fh,kdt2
1
−1
]
+

Fax,Rk
4

2.3
√

My,Rk fh,kd + Fax,Rk
4

fh,kt1d

(2)

where RBr,k is the characteristic strength of the damper-to-wall connection; γRd is the overstrength
value of the slip friction damper; RDu,k is the characteristic value of the friction force in the damper;
f h,k is the characteristic embedment strength in the timber member; t1 is the thickness of the steel plate;
d is the screw diameter; My,Rk is the characteristic screw yield moment; and Fax,Rk is the characteristic
withdrawal capacity of the screw.

2.2.2. Variation of PT Force

The variation of the PT force in the four tendons is illustrated in Figure 7. The PT force is the sum
of the data from the four load cells. The displacement was taken as the data from LVDT 1. As shown
in Figure 7, the actual PT force initially applied to the specimen was 289.85 kN. It is 3.5% higher than
the design value (280 kN), which is acceptable. When the lateral displacement was up to 60 mm in
the negative direction, the PT force was around 500 kN. Therefore, the stress in each tendon was
892.86 MPa if the stress in each tendon was assumed to be the same. It is 0.53 times the yield strength
(1674 MPa) of the high-strength tendon. The substantial growth of the PT force ensured the successful
gap closing in the beam-to-column connection. The PT force loss is 18.9%, as shown in Figure 7,
which is close to the loss of the PT force in [25,41–43].
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Figure 7. The variation of the PT force in the specimen.

3. Parametric Analysis

In this section, the influences of different parameters on the system’s performance were explored.
Within the OpenSees platform, a numerical model was developed and validated by the experimental
result. Subsequently, a parametric analysis was conducted after a selection of proper parameters.

3.1. Numerical Model

The developed numerical model is shown in Figure 8a. It has the same geometric dimension and
material properties as the experiment specimen. As shown in Figure 8a, there are three main parts of
the developed model. The first part is the PT connection. In the connection, the displacement-based
beam-column element was used for the steel beam and columns. Two pairs of springs were used to
simulate the gap opening in the PT connection at the top and toe of the beam section. The elastic
no-tension material (ENT) was assigned to the two springs along the x direction. Two springs with
elastic material were placed vertically in the connection to transfer the shear force. The corottruss2
element was used to represent the four high-strength tendons. The element material was steel02
that allowed the set of post-tensioning force. The simulation method used for the PT connection is
commonly used in the study of PT steel frame [30,31,44,45]. The second part of the model is the light
frame wood shear wall. A detailed numerical model was developed in ABAQUS (Figure 8b) based
on the previous work by the authors [13,46]. After the cyclic loading, the hysteretic response was
obtained from the ABAQUS model. It was used as the calibration source for the pinching4 material in
OpenSees. During the calibration, the skeleton curve was determined based on the suggestion by [47].
The hysteretic rules were determined by the least-squares regression method. As shown in Figure 8c,
the calibrated pinching4 material can satisfactorily reflect the hysteretic response obtained from the
detailed ABAQUS model. The third part is the slip friction damper. The parallel springs were used
to simulate the three working phases in the damper. The detailed numerical method is introduced
in [15,48].
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(c) the calibration of the pinching4 material.

3.2. Model Validation

The comparison between the experimental result and the hysteretic response predicted by the
model is shown in Figure 9. There was a strength deviation between the displacement of 20 and 40 mm
along the positive direction. The reason was that the surfaces of the steel plates and friction pad in
the damper were rough and uneven. Accordingly, there was a temporary lock-up of the dampers
even after the damper activation. Some contribution to the strength was provided by the wall at the
temporary lock-up of the dampers.

In general, the characteristic behavior, including the flag-shape hysteresis response and the second
increase in the strength and stiffness of the SC-STHSW system were obtained by the developed model.
The comparison verifies the accuracy of the developed model.
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3.3. Parameters Selection

