Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

5²CelPress

Tunable structure of TiO_2 deposited by DC magnetron sputtering to adsorb Cr (VI) and Fe (III) from water

F.A. Hernández-Rodríguez^a, R. Garza-Hernández^b, M.R. Alfaro-Cruz^{a, c,*}, Leticia M. Torres-Martínez^{a,d}

^a Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico

^b Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Col. Lomas del Campestre León, Guanajuato, C.P. 37150, Mexico

^c CONAHCYT-Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico

^d Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chih., CP, 31136, Mexico

ABSTRACT

TiO₂ thin films with mixtures of the anatase, rutile, and brookite phases were deposited on glass substrates via magnetron sputtering. Based on XRD and Raman results, the TiO₂-0.47 and TiO₂-3.47 films principally contained the brookite phase, while the TiO₂-1.27 and TiO₂-2.13 films were primarily anatase. The capacities of the TiO₂ films to adsorb heavy metals were tested with Cr(VI) and Fe(III) solutions, and the maximum Cr(VI) and Fe(III) adsorption capacities were realized with the TiO₂-0.47 film (334.5 mg/g) and TiO₂-3.47 film (271.3 mg/g), respectively. SEM-EDS results revealed the presence of Cr and Fe on the surfaces of the films, thus corroborating the ability of the TiO₂ films to adsorb and remove heavy metals. They are strong candidates for use in wastewater treatment plants.

1. Introduction

TiO₂ is the most promising photocatalytic semiconductor due to its excellent physicochemical properties, high chemical stability, nontoxicity, long-term photoactivity, high stability under UV irradiation, etc. [1–4]. As a photocatalyst, TiO₂ has mainly been used in dye degradation, and it was reported to degrade up to 92–95% of the methylene blue (MB) and 96% of rhodamine B (RhB) in solution [5,6]. High photocatalytic efficiency resulted from irradiation of TiO₂, during which it generated electron-hole pairs; the electrons had high reduction potentials and the holes at the semiconductor surface had high oxidation potentials, which enabled the breakdown of organic molecules by \cdot OH radicals [4]. In addition, TiO₂ has been used in other photocatalytic reactions, such as hydrogen generation and CO₂ reduction, which have gradually become more important due to the high efficiency of TiO₂ [7,8]. Based on these photocatalytic applications in which TiO₂ can be used, it is an excellent option for water remediation via adsorption of heavy metals. In an adsorption process, the metallic species present in an aqueous solution are adsorbed on the surface of a solid, and adsorption occurs through electrostatic charges [9]. Since heavy metals have high affinities for hydroxyl species (OH⁻), TiO₂ is used for adsorption of heavy metals; as noted above, TiO₂ generates abundant OH⁻ species, which increases the probability of adsorbing the metals and the efficiencies of photocatalytic reactions used for water remediation [9,10]. In this sense, TiO₂ adsorb different heavy metals, such as Pb²⁺, Cu²⁺, Cd²⁺, Ni²⁺, and Cr⁶⁺ [11–20]. However, most of the reported studies have used TiO₂ as a powder, which is a problem

is an

open access article under the CC BY-NC-ND license

This

E-mail addresses: malfaroc@uanl.edu.mx, mralfaro@conahcyt.mx (M.R. Alfaro-Cruz).

https://doi.org/10.1016/j.heliyon.2024.e27359

^{*} Corresponding author. Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico

Received 27 September 2023; Received in revised form 27 February 2024; Accepted 28 February 2024 Available online 5 March 2024

^{2405-8440/}[©] 2024 Published by Elsevier Ltd.

⁽http://creativecommons.org/licenses/by-nc-nd/4.0/).

when the photocatalyst is to be recovered; alternatively, other semiconductors or organic compounds can be added with TiO_2 to increase the adsorption efficiency, as shown in Table S1.

