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Abstract

Inherited hemolytic anemias (IHAs) are genetic diseases that present with anemia 
due to the increased destruction of circulating abnormal RBCs. The RBC abnor-
malities are classified into the three major disorders of membranopathies, hemo-
globinopathies, and enzymopathies. Traditional diagnosis of IHA has been per-
formed via a step-wise process combining clinical and laboratory findings. 
Nowadays, the etiology of IHA accounts for germline mutations of the respon-
sible genes coding for the structural components of RBCs. Recent advances in 
molecular technologies, including next-generation sequencing, inspire us to ap-
ply these technologies as a first-line approach for the identification of potential 
mutations and to determine the novel causative genes in patients with IHAs. We 
herein review the concept and strategy for the genetic diagnosis of IHAs and pro-
vide an overview of the preparations for clinical applications of the new molecular 
technologies.
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INTRODUCTION

The term inherited hemolytic anemia (IHA) encompasses 
a diverse group of genetically and phenotypically heteroge-
neous disorders that result from an increase in the rate of 
RBC destruction [1]. The severity of the anemia or the course 
of the onset of hemolysis depends on the extent of this 
destruction. Mild hemolysis can be asymptomatic, while the 
anemia in severe hemolysis can be life threatening and cause 
angina and cardiopulmonary decompensation [2, 3]. IHA 
develops when the RBCs themselves are defective (intrinsic 
HA). Defects in hemoglobin (Hb), the RBC membrane, and 
RBC enzymes are the major causes of intrinsic HA, which 
are commonly referred to as hemoglobinopathy, membran-
opathy, and enzymopathy, respectively [4-6]. Most intrinsic 
HAs are inherited disorders, but paroxysmal nocturnal hemo-
globinuria is exceptional [7]. The most common of these 
disorders are α- and β-hemoglobinopathies, glucose-6-phos-
phate dehydrogenase (G6PD) deficiency, and hereditary 
spherocytosis (HS), which affect millions of people world-
wide [8]. A Korean IHA survey-based study reported RBC 
membranopathies in 64.0%, hemoglobinopathies in 19.9%, 
and RBC enzymopathies in 13.3% of cases [9]. Traditional 

diagnosis of IHA has been done via a step-wise process includ-
ing RBC morphology, membrane protein analysis, Hb elec-
trophoresis, and measurement of RBC enzyme levels [10]. 
Occasionally, accurate diagnosis of IHA is a challenge because 
the clinical features may overlap in cases with different etiol-
ogies and it is not possible to distinguish between them 
using conventional diagnostic techniques [11, 12]. Therefore, 
there is still a need for more sensitive and reliable diagnostic 
tests to improve the accuracy of IHA diagnosis. A ge-
nome-wide association study of Hb concentration and related 
parameters (Hb, mean cell hemoglobin [MCH], mean cell 
hemoglobin concentration [MCHC], mean cell volume 
[MCV], packed cell volume [PCV], and RBC) has revealed 
the possible effects of 75 independent genetic loci on the 
genetic mechanisms and biological pathways that control 
RBC formation and function [13]. The range of genetic abnor-
malities has been extensively characterized [14] and genetic 
testing is available to identify the specific mutation(s) of 
IHAs (Table 1). Sanger sequencing is widely applied to identi-
fy disease-causing mutations in cases where traditional test-
ing has failed or when a patient has been extensively trans-
fused, leading to confounding biochemical and other testing 
findings due to mixed RBC populations. Recent technological 
advances including next-generation sequencing (NGS) pro-
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Table 1. Clinical phenotypes and associated genes in inherited hemolytic anemia.