In Figure 10, the system during the restoring process was analyzed to select the parameters
used for further analysis. In the free-body diagram of the steel beam, the two ends of the beam are
under the compression force Fc from the columns. If assuming the column base was a hinged joint,
the compression force Fc was close to the PT force (Tpt) in the high-strength tendons. The reason is that
the difference between the moment arms of the two forces were only half of the beam section height
if we took a moment about the column base. At the bottom side of the steel beam, there were three
friction forces (D1, D2, and D3) applied by the dampers. The sum of the three friction forces was the
activation force (Fact) of the dampers. By taking moments about point E, there were two moments (Mpt

and Mf) with inverse directions, as shown in Equations (3) and (4), respectively. The moment that
helps the beam back to the origin position (Mpt) was named the restoring moment. The other one (Mf)
was named as the anti-restoring moment. It was an obstacle to the restoring process of the steel beam.
If the restoring moment (Mpt) is always larger than the anti-restoring moment (Mf), the self-centering
performance of the system can be ensured to be satisfactory. It means that the PT force (Tpt) should be
larger than the activation force (Fact) during the restoring process. In Equations (5) and (6), the PT force
(Tpt) and the activation force (Fact) are further divided into the products of several basic parameters
with the help of two dimensionless quantities, κ and µ. The first quantity κ is named as the initial PT
stress ratio; and the second quantity µ is named as the damper-to-wall ratio. The two quantities are
both in the range of 0–1:

Mpt= Tpt·hb (3)

Mf= Fact·hb (4)

min
{
Tpt
}
= κ· fy·Apt (5)

Fact= µ·FWall (6)

where Mpt is the restoring moment; Mf is the anti-restoring moment; Tpt is the PT force in the
high-strength tendons; Fact is the activation force of the three dampers; hb is the section height of the
steel beam; f y is the yield strength of the high-strength tendons; Apt is the total cross section area of the
high-strength tendons; FWall is the ultimate strength of the light frame wood shear wall.
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Figure 10. SC-STHSW system during the restoring process.

Based on the simple analysis, the parameters related to the self-centering capacity of the SC-STHSW
system are:

1. The initial PT stress ratio κ;
2. The damper-to-wall ratio µ;
3. The ultimate strength of the light frame wood shear wall FWall;
4. The total cross-section area of the high-strength tendons Apt.

Among the four parameters, three were selected as the analysis parameters, including the initial
PT stress ratio κ, the damper-to-wall ratio µ and the ultimate strength of the light frame wood shear
wall FWall. The section area Apt was not taken as the parameter since it shares the same function with
the initial PT stress ratio κ. Instead of varying the value of FWall directly, three light frame wood shear
walls were taken to represent the variation of FWall. As shown in Table 2, the three light frame wood
shear walls have different nail spacing and sheathing panel configurations. The ultimate strength of
each wood shear wall was obtained through the detailed ABAQUS model prediction. According to the
prediction result, the hysteretic curve of each wood shear wall is shown in Figure 11.Materials 2020, 13, x FOR PEER REVIEW 12 of 25 
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Table 2. Three light frame wood shear walls.

Wall ID Abbreviation Nail Spacing (mm) FWall (kN) KWall (kN/mm)

Wall 0 W0 75/150 (S)1 65 18122

Wall 1 W1 75/150 (D) 82 2230
Wall 2 W2 50/100 (S) 121 3313

1 Note: 75/150 indicates the spacing was 75 mm along the sheathing edge and 150 mm long with the intermediate
supports of the sheathings; S (or D) indicates that the wood frame is sheathed with single sided (or double sided)
OSB panels with a thickness of 12 mm. 2 Note: the stiffness of the wood shear wall is obtained by dividing 0.4 Fwall
by the corresponding displacement.

In addition, the lateral wall-to-frame stiffness ratio λ has a significant influence on the performance
of the STHSW system, according to [46]. Thus, three different beam sections were selected to create the
different lateral wall-to-frame stiffness ratio λ. The beam sections selected are presented in Table 3.
Three beam sections and three light frame wood shear walls made up nine models. The lateral
wall-to-frame stiffness ratio λ of the nine models were shown in Figure 12. It can be seen that the ratio
λ was controlled to vary around 0.5, which is the lateral wall-to-frame stiffness ratio suggested by [46].

Table 3. Three different beam sections.

Beam ID Abbreviation Cross Section (mm) KFrame (kN/mm)

Beam 0 B0 HN400 × 150 × 8 × 13 38371

Beam 1 B1 HN450 × 150 × 9 × 14 4433
Beam 2 B2 HN500 × 150 × 10 × 16 4979

1 Note: the stiffness of the PT frame is obtained through push over analysis. The stiffness before the gap opening
was taken as KFrame.
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In general, four parameters were selected for the parametric analysis, including the initial PT
stress ratio κ, the damper-to-wall ratio µ, the ultimate strength of the light frame wood shear wall
FWall, and the steel beam section. In Table 4, the four parameters were presented. There were three
beam sections and three light frame wood shear walls to construct nine SC-STHSW models. Each of
the models had 13 levels of initial PT stress ratio and seven levels of the damper-to-wall ratio. Thus,
a total of 819 models were considered for the parametric analysis. In these models, the column base
was set as a hinged joint to meet the previously made assumption. Apart from that, the model’s other
properties were the same as that of the model verified by the experiment.
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Table 4. Parameters selected for the analysis.