In contrast, TiO_2 is a very attractive semiconductor due to the three crystalline phases anatase, rutile, and brookite, which influence the efficiency of TiO_2 in each photocatalytic process in different ways. Among the three crystalline phases of TiO_2 , anatase is the most common phase for photocatalytic applications, followed by the rutile phase; the anatase phase exhibits lower absorption of solar light than the rutile phase, because the band gap of anatase is greater (3.2 eV) than that of the rutile phase (3.0 eV) [21,22]. However, synergy between these two phases results in higher photocatalytic efficiency for TiO_2 , and the most efficient photocatalyst, Degussa TiO_2 powder P25, has a rutile–anatase ratio of 1:3; however, the efficiency of these phases requires efficient charge separation when the TiO_2 is irradiated. This efficiency has been associated with the migration of photoexcited electrons from the rutile phase to the conduction band of the anatase phase, while the photoexcited holes are left in the rutile phase [22–24]. The last crystalline phases [25,26]. The band gap reported for the brookite phase ranges from 3.1 to 3.4 eV, even though there are reports in which the band gap of this phase is 3.6 eV; therefore, the differences in the band gaps could be useful in photocatalytic processes [27–29].

Preparing a single TiO₂ phase is not easy, as the anatase phase changes to the rutile phase at approximately 600 °C, while brookite is converted into the rutile phase at approximately 800 °C [25,30]. However, as the three phases are used in photocatalytic processes, the percentages of the phases could determine the efficiency of each process. In this sense, an efficient way to use TiO₂ for heavy metal absorption is to support it on a substrate, which allows recovery and reuse. Among the methods used for depositing materials, physical techniques allow modification of the structural properties of the materials in a controlled way by changing the initial deposition conditions. Deposition of thin films via sputtering is a great option for modifying the structural properties of semiconductors, and it is possible to explore the depositional conditions to change the final properties of the film. With the sputtering technique, changing the amount of carrier gas inside the chamber, the gases used in the deposit, the power density, and the working pressure for deposition is feasible [31–34]. Among these parameters, the working pressure is one of the best options for modifying the structural, optical, and morphological properties of thin films, as the ionization levels of the species inside the chamber increase with increasing working pressures [35,36]. The working pressure affects the path and energy through which the material species collide with the substrate inside the chamber, giving rise to preferential planes in the crystalline structure [35,37–39]. However, the presence of more than two TiO₂ phases is very common even with changes in the deposition conditions (see Table S2) [32–34,40–49].

For this reason, this work explores the influence of the working pressure on the deposition of TiO_2 thin films by the sputtering technique and the efficiency for adsorbing heavy metals such as Cr(VI) and Fe(III). The structural, optical, and morphological properties were studied to understand the effects of the working pressure during deposition.

2. Experimental

2.1. Deposition of TiO_2 thin films by magnetron sputtering

TiO₂ films were deposited using a Ti target (99.995% pure, 2.0000 diameter X 0.12500 thick, Kurt J. Lesker) over glass substrates. With a turbomolecular pump, the sputtering chamber was evacuated to a background pressure of 1.14×10^{-3} Pa, and then Ar gas (UHP) was introduced into the chamber with a flow rate of 15 sccm. The films were deposited using a current DC power (60 W) for 60 min. Each film has been deposited at different working pressures, such as 0.47, 1.27, 2.13, and 3.47 Pa, to obtain the different TiO₂ phases. The working pressures were chosen according to the equipment conditions. After deposition, the films were annealed at 400 °C for 60 min to form the oxide.

2.2. Physicochemical characterization of TiO₂ thin films

Structural, optical, and photocatalytic properties films were characterized by X -ray diffraction (PANalytical, radiation of 1.54 Å -Cu Ka, grazing angle), UV–Vis–NIR spectrophotometer (Cary 5000, range 200–800 nm), Surface morphology was studied by atomic force microscope (ASYLUM RESEARCH, model MFP3D-SA, in Tapping mode). X-ray photoelectron spectroscopy was used to determine chemical states and elemental composition (Thermo Scientific, Escalab 250Xi, equipped with an Al Ka monochromatic X-ray source, hv = 1486.7 eV).

2.3. Photocatalytic adsorption test

The photocatalytic test was performed using the TiO_2 films as photocatalytic reactors. The adsorption of metal ions was obtained by doing a calibration using five different concentrations of Cr and Fe. The calibration plots, the absorbance of each spectrum and the equation that describes the relation between the absorbance and the metal ion concentration are shown in the Supporting Information (Fig. S1). For the photocatalytic tests, in each reactor, 30 ml of a 2-ppm solution of Cr (VI) and Fe (III) are placed and are constantly stirring at room temperature. After 30 min, the sample reference was taken, and the reactor began to be irradiated with a commercial lamp of 90 Watts (Tecnolite/HEL-BLB). The tests were performed for 360 min and were monitored using a UV–Vis–NIR spectro-photometer. The results of these tests are presented in the supplementary information (Fig. S1).

