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ABSTRACT

Atomistic molecular dynamics (MD) simulations gen-
erate a wealth of information related to the dynamics
of proteins. If properly analyzed, this information can
lead to new insights regarding protein function and
assist wet-lab experiments. Aiming to identify inter-
actions between individual amino acid residues and
the role played by each in the context of MD sim-
ulations, we present a stand-alone software called
gRINN (get Residue Interaction eNergies and Net-
works). gRINN features graphical user interfaces
(GUIs) and a command-line interface for generat-
ing and analyzing pairwise residue interaction ener-
gies and energy correlations from protein MD simula-
tion trajectories. gRINN utilizes the features of NAMD
or GROMACS MD simulation packages and automa-
tizes the steps necessary to extract residue-residue
interaction energies from user-supplied simulation
trajectories, greatly simplifying the analysis for the
end-user. A GUI, including an embedded molecu-
lar viewer, is provided for visualization of interac-
tion energy time-series, distributions, an interaction
energy matrix, interaction energy correlations and
a residue correlation matrix. gRINN additionally of-
fers construction and analysis of Protein Energy Net-
works, providing residue-based metrics such as de-
grees, betweenness-centralities, closeness centrali-
ties as well as shortest path analysis. gRINN is free
and open to all users without login requirement at
http://grinn.readthedocs.io.

INTRODUCTION

Atomistic molecular dynamics (MD) simulation is a popu-
lar tool for characterizing the dynamic behavior and func-
tion of biomolecules, including proteins (1–4). The main
output of an MD simulation is a trajectory, typically in-
cluding several thousands of conformations of a biomolec-

ular system. It is the analysis of this data, not the actual
simulation itself, which is the most complicated part of a
study involving MD simulations. As such, obtaining com-
prehendible conclusions from such multidimensional data
may be a time-consuming task and require the use of ex-
tensive and sophisticated analysis methods and procedures
(5).

An interesting output of a MD simulation analysis
procedure is the relative importance of individual amino
acids––as building blocks––in determining the dynamics
and thus the function and activity of a protein (6–8). How-
ever, detecting the role of a single residue from high amount
of simulation data is far from being straightforward. In
order to gain information on residue level, pairwise non-
bonded interaction energies between amino acid residues
can be calculated either by using a single conformation or
an ensemble of conformations (such as one obtained from a
MD simulation). Example applications include: identifica-
tion of stabilizing amino-acids, their interactions in protein
structures and construction of Interaction Energy Matrices
(IEMs) (9,10), identification of ligand- or mutation-induced
changes in amino-acid interactions throughout the pro-
tein structure (11,12), construction of interaction energy-
based Protein Energy Networks (PENs) to identify residues
playing important roles in dynamics (13–17) and stability
(18), allosteric pathway identification (13) and calculation
of equal-time correlations of pairwise residue interaction
energies to identify side-chain dependent dynamic cross-
talk between residues (19,20).

Protein Structure Networks (PSNs) denote the applica-
tion of network theory to protein structures (21–28). PENs
can be considered as special types of ‘Protein Structure Net-
works’ (PSNs) where pair interaction energies between in-
dividual residues are used to construct IEMs that represent
the ‘strength’ of edges between nodes (residues) in the net-
work structure (13–16,29,30). These strength values can be
normalized to represent the ‘weight’ or ‘cost of informa-
tion transfer’ from one node to another to be used in fur-
ther network analysis tasks such as shortest path identifica-
tion. Although there are a variety of online and stand-alone
tools for constructing PSNs from single protein structures,
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such as NAPS (31), WebPSN (32), Bio3D (33), xPyder (34)
and RINalyzer (35–37), options for direct PEN construc-
tion from structural ensembles or MD simulation snap-
shots are limited. Two relevant stand-alone programs, PSN-
Ensemble (38) and pyInteraph, (39) can construct and/or
utilize an IEM to define edge weights, however their use
is limited: PSN-Ensemble requires user-supplied IEMs and
depends on a MATLAB installation whereas pyInteraph
employs a statistical pair-potential for interaction energies
which can lead to a reduced accuracy when compared to a
force-field based computation in special cases.