Parameters Symbol/Abbreviation Level Range Step Size

Initial PT stress ratio κ 13 0.06–0.42 0.03
Damper-to-wall ratio µ 7 0.3–0.6 0.05

Light frame wood shear wall W 3 0–2 1
Steel beam section B 3 0–2 1

In the SC-STHSW system, the self-centering capacity, energy dissipation and the ultimate strength
are important. They were the performance targets in the parametric analysis. The first two targets,
the self-centering capacity and the energy dissipation, were obtained by a cyclic loading simulation.
The cyclic loading simulation was conducted for all 819 models. The loading protocol used was
the same as that of the experiment. The index selected to evaluate the self-centering capacity was
the residual drift ∆Res. It was obtained by dividing the largest residual displacement (DRes) by
the height of the specimen (2200 mm), as shown in Figure 13a. The low value of ∆Res indicates a
satisfactory self-centering capacity of the SC-STHSW system. In Figure 13b, the accumulative energy
dissipation under the last loading cycle (EAcc) was used to evaluate the system’s energy dissipation
performance. As to the ultimate strength, a pushover analysis was conducted for all 819 models.
The force, corresponding to the wood shear wall’s failure, was taken as the ultimate strength (Fult), as
shown in Figure 13c. There is still an increase in force after the failure of the wood shear wall. However,
it is not considered as the ultimate strength because the wood shear wall is taken as the main lateral
resistance in the SC-STHSW system.
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3.4. Analysis Results

The analysis results are presented in Figures 14–16. Each figure corresponds to the analysis results
of one performance target.

In Figure 14, the performance target is the self-centering performance. The simulation results are
presented by nine 3D surfaces. Each of the surfaces corresponds to one combination of the beam section
and the light frame wood shear wall. The three axes on each surface are kept the same for comparison.
The vertical axis’ upper value is the largest residual drift ∆Res of all 819 models, which was 0.92%,
as shown in each subfigure. Four points (A, B, C and D) were labeled in the four corner points of
each subfigure. Each of them corresponds to an extreme set of the initial PT stress ratio κ and the
damper-to-wall ratio µ. In Figures 15 and 16, the energy dissipation and ultimate strength are the
performance targets, respectively.
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3.4.1. Influences of the Initial PT Stress Ratio

The influence of the initial PT stress ratio κ on the residual drift ∆Res is similar in the nine subfigures.
Taking Figure 14a as an instance, it can be observed that the residual drift ∆Res drops down to a low
value and then goes to a plateau section with the increase in κ. It is especially obvious along the side
AC or side BD of the 3D surface. It means that the increase in κ has a positive influence on the decrease
in ∆Res. However, the influence is limited when κ is at a relatively high level. In Figure 17, the gradient
vector field of each 3D surface was calculated using a second-order accurate central differences method.
Each gradient vector is calculated along the direction of the decrease in κ. The length of each vector is
in proportion to the gradient value. It is obvious that the influence of κ on ∆Res is very weak when κ
is larger than 0.24. It is suggested that the lower limit value of κ is 0.24 to guarantee the maximum
effectiveness of the PT high-strength tendons. As to the upper limit value of κ, the value larger than 0.4
is not suggested based on the experiment result. In the experiment, the PT stress was up to 0.53 times
the yield strength under the largest lateral deformation. κ is not suggested to be larger than 0.4 to
avoid the development of plasticity in the high-strength tendons.
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As shown in Figure 15, there is no influence of the variation of the initial PT stress ratio κ on the
energy dissipation (EAcc). This is understandable since the PT high-strength tendons are introduced to
provide the self-centering capacity to the system, instead of energy dissipation capacity. In addition,
the lack of influence of κ on the energy dissipation shows that the tendons remained elastic during
the simulation.

In Figure 16, it can be observed that the increase in the ultimate strength (Fult) is almost linear to
the increase in κ. Taking the side AC of Figure 16a as an instance, Fult increases from 151 to 216 kN
when κ increases from 0.06 to 0.42. Since the same wood shear wall was used in Figure 16a, the increase
in Fult can only be attributed to the strength’s increase in the PT steel frame. It means that the increase
in κ leads to the strength’s increase in the PT steel frame. This result is also reported by [49].