3. Results and discussion

Fig. 1a shows the X-ray diffraction patterns of the TiO_2 films. The different diffraction patterns for each film indicate that the working pressure affected the crystalline structures. This was true for films deposited at the highest (3.47 Pa) and lowest (0.47 Pa) working pressures, which showed peaks at different 20 positions. In contrast, the films obtained at pressures of 1.27 and 2.13 Pa had amorphous structures, which are common in sputtering deposits over glass substrates [32,42,49,50]. For this reason, a Rietveld refinement was performed to determine the lattice parameters and the phases resulting from the deposition conditions (Table S3). After the Rietveld refinement, the TiO_2 -0.47 film showed rutile (tetragonal) and brookite (orthorhombic) phases. However, the brookite phase was no longer formed as the working pressure was increased (from 0.47 Pa to 2.13 Pa), and the TiO_2 -1.27 and TiO_2 -2.13 films had mixtures of the anatase and rutile tetragonal phases. In contrast, the three TiO_2 phases, anatase, rutile, and brookite, were present only in the TiO_2 -3.47 film deposited at a high working pressure (3.47 Pa). The presence of the different TiO_2 phases and changes in the lattice parameters of each film are shown in the Supporting Information (Tables S3 and S4).

To complement the XRD measurements, Raman spectroscopy was used to determine the TiO_2 structure, and the Raman spectra of the TiO_2 films are shown in Fig. 1b. All the films exhibited the vibration modes of the anatase (E_g , A_{1g} , B_{1g} , E_u , and E_{3g}), rutile (A_{1g} , B_{1g} , B_{1g} , B_{1g} , E_u , and E_{3g}), and brookite (A_{1g} and B_{2g}) phases. For the anatase phase, the principal vibrational modes (E_g , A_{1g} , B_{1g}) were those involving oscillations of the O atoms in O–Ti–O, O_2 pure vibrations, and Ti atom vibrations [51,52]. The A_{1g} and E_{3u} modes for the rutile phase involved atomic displacements of the oxygen sublattice and the IR-active polar modes, respectively [52,53]. Likewise, the A_{1g} and B_{2g} modes of the brookite phase have been used to identify this TiO₂ phase [54,55].

The transmittance percentages of the TiO₂ films are presented in Fig. 2a. As the pressure increased (from 1.27 Pa to 3.47 Pa), the transmittances increased to between 70 and 90%, except for the TiO₂-0.47 film (deposited at lower pressure 0.47 Pa), for which the transmittance was less than 5%. The optical band gap was calculated from the Tauc plot by extrapolating the linear portion, where α is the absorption coefficient, $h\nu$ is the photon energy and E_g is the optical band gap energy (Fig. S2) [7]. As the pressure increased (from 0.47 Pa), the band gap values were 3.74, 3.54, 3.32, and 3.6 eV for the TiO₂-0.47, TiO₂-1.27, TiO₂-2.13, and TiO₂-3.47 films, respectively. These values were consistent with the band gaps of the different TiO₂ phases [21,56]. The transmittance spectra showed that the adsorption edges of the films were shifted to higher wavelengths, and the bandgaps increased in the order TiO₂-2.13, TiO₂-3.47, and TiO₂-1.27. These shifts raised the Fermi levels above the conduction band and increased the band gaps [57]. This behavior is known as the Burstein–Moss effect, and it can be caused by dopants or structural defects that increase the concentrations of carriers and modify the absorption edge [57]. Optical properties such as ellipsometry angles, refractive index and PL spectra are shown in Figs. S3 and S4 (Supporting Information) [58,59].

The surfaces of the films were analyzed with atomic force microscopy (AFM) over a $1.0 \times 1.0 \,\mu$ m area. Fig. 2b shows that all films had the same grain morphologies because the grain sizes varied according to the working pressure used for deposition. The RMS,

Fig. 1. a) XRD patterns and b) Raman spectra of the TiO_2 films deposited at different working pressures. The black, blue, and red dots in the XRD patterns correspond to the anatase, rutile, and brookite phases, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 2. a) Transmittance spectra and b) AFM images of the TiO₂ films deposited at different working pressures.

average height, and specific surface area were measured with AFM, and the values were 3.01, 3.12, 1.46, and 1.97 nm for the roughness; 7.68, 11.10, 4.93, and 5.93 nm for the average height; and approximately 1 nm² for the surface areas of TiO₂-0.47, TiO₂-1.27, TiO₂-2.13, and TiO₂-3.47, respectively.