Clinical phenotypes Genes Location Inheritance

RBC membranopathies
Hereditary spherocytosis (HS)

HS type 1 ANK1 8p11.21 AD/AR
HS type 2 SPTB 14q23.3 AD
HS type 3 SPTA1 1q23.1 AR
HS type 4 SLC4A1 17q21.31 AD
HS type 5 EPB42 15q15.2 AR

Hereditary elliptocytosis (HE)
HE type 1 EPB41 1p35.3 AD
HE type 2 SPTA1 1q23.1 AD
HE type 3 SPTB 14q23.3 AD

Hereditary pyropoikilocytosis EPB41 1p35.3 AR
SPTA1 1q23.1 AR
SPTB 14q23.3 AR

Dehydrated hereditary stomatocytosis 1 PIEZO1 16q24.3 AD
Dehydrated hereditary stomatocytosis 2 KCNN4 19q13.31 AD
Overhydrated hereditary stomatocytosis RHAG 6p12.3 AD
Southeast Asian ovalocytosis SLC4A1 17q21.31 AD

RBC enzymopathies
G6PD deficiency G6PD Xq28 XR
Pyruvate kinase deficiency PKLR 1q22 AR
Enolase deficiency ENO1 1p36.23 AD
Adenylate kinase deficiency AK1 9q34.11 AR
Glucose phosphate isomerase deficiency GPI 19q13.11 AR
Pyrimidine 5’ nucleotidase (UMPH1) deficiency NT5C3A 7p14.3 AR
Gamma-glutamylcysteine synthetase deficiency GCLC 6p12.1 AR
Glutathione peroxidase deficiency GPX1 3p21.31 AR
Glutathione reductase deficiency GSR 8p12 AR
Glutathione synthetase deficiency GSS 20q11.22 AR
Hexokinase deficiency HK1 10q22.1 AR
Bisphophoglycerate mutase deficiency BPGM 7q33 AR
Phosphoglycerate kinase 1 deficiency PGK1 Xq21.1 XR
Triosephosphate isomerase deficiency TPI1 12p13.31 AR

RBC hemoglobinopathies
β-thalassemia, sickle cell disease HBB 11p15.4 AD/AR
α-thalassemia

 
HBA1 16p13.3 AR
HBA2 16p13.3 AR

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; XR, X-linked recessive.

vide a cost-effective and rapid approach to molecular diag-
nosis of IHA through extensive and simultaneous evaluation 
of a group of disease-causing genes [15].

This review describes effective diagnosis of IHA in the 
current genetic era and introduces recent insights into ad-
vanced genotype-phenotype correlation on the basis of ge-
netics; we also discuss the possible implications of NGS in 
clinical practice for IHA patients.

RBC MEMBRANOPATHY

Knowledge of RBC membrane structure is important be-
cause defects in its structure underlie multiple IHAs [16]. 
The human RBC membrane consists of three basic compo-
nents: a lipid bilayer, transmembrane linker proteins, and 

a two-dimensional spectrin-based cytoskeleton network 
[17-19]. Connections of the two layers depend on different 
linker proteins with binding sites, respectively, for the cyto-
plasmic domains of the integral membrane proteins (band 
3 and glycophorin C) embedded in the lipid bilayer and 
specific regions of spectrin proteins in the cytoskeleton (Fig. 
1). RBC membranopathies are the result of qualitative abnor-
malities or quantitative deficiencies of the RBC cytoskeletal 
proteins and can be divided into those resulting from struc-
tural protein loss including HS, hereditary elliptocytosis (HE) 
and hereditary ovalocytosis and membrane transport dys-
function (hereditary stomatocytosis) (Fig. 2) [16, 20]. Defects 
that interrupt the vertical structure (spectrin-actin inter-
action) underlie the biochemical and molecular basis of HS, 
whereas defects in horizontal interactions (skeletal attach-
ment to membrane proteins) cause HE. All RBC mem-
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Fig. 1. A schematic representation of red blood cell (RBC) membrane structure with major functional components. The RBC membrane consists 
of three basic components: a lipid bilayer, transmembrane proteins, and a cytoskeletal network. The major transmembrane proteins are 
glycoproteins, band 3, and glycophorin. The most abundant protein in the membrane skeleton is spectrin, which is tethered to the phospholipid 
membrane. 
Abbreviations: 4.1, protein band 4.1; 4.2, protein band 4.2; GLUT1, glucose transporter 1; GPA, glycophorin A; GPC, glycophorin C; Rh, rhesus 
polypeptide; RhAG, Rh-associated glycoprotein.