Two online research tools construct force-field based
IEMs and/or utilize the information contained within. The
INTAA web-server offers quick calculation and visualiza-
tion of pairwise residue interaction energies and construc-
tion of an IEM (40). The server, however, operates on sin-
gle conformations and is therefore not directly suitable for
calculations on a conformational ensemble. Another server,
Molecular Dynamics Network (MDN) (41) was reported as
being able to perform pairwise interaction energy calcula-
tions using MD simulation data with subsequent construc-
tion and analysis of PENs, however the service seems to be
currently unavailable.

Alternatively, popular MD simulation packages feature
between-groups interaction energy calculations via decom-
posing the non-bonded components of the potential en-
ergy into interaction elements without evaluating the equa-
tions of motion; however, the user still needs to prepare cus-
tomized scripts for his/her own simulation data. For exam-
ple, NAMD (42) requires custom configuration files in addi-
tion to custom PDB files that identify the interacting atom
groups. GROMACS (43), likewise, requires custom index
files to perform such a computation. Furthermore, the size
of the interaction energy data can be dramatically high for
an analysis procedure (on the gigabyte scale), depending on
the size of the protein and simulation trajectory. This makes
a preliminary filtering out of non-interacting residue pairs
in the structure necessary. Finally, the resulting data still
needs to be parsed and analyzed further, requiring some
additional scripting effort. Hence, the whole workflow can
quickly become a cumbersome and a time-consuming task
for researchers.

We developed gRINN (get Residue Interaction eNergies
and Networks) as an easy-to-use stand-alone software for
practical generation and analysis of pairwise residue inter-
action energy data from protein MD simulation trajecto-
ries. gRINN supports simulation trajectories generated by
GROMACS or NAMD/CHARMM software. The afore-
mentioned scripting tasks for residue interaction energy cal-
culations with NAMD/GROMACS are completely auto-
mated, allowing researchers to focus rather on their actual
research question. In addition to residue interaction ener-
gies, gRINN can compute correlations between the inter-
action energy series as well. The resulting data, either in
tab-separated or comma-separated format, are stored in a
user-specified folder. gRINN offers a rich visualization in-
terface for inspecting the output. Resulting Interaction En-
ergy Matrix (IEM) is used to construct and analyze a PEN
in terms of residue-based network metrics such as degrees,
betweenness-centralities and closeness-centralities as well
as short paths between selected residues in the structure.

MATERIALS AND METHODS

Dependencies

gRINN computes pairwise residue interaction energies by
performing repeated calls to the MD simulation executable.
gRINN supports NAMD/CHARMM or GROMACS-
generated data; hence either NAMD or GROMACS should
be pre-installed on the system.

Workflow

A typical workflow of gRINN is presented in Figure 1.
gRINN is designated for post-simulation analysis, hence it
is targeted for users who have already completed a MD sim-
ulation of a protein using either NAMD or GROMACS.
Files that describe the protein structure, topology, and an
ensemble of structures (trajectory) are required. Depend-
ing on the used software, the path of NAMD2 or GMX
executable should be provided as well. For NAMD data,
it is highly recommended to delete the solvent molecules
from all input Protein Structure (PSF), Protein Data Bank
(PDB) and DCD files prior the usage of gRINN. Otherwise,
a very high amount of computer memory will be required
by gRINN for processing the trajectory file, particularly if
the user chooses to use multiple CPU cores. Output Folder
is specified by the user. This folder must be a path that does
not exist prior to gRINN usage. gRINN creates this folder
and stores the results in it. For NAMD data, the path of the
parameter file should also be provided by the user.