The importance of surface defects in the photocatalytic performance of TiO_2 has already been identified, especially for CO_2 photocatalytic reduction [51,60]. In particular, oxygen vacancies serve as adsorption and active sites in heterogeneous photocatalysis and modify the electronic structure, charge transport, and surface properties [61,62]. For this reason, XPS was used to determine the oxidation states of titanium and the concentration of oxygen vacancies. High-resolution Ti 2p and O 1s spectra were fitted with a Shirley background. A comparison among the four samples is shown in Fig. 3. Different authors have claimed that the titanium in TiO_2 crystals exhibited both the 3⁺ and 4⁺ oxidation states [60]. However, in the Ti 2p spectra, only a doublet peak at 458.4 eV with a spin-orbital splitting of 5.7 eV was identified. This peak was attributed to Ti^{4+} bonded to O^{2-} [63]. The peak located at a higher binding energy (471.8 eV) was identified as a satellite peak. On the other hand, the O 1s spectrum contained five peaks. The peaks at

Fig. 3. High-resolution spectra for a) Ti 2p and b) O 1s core levels for TiO₂ films deposited at different working pressures.

529.8, 530.8, 531.5, 532.4 and 533.7 eV were attributed to O^{2} -Ti⁴⁺ species in TiO₂, oxygen vacancies, chemisorbed species (hydroxyl groups), -O-C=O bonds and oxygen bonded to silicon, respectively [63–66]. A small peak at 103.2 eV (Si–O bonds) was seen in the survey spectra of the TiO₂-0.47 and TiO₂-3.47 samples, which confirmed the peaks found in the oxygen spectrum [67].

The Ti 2p and O 1s peak intensities and their appropriate atomic sensitivity factors (ASFs) (obtained from the Scofield table) were used to determine the surface atomic compositions of the TiO_2 samples. The atomic percentages indicated by XPS for the TiO_2 -0.47 and TiO_2 -3.47 samples are shown in Table 1. A quantitative analysis indicated that the oxygen vacancy concentrations were highest in the TiO_2 -1.27 and TiO_2 -2.13 samples, which could be associated with better photocatalytic performance.

Photocatalytic adsorption of the different samples are shown in the supplementary material (Figure S5, S6 and S7), and based on these results, we focused on the films that showed higher capacities for the adsorption of Cr (VI) and Fe (III) ions. Hence, the amounts of Cr^{6+} and Fe^{3+} ions adsorbed on the surfaces were determined for the TiO_2 -0.47 and TiO_2 -2.13 films, respectively. The relationship between the removal efficiency for a given interaction time and the adsorption capacity (q_t) of TiO_2 is shown in Fig. 4. The iron plot exhibited a constant linear trend over time, which provided information on the homogeneity of the films and the reactive sites at the surface. On the other hand, the chromium plot shows three levels, suggesting that physisorption had occurred; the first layer (ions physically bonded) was removed, followed by chemisorption at the surface. The different adsorption capacities for the two ions were related to the chemical nature of the solution. The sizes of the ions could have caused rearrangement at the surface and led to the adsorption of more Cr^{6+} (with the smaller radius: 58 p.m.) than Fe^{3+} (63 p.m.). Moreover, Cr^{6+} is more electropositive than Fe^{3+} , which means that it is strongly attracted to negative species such as oxygen. The percentages of Cr(VI) and Fe(III) removal were 70 and 63%, respectively, after 360 min. These values were consistent with those reported in the literature for these ions [68–70].

The absorption capacities for the films with each metal were different because heavy metals have high affinities for hydroxyl (OH⁻) ions [9,10]. Therefore, the presence of hydroxyls on a film surface increases the likelihood of adsorbing metals. Based on the XPS (Table 1) results, the TiO₂-2.13 film had a higher concentration of OH⁻ species on the surface, which increased the amount of Fe³⁺ adsorbed. In contrast, the TiO₂-0.47 film, with a major brookite component, did not have a high concentration of OH⁻ ions. However, as mentioned above, Cr^{6+} is an electropositive metal with a strong attraction for negative species such as oxygen, and the XPS results indicated that the TiO₂-0.47 film had a lower oxygen deficiency, which favored Cr^{6+} adsorption.