Fig. 2. Peripheral blood smear of inherited hemolytic anemia. (A) Hereditary spherocytosis, (B) hereditary elliptocytosis, (C) hereditary 
stomatocytosis, (D) β-thalassemia, (E) sickle cell anemia.

branopathies share common features, including the loss of 
surface area, change in morphology, and the resultant ten-
dency for splenic sequestration and extravascular hemolysis 
resulting in chronic anemia of variable severity [21, 22]. 
RBC membranopathies are typically diagnosed by peripheral 
blood morphology and headed toward confirmation by ge-

netic testing.

Hereditary spherocytosis
HS is an inherited disorder characterized by the presence 

of spherical-shaped RBCs on peripheral blood smears and 
is most commonly associated with autosomal dominant in-
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Fig. 3. Stepwise process for 
genetic-based diagnosis of heredi-
tary spherocytosis.
Abbreviations: CBC, complete blood 
cell counting; HS, hereditary sphe-
rocytosis; LDH, lactate dehydro-
genase; NGS, next-generation se-
quencing; RBC, red blood cell.

heritance [23]. HS RBC membranes in HS patients show 
qualitative and/or quantitative abnormalities of proteins in-
cluding isolated ankyrin or combined ankyrin and spectrin, 
isolated spectrin, band 3, and protein 4.2. The defects in 
the membrane components increase membrane fragility and 
induce vesiculation with or without the band 3 protein. 
HS is diagnosed through laboratory tests including RBC mor-
phology and osmotic fragility test as well as family history 
(Fig. 3). The osmotic fragility test has been considered the 
gold standard screening test for HS but provides false-neg-
ative findings in about 25% of patients [24]. Eosin-5'-mal-
eimide measurement and SDS-polyacrylamide gel electro-
phoresis of erythrocyte membrane proteins are also useful 
for screening HS, but standardization of these methods is 
currently lacking [25, 26]. None of the HS screening tests 
can detect all patients because the clinical phenotypes are 
widely variable, ranging from asymptomatic to severely af-
fected [27]. A few patients with mild hemolysis may develop 
marked anemia if their bone marrow erythrocyte production 
is transiently halted by viral (parvovirus B19) or other in-
fections [28]. This scenario would be an aplastic crisis since 
the bone marrow can no longer compensate for ongoing 
hemolysis. In neonates or transfused individuals, diagnosis 
can be difficult due to unclear morphological features and 
screening tests may be unreliable [23]. Molecular testing 
is useful for primary differential diagnosis or confirming 
HS and defining the genotype–phenotype correlation [24, 
29, 30]. The defects in RBC membrane components in HS 
are typically caused by their corresponding gene mutations. 
Mutations of the ANK1 (ankyrin 1), SPTB (spectrin, beta, 
erythrocytic), SPTA1 (spectrin, alpha, erythrocytic 1), 
SLC4A1 (band 3; solute carrier family 4, member 1), and 
EPB42 (erythrocyte membrane protein band 4.2) genes have 
been detected in HS patients [31-33]. ANK1 mutations 

(approximately 50%) are the most common cause of HS, 
followed by mutations in spectrin genes (SPTB: approx-
imately 20% and SPTA1: approximately 5%), SLC4A1 
(approximately 15%), and EPB42 (approximately 10%) [21]. 
In autosomal dominant HS (75%), nonsense and frameshift 
mutations of ANK1, SLC4A1, and SPTB predominate. 
Recessive HS is most often due to compound heterozygosity 
of defects in ANK1, SPTA1, or EPB42 [34]. Most identified 
mutations are private, which means no frequent defect is 
found, and nearly every family has a unique mutation. 
Genetic-based diagnosis of HS in 25 Korean HS patients 
revealed the ANK1 gene mutation to be the most common, 
followed by heterozygous SPTB genes. The genotype–pheno-
type correlations were clarified after a combined analysis 
of their cases and a literature review. Anemia was most 
severe in patients with mutations in the spectrin-binding 
domain of the ANK1 gene. Splenectomy was more frequently 
performed in patients with ANK1 mutations (32%) than 
in those with SPTB mutations [35]. As discussed later in 
this review, the current availability of advanced genomic 
surveys, such as NGS, allows one to overcome the limitations 
of the current diagnostic methods and provide additional 
information to assess the pathogenicity of identified genetic 
variants by comprehensive genotype-phenotype analyses. 