3.4.2. Influences of the Damper-to-Wall Ratio

In Figure 14a,d,g, the increase in the damper-to-wall ratio µ is almost linear to the increase in the
residual drift ∆Res when the initial PT stress ratio κ is larger than 0.15. The increase in µ leads to the
increase in the activation force of the dampers, which is an obstacle to the restoring of the SC-STHSW
system. In Figure 14b,c,e,f,h,i, a knee point is observed along the side CD. After a certain value of µ,
∆Res is not changed or even decreased with the further increase in µ. It can be explained by the
activation failure of the dampers. With a high value of µ, the requirement of the damper activation is
difficult to satisfy. The inactivated dampers can only apply force that is lower than the activation force
to the steel beam. This means that there is less of an obstacle to the restoring of the SC-STHSW when
the dampers are not activated than in the case where the dampers are activated. The explanation can
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be consolidated by putting the focus on the side CD of Figure 14b,e,h or Figure 14c,f,i. In Figure 14b,e,h,
a knee point is observed when µ is around 0.52. The reason is that the same light frame wood shear
wall is used in the three subfigures. In Figure 14c,f,i, the knee point is observed when µ is around
0.45. The value is lower than 0.52 since the wood shear wall shared by these three subfigures has
larger ultimate strength than that of Figure 14b,e,h. The use of a wood shear wall with large ultimate
resistance narrows the range of µ where the successful damper activation is available. In addition,
the largest residual drift is not at point B in all nine subfigures of Figure 14. It can also be attributed to
the activation failure of the dampers.

The increase in µ has a positive effect on the increase in the energy dissipation, as shown in
Figure 15. In Figure 15b,c,e,f,h,i, a plateau section is obvious. This means that the further increase in
µ has a minor influence on the increase in EAcc. The reason is the activation failure of the dampers
when µ is larger than a certain level, as mentioned previously. The level can be obtained in Figure 18.
The gradient vector field of each 3D surface in Figure 15 was calculated, as shown in Figure 18.
Each gradient vector was calculated along the direction of the increase in µ. The length of each vector
is in proportion to the gradient value. When µ is larger than 0.5, the gradient vector is too small to be
seen. The lower limit of µ is suggested as 0.5 if the energy dissipation’s increase is concerned.
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The influence of µ on the ultimate strength (Fult) is not apparent, as shown in Figure 16, because the
damper-to-wall ratio only determines the time when the wood shear wall begins to be protected. If the
same wood shear wall is used, the system’s ultimate strength is not affected by the increase in µ.



Materials 2020, 13, 2518 19 of 25

3.4.3. Influences of the Light Frame Wood Shear Wall

According to the previous analysis, the increase in the lateral resistance of the wood shear wall
limits the selection range of the damper-to-wall ratio µ if the successful activation of the dampers is
expected. On the other hand, the use of the wood shear wall with large resistance increases the ∆Res of
the SC-STHSW system. In Figure 14a–c, the value of ∆Res at point A is increased from 0.45% (W0) to
0.92% (W1). It indicates that the increase in the lateral resistance of the wood shear wall shares the same
function with the damper-to-wall ratio µ in decreasing the self-centering capacity of the SC-STHSW
system. The negative effect of the wood shear wall with high resistance on the self-centering capacity is
suggested to be considered in the SC-STHSW system’s design, especially in the case when the increase
in lateral resistance of the system is needed.

In Figure 15, it is evident that the larger the wood shear wall’s lateral resistance, the larger is the
energy dissipation obtained in the SC-STHSW system. The reason is that the increase in the wood shear
wall’s lateral resistance increases the dampers’ activation force. The activation force is also the sliding
friction force in the dampers. With the increase in friction force, the energy dissipated by the sliding
friction is increased. Besides, the plateau section is longer in Figure 15c,f,i than that in Figure 15b,e,h.
It reveals that the increase in the lateral resistance of the wood shear wall shares the same function
with the damper-to-wall ratio µ in increasing the dampers’ activation force.

The increase in the wood shear wall’s lateral resistance has a positive effect on the system’s
ultimate strength (Fult). Taking Figure 16a–c as an example, the ultimate resistance at point C increases
from 216 kN (W0) to 271 kN (W2). The ultimate resistance is increased by 25% by using W2 instead
of W0.