In addition to these input files, the user can specify sev-
eral calculation settings. Two selection strings (Selection 1
and Selection 2), describing the two residue groups between
which non-bonded interaction energies are to be computed,
can be defined by the user. The atom selection syntax as im-
plemented by ProDy package is used here (44). Note that
this setting is only useful when a pairwise interaction en-
ergy characterization between specific subsets of the protein
structure is desired. In most cases, leaving these two selec-
tions at the default value of ‘all’ is advised. Percent cutoff
and Filtering distance cutoff settings allow further control
over which residue pairs are included in the interaction en-
ergy computation. Default values of 60% cutoff and 20 Å fil-
tering distance cutoff imply that only those pairs of residues
whose centers-of-mass come closer than 20 Å in at least
60% of trajectory frames will be included in the calculation.
Non-bonded cutoff (NAMD) specifies the cutoff distance for
non-bonded interaction energy calculations (default value
is set to 12 Å). Any interaction beyond this cutoff distance
is ignored. Trajectory stride is used to stride over frames in-
cluded in the simulation trajectory. For example, if there are
1000 frames in the trajectory, specifying a stride value of 10
results in every 10th trajectory being processed by gRINN,
yielding a total of 100 frames to be included in the calcu-
lation, thereupon reducing the calculation time. Number of
processors option specifies the number of processors used
in the calculation. By default, this value is one less than the
total number of cores available in the system (gRINN re-
serves one core for progress monitoring purposes). gRINN
can also calculate correlations between each interaction en-
ergy series as well, which is an optional feature.
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• Topology (PSF)
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• Number of processors
• Interaction energy correlation 
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Pairwise Residue Interaction 
Energy Computation

gRINN “New Calculation” GUI

gRINN “calc” CLI

OR...

Output Folder

• energies_intEnTotal.csv
• energies_intEnElec.csv
• energies_intEnVdW.csv
• energies_intEnMeanTotal.dat
• energies_intEnMeanElec.dat
• energies_intEnMeanVdW.dat
• energies_resIntCorr.csv
• energies_resCorr.dat
• system_dry.psf
• system_dry.pdb
• traj_dry.dcd
• grinn.log

Visualization and Protein Energy Network Analysis

gRINN “View Results” GUI

• Interaction Energy Time Series
• İnteraction Energy Matrix (IEM)
• Interaction Energy Correlations
• Residue Correlation Matrix
• Protein Energy Network (PEN)

• PEN-based residue metrics
 Degree
 Closeness
 Betweenness-centrality
• PEN-based short paths

Figure 1. Overall workflow of gRINN.

The user has two options to compute interaction energies
and their correlations using gRINN: the Graphical User In-
terface (GUI) or the Command-line Interface (CLI). GUI is
the default interface for gRINN usage. New Calculation UI
provides several GUI elements for specifying the paths of in-
put files and calculation settings. Once they are set, clicking
CALCULATE button on this interface starts the calcula-
tion. Progress bars on this interface allows the user to track
the progress of computation and monitor the estimated time
remaining until the calculation is complete. While the New
Calculation UI is ideal for analyzing a limited number of
simulation data, using the CLI is more efficient for batch
processing of simulation trajectories.

The completion time of gRINN depends on the num-
ber of trajectory frames analyzed, the number of interact-
ing residue pairs and the number of processors used for
computation. Once the calculation is complete, several out-
put files are generated and saved into the specified output
folder. These files include the computation log, total, van-
der Waals and electrostatic interaction energies’ time series
and averages, correlations between these energy times se-
ries and a residue correlation (RC) matrix. The RC matrix
is constructed using the correlation values (see below). The
output folder additionally includes a reference input struc-
ture and a trajectory containing the frames used in calcula-
tion. Interaction energy and correlation data files are pro-
vided in comma-separated values (CSV) format and can
be used in a subsequent custom analysis workflow. Alter-
natively, gRINN offers a View Results UI including sev-
eral tables and plots for the inspection of output data and
construction/analysis of a PEN. Exemplary plots are given
in the Results section.

Calculation of pairwise residue interaction energies and inter-
action energy correlations

The interaction energy between two residues i and j is the
sum of the non-bonded interaction energies defined in a
force-field. Non-bonded interaction energies are typically
considered in van-der Waals and electrostatic terms:

Ei j = Eelec
i j + Evdw

i j (1)

Here, Ei j is an array including interaction energies be-
tween residues i and j in all trajectory frames included
in the calculation. The average interaction energy between
residues i and j, εi j is the average of Ei j .

gRINN does not include a force-field definition of its
own. Instead, it performs repeated calls to either NAMD
or GROMACS (gmx) executables using specific procedures
for extracting residue interaction energy data. Once the in-
teraction energies are computed, correlations between them
can be computed as well. For example, correlation between
interaction energy series between residues i-j and k-l is com-
puted as such:

Ci, j |k,l =
∑ f

t=1

(
Et

i j − εi j

) (
Et

kl − εkl
)

∑ f
t=1

√(
Et

i j − εi j

)2(
Et

kl − εkl
)2

(2)