Hereditary elliptocytosis
HE is a group of disorders characterized by the presence 

of elliptical-shaped RBCs [36]. HE has a worldwide dis-
tribution but is more common in individuals of African and 
Mediterranean ancestry [37, 38]. Most patients are asympto-
matic; however, a few neonatal presentations can be dramat-
ic, with jaundice, hemolysis, and hydrops fetalis [39]. In 
Korea, HE is the cause for 1.4% (6/431) of IHA cases [40] 
and 15 cases have been reported including a genetically 
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Fig. 4. Anaerobic glycolysis and antioxidant metabolic pathways of red blood cells. 
Abbreviations: BPG, bisphosphoglyceric acid; DHAP, dihydroxyacetone phosphate; F6P, fructose 6-phosphate; FDP, fructose-1,6-diphosphate; G3P, 
glycerol 3-phosphate; G3PD, glyceraldehyde 3-phosphate dehydrogenase; G6P, glucose 6-phosphate; G6PD, glucose-6-phosphate 
dehydrogenase; GCS, glutamylcysteine synthetase; GPI, glucose-phosphate isomerase; GS, glutathione synthetase; GSH, glutathione; GSSG, 
glutathione disulfide; HK, hexokinase; LD, lactate dehydrogenase; NADP, nicotinamide adenine dinucleotide phosphate; PEP, phosphoenolpyruvic 
acid; PFK, phosphofructokinase; PG, phosphoglyceric acid; PGK, phosphoglycerate kinase; PK, pyruvate kinase; Ru5P, ribose-5-phosphate 
isomerase. 

identified family with an SPTA1 mutation [41]. HE is in-
herited in an autosomal dominant fashion and the majority 
of HE-associated defects occur due to qualitative and quanti-
tative defects in the RBC membrane skeleton proteins, 
α-spectrin, β-spectrin, or protein 4.1R. Mutations in SPTA1 
are the most common, occurring in 65% of HE cases, followed 
by mutations in SPTB (30%) and EPB41 (5%) [21]. 
Interestingly, SPTB mutations identified in HE are located 
on the tetramerization domain but are distributed between 
the actin-binding domain and spectrin repeats in HS [35]. 
Hereditary pyropoikilocytosis (HPP) represents a subtype 
of common HE as evidenced by the coexistence of both 
HE and HPP in the same family [42]. Patients with severe 
HE should be considered for splenectomy; however, some 
degree of hemolysis persists in post-splenectomy HE patients 
that indicates an incomplete response to splenectomy [8]. 
Targeted sequencing by NGS is an efficient approach to iden-
tify or confirm the diagnosis of HE and HPP, especially 
in severe, transfusion-dependent cases where the RBC phe-
notype cannot be evaluated. In addition, causative molecular 
diagnosis allows identification of genotype-phenotype corre-
lations in theses heterogeneous disorders and may assist in 
prognosis determination [43].

RBC ENZYMOPATHY

The energy for RBCs is dependent upon the production 
of adenosine triphosphate (ATP) through glycolysis, and ATP 
is the only source of energy for the RBCs (Fig. 4). Defects 
in the glycolytic pathway enzymes have been described in 
metabolic pathways and almost all are associated with chron-
ic HA [44]. Enzymopathies of the pentose phosphate pathway 
and glutathione metabolism are associated with acute hemo-
lytic crises after exposure to oxidant substances. Deficiencies 
or malfunctions of these enzymes generally impair cellular 
energy balance and/or increase the levels of oxidative stress 
[45]. Since the discovery of G6PD deficiency in 1956 followed 
by pyruvate kinase (PK) deficiency in 1961, RBC enzymo-
pathies associated with IHA have been extensively inves-
tigated [46-48]. The mode of inheritance is autosomal re-
cessive for almost all erythroenzymopathies, except for ad-
enosine deaminase overproduction, which is autosomal dom-
inant and G6PD and phosphoglycerate kinase deficiencies, 
which are X-linked. In contrast to other IHAs, the morphol-
ogy of the RBCs shows no specific abnormalities. Diagnosis 
is based on the detection of reduced specific enzyme activity 
and molecular characterization of the defect at the DNA 
level [49, 50].
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G6PD deficiency
G6PD deficiency is the most common RBC enzymopathy, 