3.4.4. Influences of the Steel Beam Section

The influence of the different beam sections on the residual drift ∆Res can be obtained by comparing
the point A in Figure 14a,d,g. It is obvious that with the variation of the beam sections, the residual drift
∆Res is decreased from 0.45% (B0) to 0.2% (B2). Additionally, a 56% reduction is obtained. The variation
of the beam sections is mainly related to the beam section height. It means that the increase in the
beam section height contributes to the decrease in the residual drift ∆Res. However, the influence of
the beam section height on ∆Res is weaker at the high PT stress ratio than at the low PT stress ratio.
This can be observed from the comparison between point C in Figure 14a,d,g. The residual drift ∆Res is
decreased from 0.21% (B0) to 0.15% (B1). Only a 29% reduction is obtained. A similar observation is
available in the comparison between Figure 14b,e,h or between Figure 14c,f,i. The improvement in the
self-centering capacity of the SC-STHSW system is available if the beam section height is increased,
especially when the initial PT stress ratio κ is at a low level.

In Figure 15, it is hard to see the influence of the steel beam section on the energy dissipation.
However, the steel beam section’s effect on the ultimate strength cannot be ignored. In Figure 16 a,d,g,
point A’s ultimate strength increases from 151 kN (B0) to 193 kN (B1). A growth of 28% is obtained by
changing the beam section.

3.4.5. Influences of the Lateral Wall-to-Frame Stiffness Ratio

The data in each subfigure of Figures 14–16 were averaged to show the relationship between three
performance targets with the lateral wall-to-frame stiffness ratio λ, as shown in Figure 19. With the
increase in λ, the residual drift ∆Res increases. This means that the increase in λ negatively influences
the self-centering capacity of the SC-STHSW. The energy dissipation (EAcc) is positively affected by the
increase in λ. In this study, the wood shear wall’s variation is obtained by varying the nails’ spacing
and sheathing configuration. This means that the wood shear wall with larger lateral resistance also
has a higher stiffness, which in turn leads to a larger λ. It is the reason for the positive influence of
λ on the energy dissipation. In Figure 19c, the ultimate strength (Fult) varies with the increase in λ.
However, no obvious regularity is found.
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3.4.6. Self-Centering Ratio

Based on the previous analysis, the self-centering capacity of the SC-STHSW system is influenced
by different parameters. For the convenience of the design, two of the parameters are combined together.
A new parameter αE is defined in Equation (7). It is named the self-centering ratio. In Figure 20, the
relationship between the self-centering ratio αE and the residual drift ∆Res is presented. The increase
in the self-centering ratio αE leads to the decrease in the residual drift ∆Res, as shown in Figure 20.
It is reasonable since the increase in the self-centering ratio αE corresponds to the increase in the PT
stress ratio κ or the decrease in the damper-to-wall ratio µ. Both situations have a positive effect on the
decrease in ∆Res as introduced in Sections 3.4.1 and 3.4.2. More importantly, there is a lower limit value
for αE to obtain a satisfactory performance in the self-centering of the SC-STHSW system. In the cases
where the lateral wall-to-frame stiffness ratio λ is lower than 0.5 (Figure 20a,d,g,h), the lower limit
value of αE is 0.3. This value is increased to 0.5 if the lateral wall-to-frame stiffness ratio λ is larger
than or equal to 0.5 (Figure 20b,c,e,f,i). When αE is controlled to be larger than the lower limit value,
the residual drift ∆Res of the SC-STHSW system is controlled into a relative stage value that is lower
than 0.5%, which is suggested by [50] as the permissible residual deformation levels:

αE =
κ
µ

(7)
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4. Discussion

The new system, SC-STHSW, was proposed to overcome the large residual displacement of the
STHSW system [12,14]. In the system, the PT steel frame was introduced to provide the restoring
action to the system. Through the cyclic loading test, it was found that the residual displacement was
only 12.9 mm. The hysteresis response of the SC-STHSW system was in a flag shape. In the study
of the PT steel frame [16–18,20,21,31,41,51–53], the flag-shape hysteresis response was taken as the
symbol of a system with both satisfactory self-centering capacity and sufficient energy dissipation.