Here, Et
i j denotes the interaction energy between residues

i and j in frame. gRINN computes correlations between all
calculated interaction energy series and reports only values
above or below 0.4 to eliminate weak correlations and re-
duce the amount of reported correlation data. In order to
employ this interaction correlation matrix (C) to obtain a
dynamical correlation measure between pairs of residues, it
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is projected on the residue space and a residue correlation
(RC) matrix is constructed:

RCi j =
∑N

m=1

∑N

n=1

∣∣Cm|n
∣∣ × δ

i j
m|n (3)

N is the dimension of the interaction correlation matrix.
δ

i j
m|n is equal to 1 only if residues i and j are involved in in-

teractions m and n. Otherwise, it is zero. Computing RC
matrix this way is based on the mutual occurrence of both
residues i and j on the different sides of a correlation inter-
action. For example, if the correlation between the interac-
tion GLY142–LYS145 and the interaction ILE16–LYS145
is 0.6 and the correlation between the interaction ILE16-
LYS223 and the interaction GLY142-ASP191 is −0.5, the
residue correlation between ILE16 and GLY142 would be
the sum of the absolute values of these two correlation co-
efficients (1.1)). This summation is performed for all calcu-
lated correlations for each residue pair in the structure while
constructing the full RC matrix.

Protein energy network (PEN) construction and analysis

The term ‘Protein Energy Network’ has been used for the
first time by Vijayabaskar and Vishveshwara in a study
where they modeled such networks of protein structures us-
ing pairwise residue interaction energies from MD simu-
lation trajectories (15). In this method, a network is con-
structed by taking individual residues as nodes and aver-
age interaction energies between each residue pair as the
‘weight’ for the edges that are added between these residue
nodes. Once the network is complete, local (node-based)
network metrics, such as degree, closeness and betweenness-
centralities can be obtained to assess the importance of each
residue in terms of protein stability and/or dynamics (45–
47).

gRINN constructs a PEN using the information con-
tained within the IEM. Here, each residue in the structure
is taken as a node. An edge between two nodes (residues)
is added if a non-zero average interaction energy exists be-
tween the two respective residues in the IEM. The user can
specify a further interaction energy cutoff for edge addition
as well. gRINN uses the value of the average IE to deter-
mine a ‘weight’ attribute of an edge using the following for-
mula:

ωi j = f (x) =
{

0.99, if i and j are covalently bound
χi j , otherwise (4)

In the above equation, ωi j denotes the edge weight be-
tween residues i and j. χi j denotes the average interaction
energy between residues i and j. gRINN allows the user to
dismiss edge addition between covalently-bound residues, if
desired.

χi j is computed using the following equation:

χi j =
{∣∣εi j

∣∣ / max |εatt| , if εi j < 0
0, otherwise (5)

In this equation, ωi j denotes the average interaction en-
ergy between residues i and j; εatt denotes the array of at-
tractive (negative) interaction energies. It should be noted
that when using this equation, the more attractive (nega-
tive) an interaction is, the higher weight will be assigned to

the edge of that specific interaction. In other words, attrac-
tive interactions are favored. Repulsive interactions obtain
zero weights. Hence, the matrix � contains values between
0 and 1.

In addition to a weight attribute for each edge, a distance
attribute is also calculated by subtracting each weight from
1. For example, if the weight of the edge between residues i
and j is 0.2, the corresponding distance attribute would be
0.8. This is performed to extract short paths with preferen-
tially higher edge weights (i.e. with lower distances).

Once a PEN is constructed, a variety of network analy-
sis methods can be used to deduce useful information re-
garding the role of each individual residue in the protein
structure (35,36,47–49). gRINN calculates residue-based
local as well as global network metrics and provides short-
est path analysis. Residue-based metrics include the degree,
betweenness-centrality (BC) and closeness-centrality (CC)
of each residue in the structure. Degree denotes the number
of edges connected to a respective residue. BC of a residue is
a measure of how frequently this residue occurs in all short-
est paths between all other residues. BC is computed using
the following equation:

BC (v) = 2
(n − 1) (n − 2)

∑
i �=v �= j∈E

σi j (v)
σi j

(6)

In this equation, BC(v) is betweenness-centrality of
residue �, n is the number of residues in the network, σi j (v)
is the number of shortest paths between residue i and j that
pass through residue � and σi j is the total number of short-
est paths from i to j.