To confirm the presence of these ions on the surfaces of the TiO₂ thin films, TiO₂-0.47 and TiO₂-2.13 were analyzed via EDS and UV–Vis spectroscopy. Fig. 5 shows the SEM–EDS maps of the 0.47-TiO₂-Cr (top) and 2.13-TiO₂-Fe (bottom) samples, with the different distribution of elements O, Ti and Fe/Cr obtained by EDS measurements (around 1–2 μ m in depth). The colored elemental maps showed that O (red), Ti (blue), and Cr or Fe (green) were homogeneously distributed throughout the entire thin film. The atomic composition of the TiO₂ samples with Cr was O 60.4%, Ti 36.3%, and Cr 3.3%, while that with Fe was O 65.0%, Ti 33.8%, and Fe 1.2%. These results showed that the concentration of Cr in the TiO₂ was greater than that of Fe after 350 min of UV exposure, consistent with the adsorption capacities. Moreover, the UV–Vis spectra revealed decreased transmittance after adsorption of the metals, suggesting the formation of a thin layer of species at the surface. A decrease was also observed even for the TiO₂-0.47 sample, which exhibited approximately 2% transmittance at 300–500 nm, or approximately zero. These measurements indirectly confirmed the adsorption of species on the surfaces.

4. Conclusions

. . .

TiO₂ thin films were deposited on glass substrates via magnetron sputtering to study the impact of the working pressure on the physicochemical properties. Combinations of the anatase, rutile and brookite phases were obtained by modifying the working pressures. XRD and Raman spectrometry revealed that the TiO₂-0.47 and TiO₂-3.47 samples were composed of brookite, rutile and anatase, while the TiO₂-1.27 and TiO₂-2.13 samples comprised anatase and rutile mixture. In the same way, the films deposited at higher pressures (1.27, 2.13, and 3.47 Pa) have the highest transmittance percentage (>70%), while the film deposit at 0.47 Pa has a transmittance percentage lower than 5%. Meanwhile, in AFM, results observed that the surface of the films was composed of little grains that agglomerated as the working pressure increased in each deposit (from 0.47 to 3.47 Pa). On the other hand, XPS results show that the principal contribution in the TiO₂ films is the Ti⁴⁺ bonded to O²⁺ species, as well as oxygen vacancies, chemisorbed species, and O–C=O bonds. According to the photocatalytic results, the TiO₂ samples preferably adsorbed Cr (VI) over Fe (III) and exhibited maximum adsorption capacities ranging from 53 to 334.5 mg/g for Cr (VI) and from 149.8 to 271.3 mg/g for Fe (III) ions in aqueous solutions, as shown with batch adsorption experiments. The higher adsorption capacity for Cr was presumably due to the small ionic radius, the electropositive nature of this element and the roughness of the TiO₂ thin film. The charge affinity and the metal electronegativity influenced the absorption capacity of each film, as Fe²⁺ adsorption depended on hydroxyl (OH⁻) species, and the presence of more oxygen increased the amounts of the electronegative metals adsorbed, as seen with Cr⁶⁺. After each reaction, the transmittance percentage and SEM-EDS measurements were done to confirm the presence of the metals over the film surface. SEM–EDS maps of each

Table 1		
Atomic percentage of titanium and ox	gen species in the TiO ₂ thin films	s calculated from XPS spectra.

Sample	Ti 2p (Ti–O)	O 1s (O–Ti)	O 1s (Vo)	O 1s (OH ⁻)	O 1s (O–C)	O 1s (O–Si)
M1 M2	22.5 11 5	48.5 22 5	4.9 14 0	11.9 42.9	9.7 9.2	2.5 0.0
M3	11.3	21.5	13.5	41.4	12.3	0.0
M4	15.2	32.5	7.9	14.9	20.3	9.3

Fig. 4. Adsorption kinetics of TiO₂ samples adsorbing Cr and Fe in aqueous solution.

Fig. 5. Scanning SEM-EDS mapping of TiO₂ thin films after adsorption of Cr (top) and Fe (bottom) and transmittance spectra for these samples.

film, revealed the presence of Cr and Fe at the surface, with contents of 3.3 and 1.2%, respectively. In contrast, the transmittance percentage of all films decreased, which confirmed the presence of the different metals over the film surface and the capacity of TiO2 to absorb different metals.

Data availability statement

The data will be available on request.