With the OpenSees model was validated by the test result, four parameters, namely the
initial PT stress ratio, the damper-to-wall ratio, the beam section height and the lateral resistance
of the light frame wood shear wall, were considered in the parametric analysis. The last two
parameters were also combined together as the lateral wall-to-frame stiffness ratio to analyze its effects.
Three performance targets, including the self-centering capacity, energy dissipation and the ultimate
strength, were considered in the analysis. The analysis results indicated that:

1. The increase in the initial PT stress ratio effectively increases the self-centering capacity and
the ultimate strength of the SC-STHSW system. It has minor influences on the system’s
energy dissipation;

2. The lower limit value of the initial PT stress ratio is suggested as 0.24 to guarantee the PT
high-strength tendons’ maximum effectiveness in reducing the residual drift. However, it is not
suggested to set the initial PT stress ratio larger than 0.4 in the case of the development of the
plasticity in the high-strength tendons;
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3. The damper-to-wall ratio has a positive effect on the increase in the energy dissipation, while it
negatively affects the system’s self-centering performance. The system’s ultimate resistance is not
affected by this factor;

4. The lower limit value of the damper-to-wall ratio is suggested as 0.5 if only the energy dissipation
is concerned;

5. The increase in the beam section height was effective in decreasing the residual drift if the initial
PT stress ratio was at a low level. It also has a positive effect on the increase in the system’s
ultimate strength. No obvious relationship is found between the system’s energy dissipation and
the beam section height;

6. The increase in the lateral resistance of the light frame wood shear wall shared the same function
with the damper-to-wall ratio in reducing the self-centering performance of the SC-STHSW
system. The use of wood shear wall with larger lateral resistance is positive in increasing the
system’s energy dissipation and the ultimate strength;

7. The increase in the lateral wall-to-frame stiffness ratio increases the system’s residual drift and
the energy dissipation. It has no obvious relationship with the system’s ultimate strength.

In addition, a design parameter, the self-centering ratio, was proposed for the design of the new
system. The lower limit value of the self-centering ratio was suggested as 0.3 for the SC-STHSW with a
lateral wall-to-frame stiffness ratio lower than 0.5. For the system with a lateral wall-to-frame stiffness
ratio higher than 0.5, the lower limit value of the self-centering ratio was suggested as 0.5. In the design
of the SC-STHSW system, the self-centering ratio can be used together with the lateral wall-to-frame
stiffness ratio proposed by Li et al. [46].

In the future study of the SC-STHSW system, an increase in the specimens with different settings,
including the different initial PT stress ratio, damper-to-wall ratio, beam section height and the usage
of different light frame wood shear walls would be desirable. In this study, only three performance
targets were analyzed. More performance targets and the balance between different performance
targets can be explored through the parameters analysis. Furthermore, nonlinear time-history analysis
of the multi-story SC-STHSW system is necessary to explore the dynamic properties of the new system.

5. Conclusions

In this paper, an innovative system, the SC-STHSW, is proposed. It is improved from the
STHSW system by using PT technology. The experiment of one full-scale specimen was conducted to
investigate the hysteretic behavior, failure modes and the PT force variation of the system. Based on
the numerical model validated by the test result, a parametric analysis was conducted to explore four
different parameters on the self-centering performance, energy dissipation and the ultimate strength of
the system.

The experimental results showed that the residual displacement of the system was effectively
controlled by using the PT steel frame. The peculiar flag shape hysteretic behavior was obtained.
Moreover, there was a second increase in the system’s strength and stiffness under the large lateral
deformation. After the test, the serious damages were concentrated in the damper-to-wall connections.
With the application of the capacity design, the damper-to-wall connections can be designed as rigidly
as possible.

The parametric analysis results revealed that the system’s self-centering performance was affected
by the initial PT stress ratio κ and the damper-to-wall ratio µ. The two parameters’ influences were
integrated into a design parameter, the self-centering ratio αE. It is suggested to ensure αE is larger than
0.3 when the system’s lateral wall-to-frame stiffness ratio λ is lower than 0.5. When λ is higher than 0.5,
αE is suggested to be larger than 0.5 so that a good self-centering performance is available. As to the
increase in the system’s energy dissipation, the lower limit of the damper-to-wall ratio µ is suggested
as 0.5. The use of a wood shear wall with a large lateral resistance is also positive in increasing the
system’s energy dissipation. The ultimate strength of the system is increased by the increase in the
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initial PT stress ratio κ. The increase in the beam section height, the wood shear wall’s lateral resistance
and the lateral wall-to-frame ratio were also effective in increasing the system’s ultimate resistance.
The presented results may serve as a technical basis for the future application of the new system.
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