affecting 400 million people worldwide [51, 52] and is espe-
cially prevalent in areas of high malaria infection [53]. G6PD 
deficiency has an X-linked recessive mode of inheritance 
and most known mutations in the G6PD gene decrease the 
enzyme stability. Since these cells do not have the ability 
to efficiently synthesize glutathione and replenish their en-
zyme levels, the sulfhydryl groups of hemoglobin are oxi-
dized and damage the RBC membrane as cells age during 
their 120-day lifespan in circulation. The other mechanism 
is the decreased enzyme activity, in which the diminished 
ability of RBCs to withstand stress increases the risk of de-
struction by hemolysis. Biochemical analysis of G6PD en-
zyme activity levels is commonly used to screen children 
with unexplained persistent jaundice [54, 55]. The analysis 
may also be used to help establish a diagnosis for people 
with unexplained episodes of HA, jaundice, or dark urine 
[56]. The World Health Organization groups G6PD defi-
ciency into five categories, in which G6PD enzyme activity 
of less than 10% is considered a severe deficiency [57]. 
Sometimes, patients showing nearly normal G6PD activity 
can be overlooked because molecular analyses of G6PD are 
only considered for episodes of hemolytic crisis [58]. Various 
exogenous stressors such as a medication, fava beans, or 
infection may trigger hemolysis [59]. At least 186 G6PD 
mutations have been documented, most of which (85%, 
159/186) are single nucleotide substitutions leading to mis-
sense variants [60]. In Korea, seven genetically identified 
G6PD deficiencies have been reported. The mutations were 
not derived from shared ancestor but have arisen by in-
dependent mutational events [61]. With respect to genotype–
phenotype associations, the frequencies of Class I mutations 
found in exon 10 are significantly higher than those in other 
exons in G6PD deficiency [60]. Mutations in this region, 
which encodes the binding interface between the subunits, 
have a highly deleterious effect on enzyme activity by dis-
rupting the quaternary structure and stability of the protein 
and are the most easily identifiable in the general population 
[62, 63]. The application of NGS is useful to diagnose the 
common, rare and novel variants in G6PD deficiency [64]. 

Pyruvate kinase deficiency
PK deficiency is a common enzymatic defect of RBCs. 

Its clinical features are highly variable, ranging from very 
mild or fully compensated forms to life-threatening neonatal 
anemia and jaundice necessitating exchange transfusions. 
PK deficiencies are caused by PKLR mutations and are the 
most common cause of congenital non-spherocytic HA. Over 
200 PKLR mutations have been described [65, 66]. Up to 
70% of PK-deficient alleles carry a missense mutation followed 
by splicing and stop codon mutations (13% and 5%, re-
spectively; www.lovd.nl/pklr) [50]. Although a genotype- 
phenotype relationship has not yet been unveiled [67], pa-
tients with homozygous null mutations display severe pheno-
types including intrauterine growth retardation, severe ane-
mia at birth, and blood transfusion dependence [68]. 

Splenectomy can reduce the need for transfusion in trans-
fusion-dependent patients, although it does not eliminate 
hemolysis [44]. Recently, Korean siblings with compound 
heterozygous null mutations in the PKLR gene have been 
reported. They initially exhibited congenital dysery-
thropoietic anemia (CDA)-associated features and Sanger se-
quencing of the CDA-causing genes was negative. NGS was 
applied to efficiently identify PKLR mutations as the causal 
gene in these patients. Although they had a severe phenotype, 
the patients were eventually cured by hematopoietic stem 
cell transplantation combined with splenectomy [69].