Closeness-centrality is a measure of the efficiency of in-
formation transfer through a particular residue. CC of a
residue is the reciprocal sum of all shortest paths that orig-
inate from u to all other n – 1 nodes. Since the sum of the
distances is dependent on the number of nodes in a network,
the measure is normalized by the sum of all minimum possi-
ble distances. CC is computed using the following equation:

CC (u) = n − 1∑n−1
v=1 duv

(7)

In this equation, CC(u) is closeness-centrality of residue
u and duv is the shortest path distance from node u to v.

Shortest paths between any residue i and j are identified
using the algorithm by Dijkstra (50) using the distance edge
property as edge distance in order to favor edges having
lower distance values. Betweenness centralities are found
using the algorithm by Brandes (51).

RESULTS

Application example: Identifying functional residues in
trypsin structure using gRINN

An example application of gRINN is presented on a 50-
nanoseconds NAMD simulation data of the bovine pan-
creatic trypsin enzyme. Bovine pancreatic trypsin is a 243
amino-acid protein and a member of serine protease family
enzymes. Like other proteases in this enzyme family, trypsin
makes use of a catalytic triad located in the active site of the
enzyme (HIS57, ASP102, SER195) to properly position the
substrate and perform peptide bond cleavage. In addition
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to these catalytic residues, residues in the S1 substrate bind-
ing pocket (ASP189–SER195, SER214–CYS220, PRO225–
TYR228) as well as in L1 (LEU185–LYS188) and L2
(GLN221–LYS224) loops were found to have an active role
in determining substrate specificity and/or catalytic activity
(52,53).

Details of the MD simulation and input data prepara-
tion for gRINN can be found in Supplementary Data. Af-
ter completing the simulation, solvent molecules were re-
moved from PSF, PDB and DCD files, an equilibrated por-
tion of the trajectory was selected (25–50 ns), conforma-
tions were superposed on to the reference (initial) confor-
mation and then saved into a new DCD file using VMD
(54). Pairwise residue interaction energies between all pos-
sible residue pairs in the structure and their correlations
were obtained via gRINN New Calculation UI using the de-
fault settings. In this particular application, a total of 10098
unique pairwise residue interaction energy series, each con-
taining 1000 data points (i.e. 1000 trajectory frames), were
computed. Total processing time of gRINN was ∼4 h on a
workstation with 16 cpu cores.

Following the completion of calculations, View Results
UI was used to visualize the data produced by the calcula-
tion step. Figure 2 shows several exemplary plots, extracted
and shown as they appear in different tab panels of this UI
(tables are omitted). By browsing through these tab pan-
els, the user can inspect time-series, distributions and aver-
age interaction energies between a selected residue with all
other residues (Figure 2A–C), time series of interaction en-
ergies between residues taking part in a selected interaction
energy correlation pair (Figure 2D) and the corresponding
correlation plot (Figure 2E) and finally the IEM (Figure 2F)
and the residue correlation (RC) matrices (Figure 2G). The
RC matrix is a way of extracting side-chain dynamic cor-
relation between any two residues in the structure. Highest
correlations (the darkest data points in Figure 2G) are ob-
served between SER190–ASN223 and THR144–ASN223.
The correlation between SER190 and ASN223 implies a
side-chain-based dynamic correlation between the S1 bind-
ing pocket and the L2 loop. This result can be expected
since a concerted motion between the S1 binding pocket
and L1/L2 loops was previously found to be important for
enzyme specificity (52).

View Results UI provides an additional PEN analy-
sis feature under ‘Network Analysis’ tab panel (Figure
3). Here, a PEN is constructed by taking each residue
in the structure as a node and determining edges and
edge weights/distances using average interaction ener-
gies (see Materials and Methods section for details).
Three residue metrics (degree, betweenness-centrality and
closeness-centrality) are computed and plotted. The user
has the option to include/exclude covalent bonds as edges,
specify a cutoff energy value for edge addition and export
the network and residue metrics to files.