CRediT authorship contribution statement

F.A. Hernández-Rodríguez: Writing – original draft, Methodology, Investigation. **R. Garza-Hernández:** Writing – review & editing, Writing – original draft, Investigation, Formal analysis. **M.R. Alfaro-Cruz:** Writing – review & editing, Writing – original draft, Supervision, Investigation, Formal analysis, Conceptualization. **Leticia M. Torres-Martínez:** Writing – review & editing, Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank CONAHCYT for the scholarship support of F.A. Hernández-Rodríguez (CVU 1150215), and for the support to the following projects: Investigadores e Investigadoras por México-CONAHCYT 363, and Paradigmas y Fronteras de la Ciencia 320379; and UANLfor PAYCIT projects CE1771-21, 277-CE-2022. We also thanks Dr. Oscar Ceballos Sánchez (CUCEI-UDG), Andrés Isaak González Jacquez, Alejandro Arizpe and Oscar Vega (CIMAV) for his technical support in the XPS, XRD and AFM measurements. We also appreciate the facilities of Dr. Ismael Flores Vivian and Iris Alessandra Alanis Leal, CIMAC UANL for their technical support in the SEM measurements.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e27359.

References

- S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson, Recent advances on TiO₂-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies, Catal. Rev. - Sci. Eng. 62 (2020) 1–65, https://doi.org/10.1080/01614940.2019.1613323.
- [2] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications, Chem. Rev. 107 (2007) 2891–2959, https://doi.org/ 10.1021/cr0500535.
- [3] H.N.C. Dharma, J. Jaafar, N. Widiastuti, H. Matsuyama, S. Rajabsadeh, M.H.D. Othman, M.A. Rahman, N.N.M. Jafri, N.S. Suhaimin, A.M. Nasir, N.H. Alias, A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment, Membranes 12 (2022), https://doi.org/10.3390/ membranes12030345.
- [4] R. Kumar Patnaik, N. Divya, A brief review on the synthesis of TiO₂ thin films and its application in dye degradation, Mater. Today Proc. 72 (2023) 2749–2756, https://doi.org/10.1016/j.matpr.2022.10.064.
- [5] N. Madima, K.K. Kefeni, S.B. Mishra, A.K. Mishra, TiO₂-modified g-C₃N₄ nanocomposite for photocatalytic degradation of organic dyes in aqueous solution, Heliyon 8 9 (2022) e10683, https://doi.org/10.1016/j.heliyon.2022.e10683.
- [6] D. Komaraiah, P. Madhukar, Y. Vijayakumar, M.V. Ramana Reddy, R. Sayanna, Photocatalytic degradation study of methylene blue by brookite TiO₂ thin film under visible light irradiation, Mater, Today Proc 3 (2016) 3770–3778, https://doi.org/10.1016/j.matpr.2016.11.026.
- [7] M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, Optical properties of TiO₂ thin films deposited by DC sputtering and their photocatalytic performance in photoinduced process, Int. J. Hydrogen Energy 44 (2019) 20017–20028, https://doi.org/10.1016/j.ijhydene.2019.06.043.
- [8] M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martínez, TiO₂ nanorods grown by hydrothermal method and their photocatalytic activity for hydrogen production, Mater. Lett. 237 (2019) 310–313, https://doi.org/10.1016/j.matlet.2018.11.040.
- [9] Z. Raji, A. Karim, A. Karam, S. Khalloufi, Adsorption of heavy metals: mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—a review, Waste 1 (2023) 775–805, https://doi.org/10.3390/waste1030046.
- [10] N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review, Npj Clean Water 4 (2021), https://doi.org/10.1038/s41545-021-00127-0.
- [11] M. Sharma, J. Singh, S. Hazra, S. Basu, Adsorption of heavy metal ions by mesoporous ZnO and TiO₂@ZnO monoliths: adsorption and kinetic studies, Microchem. J. 145 (2019) 105–112, https://doi.org/10.1016/j.microc.2018.10.026.