RBC HEMOGLOBINOPATHY

The hemoglobinopathies are a group of disorders caused 
by genetic defects that result in the abnormal structure of 
one of the globin chains of the Hb molecule. With approx-
imately 7% of the worldwide population being carriers, he-
moglobinopathies are the most common monogenic diseases 
and one of the world’s major health problems [70]. They 
fall into two main groups: thalassemia syndromes and struc-
tural Hb variants (abnormal hemoglobins). α- and β-thalasse-
mia are the main types of thalassemia; the main structural 
Hb variants are Hb S, E, and C [71]. α-thalassemia occurs 
when a gene(s) related to the α-globin protein are deleted 
or mutated, which occurs most often in persons from 
Southeast Asia, the Middle East, China, and in those of 
African descent [72]. β-thalassemia occurs most often in 
persons of Mediterranean origin and is caused by β-globin 
gene mutations. To a lesser extent, Chinese, other Asians, 
and African Americans can also be affected [73]. Some hemo-
globinopathies show abnormal RBC morphologies such as 
target and sickle cells (Fig. 2D, E). Laboratory tests to diagnose 
hemoglobinopathies are based on the detection of abnormal 
Hb and include electrophoresis, isoelectric focusing, and 
high-performance liquid chromatography [74, 75]. Molecu-
lar diagnosis can be made by a variety of techniques, most 
commonly by Sanger sequencing of the genes coding α- 
and β-globin and restriction analysis when possible. Over 
1,200 genetic alterations that affect the DNA sequence of 
the human α-like (HBZ, HBA2, HBA1, and HBQ1) and β-like 
(HBE1, HBG2, HBG1, HBD, and HBB) globin genes are main-
ly responsible for the observed clinical heterogeneity [76]. 
Multiplex ligation-dependent probe amplification has be-
come a favored technique to assess for deletions or duplica-
tions and can effectively identify different and unknown 
types of α-globin gene rearrangements to allow the charac-
terization of previously unsolved α-thalassemia genotypes 
within the α-globin gene region [77, 78]. 

Some patients with Hb variants do not show clinical symp-
toms of HA. They may be detected incidentally by abnormal 
laboratory findings including falsely low oxygen saturation 
and glycated hemoglobin (HbA1c)/glucose results [79, 80]. 
More than 600 Hb variants have been reported and database 
records (HbVar, http://globin.bx.psu.edu/hbvar) provide ex-
tensive phenotypic descriptions, biochemical and hemato-
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Fig. 5. Overview of steps in the 
generation of NGS data and 
analysis.
Abbreviations: NGS, next-generation 
sequencing; dbSNP, NCBI dbSNP 
Build 141, http://www.ncbi.nlm.nih. 
gov/projects/SNP/; 1000Genomes, 
1000 Genomes Project, http://www. 
1000genomes.org/; EVS, Exome 
Variant Server, http://evs.gs.washing-
ton.edu/EVS/; ExAC, Exome Aggre-
gation Consortium database, http:// 
exac.broadinstitute.org/; KRDGB, 
Korean Reference Genome Data-
base, http://152.99.75.168/KRGDB/ 
menuPages/intro.jsp; SIFT, http:// 
sift.jcvi.org/; PolyPhen-2, http:// 
genetics.bwh.harvard.edu/pph2/; 
MutationTaster, http://www.muta-
tiontaster.org/; Human splicing 
findinger, http://www.umd.be/HSF/; 
MaxEntScan, http://genes.mit.edu/
burgelab/maxent/Xmaxentscan_sc
oreseq.html.

logical effects, associated pathology, and ethnic occurrence 
accompanied by mutation frequencies and references [81]. 
In Korea, 11 Hb variants have been reported [82]. Some 
have been detected coincidentally while measuring HbA1 
levels, including Hb G Coushatta, Hb Queens, Hb Hoshida, 
and Hb Yamagata [83, 84]. Genetic analysis can be a more 
practical application to confirm Hb variants, including novel 
variants, especially in patients without typical findings. 
Recent studies demonstrated that NGS could provide a com-
prehensive assessment of thalassemia screening strategies 
with its superiority in for both sensitivity and specificity, 
indicating that NGS is a competitive screening method, espe-
cially among populations with a high prevalence of disease 
[85]. Along with genetic improvement, several gene therapies 
for the treatment of hemoglobinopathies are currently in 
clinical trials or under development, including therapies uti-
lizing gene replacement therapy using lentiviruses and the 
latest gene editing techniques [86-88].