A PEN was constructed for trypsin simulation data by
including covalent bonds as edges and adding edges be-
tween any two residues whose absolute average interaction
energy is equal to or above 1 kcal/mol. Using this PEN,
betweenness-centrality (BC) and closeness-centrality (CC)
metrics were computed and top 10 residues having the high-
est BC and CC values are listed in Table 1. The full list of

degree, BC and CC values can be found in Supplementary
Data. Table 1 also includes a position column to indicate
whether the respective residue is in one of the functionally
important positions in the structure mentioned above.

Table 1 shows that residues located in the S1 substrate
binding site as well as L1 and L2 loops play important roles
in information transfer within the enzyme structure. Cat-
alytic ASP102 and catalytic SER195 are also listed among
the top 10 BC and CC residues. The fact that these residues
are important for determining the catalytic activity (as men-
tioned above) highlights the utility of the PEN approach as
implemented in gRINN.

IMPLEMENTATION

gRINN was developed in Python programming language
(version 2.7). In addition to the python core library, sev-
eral open source Python packages are used. GUI elements
are provided by PyQt5. Matplotlib (version 2.0.2) is used
to generate two-dimensional line and scatter plots as well
as heatmaps (55). ProDy (version 1.9.3) is used for PDB
and DCD trajectory manipulations, atom selections and all
other general geometric tasks related to protein structure
(44). Mdtraj (version 1.9.0) is used to convert GROMACS
trajectory file formats to DCD for further processing (56).
Open-source PyMol (version 1.8) is used as the molecule
viewer in the ‘View Results’ UI. Pexpect (version 4.3.1) is
used to interact with the gmx executable. Numpy (version
1.13.3) is used for all matrix operations occurring through-
out the computation workflow of gRINN. Pandas (version
0.20.3) is used to store, process and save tabular data. Net-
workx (v.2.0) is used to construct PENs and calculation of
global/local network metrics and short paths.

CONCLUSION

We have developed a stand-alone software, gRINN, for ef-
ficient calculation and analysis of amino-acid residue inter-
action energies from NAMD/CHARMM or GROMACS-
generated MD simulations. Extraction of interaction en-
ergies from molecular simulation data is considered as a
computationally expensive analysis task with enormous
amounts of output data. Dealing with such data in the con-
text of whole protein structure requires significant compu-
tational expertise. gRINN automatizes the steps necessary
for extracting pairwise residue interaction energies using ei-
ther NAMD or GROMACS executables, thereby greatly
simplifying the workflow for the end-user with limited ex-
posure to scripting. gRINN additionally features interac-
tion energy correlation calculations and Protein Energy
Network analysis to identify dynamic cross-talk between
residues and potentially functional residues in the protein
structure.

DATA AVAILABILITY

gRINN is free and open to all users. Executables for Linux
and Mac OSX operating systems are available for download
at http://grinn.readthedocs.io. We recommend all interested
users to follow the tutorial at this website.

http://grinn.readthedocs.io
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Figure 2. An overview of output plots as generated by gRINN View Results UI. (A and B) Example single interaction energy time series and distributions,
respectively. (C) Average non-zero interaction energies between a selected residue and all other residue in protein structure. (D) Time series of interaction
energies between residues taking part in a selected interaction energy correlation pair. (E) Corresponding correlation plot of the plot in D. (F) Interaction
Energy Matrix (IEM). (G) Residue Correlation (RC) matrix.
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Figure 3. A screenshot of the Network Analysis Tab in gRINN View Results UI.

Table 1. Top 10 betweenness-centrality and closeness-centrality residues of trypsin given along with the position of residues (52,53)

Betweenness -centrality (BC) Closeness-centrality (CC)

Residue Position BC value Residue Position CC value

LYS188 L1 loop 0.165 LYS188 L1 loop 0.608
ASP189 S1 binding pocket 0.099 ASP194 S1 binding pocket 0.606
ASP191 S1 binding pocket 0.088 ASP189 S1 binding pocket 0.577
ILE16 N-terminal residue 0.086 ILE16 N-terminal residue 0.576
LYS224 L2 loop 0.047 ASP102 Catalytic aspartate 0.508
ASP102 Catalytic aspartate 0.045 TYR29 0.505
LYS230 Near S1 pocket 0.044 VAL31 0.505
GLU70 0.033 GLU70 0.503
ASP165 0.029 SER195 Catalytic serine 0.502
LEU209 0.027 SER54 0.501

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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