NEXT-GENERATION SEQUENCING FOR 
THE GENETIC DIAGNOSIS OF IHA

Genetic testing has been used for the confirmatory diag-

nosis of IHA. Sanger sequencing is primarily performed in 
order to identify the causative mutations in single gene 
disorders. It is very lucky to identify mutation(s) in the 
disease-associated gene in the initial trial. If not, a 
gene-by-gene approach is required [69]. In these cases, pa-
tients may undergo multiple rounds of testing for different 
genes, a pathway to diagnosis, which can be costly and 
time-consuming. Additionally, the usefulness of Sanger se-
quencing is limited for the diagnoses of complex, multi-gene 
disorders or those with locus heterogeneity. Recent advances 
in molecular technologies have helped to identify unexpected 
candidate genes in numerous inherited disorders including 
IHA [43, 89, 90]. Various NGS-based methods have been 
developed, including whole genome sequencing, exome se-
quencing, and gene panels [91]. Although many recent, suc-
cessful applications of whole genome sequencing have been 
reported in establishing the etiology of complex diseases 
and guiding therapeutic decision-making in neoplastic and 
nonneoplastic diseases, its use remains challenging and must 
be carefully evaluated before its clinical implementation as 
a diagnostic test [92]. Whole-exome sequencing has unveiled 
numerous causal mutations and genetic modifiers of disease 
severity in various disorders including IHA [69, 93-95]. Gene 
panels are currently an attractive option in clinical labo-
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http://www.ncbi.nlm.nih.gov/projects/SNP/
http://www.1000genomes.org/
http://www.1000genomes.org/
http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://152.99.75.168/KRGDB/menuPages/intro.jsp
http://152.99.75.168/KRGDB/menuPages/intro.jsp
http://sift.jcvi.org/
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://genetics.bwh.harvard.edu/pph2/
http://www.mutationtaster.org/
http://www.mutationtaster.org/
http://www.umd.be/HSF/
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html
http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html


bloodresearch.or.kr Blood Res 2017;52:84-94.

Genetic diagnosis of hemolytic anemia 91

ratories because of their reasonable costs, relatively accept-
able turn-around time, decreased complexity of data analysis, 
better coverage over the regions of interest, and reduced 
incidental findings [96-98]. NGS panels consisting of com-
mon disease-causing genes have been developed and applied 
to routine molecular diagnosis for undiagnosed IHA patients 
and their families [15, 99]. In particular, patients with the 
co-presence of membranopathy, enzymopathy, and/or he-
moglobinopathy [25, 100] can be effectively diagnosed using 
this new technology. Causal gene identification can be de-
duced through an efficient and reliable strategy to impute 
and analyze NGS data [101] (Fig. 5). The expanded im-
plementation of the new technology will increase our knowl-
edge of the genetic and genomic differences among in-
dividuals, gradually leading to a shift in the clinical manage-
ment and the therapeutic plan from a population-based ap-
proach to a personalized therapy for individual patients [102]. 
However, it cannot be overemphasized that each laboratory 
should develop a clinical-grade NGS panel and validate its 
performance, including analysis and interpretation, before 
clinical application. A validation strategy is needed to fulfill 
the requirements set out by the global and national stand-
ardized guidelines for NGS panels [103].

CONCLUSIONS

Over the years, IHAs caused by RBC membranopathy, 
RBC enzymopathy, and RBC hemoglobinopathy were 
screened and diagnosed by using conventional methods in-
cluding RBC morphology, membrane protein analysis, Hb 
electrophoresis, and measurement of RBC enzyme levels. 
In the genetic era, Sanger sequencing became useful for 
detecting genetic mutations that cause IHAs. Recent ad-
vances in genetic technology utilizing NGS enabled us to 
better identify various genetic mutations that can cause IHAs. 
The accurate diagnosis of IHA will be feasible by the use 
of NGS and associated genetic analyses in the clinical labo-
ratory that could overcome the inconclusive and less accurate 
morphologic and biochemical analysis. We believe that un-
derstanding IHA on genetic basis and applying genetic tech-
nologies for routine clinical laboratory testing will improve 
the accuracy and efficiency of IHA diagnosis and give us 
insights for precision medicine of each affected individual.
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