- [12] C. Wang, Y. Zhan, Y. Wu, X. Shi, Y. Du, Y. Luo, H. Deng, TiO₂/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption, Int. J. Biol. Macromol. 183 (2021) 245–253, https://doi.org/10.1016/j.ijbiomac.2021.04.085.
- [13] P. Xuchao, H. Yong, D.T. Semirumi, F. Zhong, R. Rezaie, Development of cellulose/hydroxyapatite/TiO₂ scaffolds for efficient removal of lead (II) ions pollution: characterization, kinetic analysis, and artificial neural network modeling, Int. J. Biol. Macromol. 246 (2023) 125630, https://doi.org/10.1016/j. iibiomac.2023.125630.
- [14] A. Maleki, B. Hayati, F. Najafi, F. Gharibi, S.W. Joo, Heavy metal adsorption from industrial wastewater by PAMAM/TiO₂ nanohybrid: preparation, characterization and adsorption studies, J. Mol. Liq. 224 (2016) 95–104, https://doi.org/10.1016/j.molliq.2016.09.060.
- [15] W. Wang, S. Zhu, N. Li, S. Xie, C. Wen, X. Luo, Enhanced Cd²⁺ adsorption and toxicity for microbial biofilms in the presence of TiO₂ nanoparticles, Environ. Pollut. 314 (2022) 120239, https://doi.org/10.1016/j.envpol.2022.120239.
- [16] A.B. Đukić, K.R. Kumrić, N.S. Vukelić, Z.S. Stojanović, M.D. Stojmenović, S.S. Milošević, L.L. Matović, Influence of ageing of milled clay and its composite with TiO₂ on the heavy metal adsorption characteristics, Ceram. Int. 41 (2015) 5129–5137, https://doi.org/10.1016/j.ceramint.2014.12.085.
- [17] N.G. Mostafa, A.F. Yunnus, A. Elawwad, Adsorption of Pb(II) from water onto ZnO, TiO₂, and Al₂O₃: process study, adsorption behaviour, and thermodynamics, Adsorpt. Sci. Technol. 2022 (2022), https://doi.org/10.1155/2022/7582756.
- [18] Y. Yang, G. Wang, Q. Deng, H. Wang, Y. Zhang, D.H.L. Ng, H. Zhao, Enhanced photocatalytic activity of hierarchical structure TiO₂ hollow spheres with reactive (001) facets for the removal of toxic heavy metal Cr(vi), RSC Adv. 4 (2014) 34577–34583, https://doi.org/10.1039/c4ra04787g.
- [19] D. Kanakaraju, M.A. Bin Abdullah, L.Y. Chin, TiO₂/PKSAC functionalized with Fe₃O₄ for efficient concurrent removal of heavy metal ions from water, Colloids Interface Sci. Commun. 40 (2021) 100353, https://doi.org/10.1016/j.colcom.2020.100353.
- [20] R. Zha, R. Nadimicherla, X. Guo, Cadmium removal in waste water by nanostructured TiO₂ particles, J. Mater. Chem. A 2 (2014) 13932–13941, https://doi.org/ 10.1039/c4ta02106a.
- [21] J. Zhang, P. Zhou, J. Liu, J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO₂, Phys. Chem. Chem. Phys. 16 (2014) 20382–20386, https://doi.org/10.1039/c4cp02201g.
- [22] G. Zerjav, K. Zizek, J. Zavasnik, A. Pintar, Brookite vs. rutile vs. anatase: what's behind their various photocatalytic activities? J. Environ. Chem. Eng. 10 (2022) https://doi.org/10.1016/j.jece.2022.107722.
- [23] Y.K. Kho, A. Iwase, W.Y. Teoh, L. M\u00e4dler, A. Kudo, R. Amal, Photocatalytic H₂ evolution over TiO₂ nanoparticles. The synergistic effect of anatase and rutile, J. Phys. Chem. C 114 (2010) 2821–2829, https://doi.org/10.1021/jp910810r.
- [24] B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, What is Degussa (Evonic) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, J. Photochem. Photobiol. Chem. 216 (2010) 179–182, https://doi.org/10.1016/j.jphotochem.2010.07.024.
- [25] L.E. Oi, M.Y. Choo, H.V. Lee, H.C. Ong, S.B.A. Hamid, J.C. Juan, Recent advances of titanium dioxide (TiO₂) for green organic synthesis, RSC Adv. 6 (2016) 108741–108754, https://doi.org/10.1039/c6ra22894a.
- [26] S. Cao, N. Sui, P. Zhang, T. Zhou, J. Tu, T. Zhang, TiO₂ nanostructures with different crystal phases for sensitive acetone gas sensors, J. Colloid Interface Sci. 607 (2022) 357–366, https://doi.org/10.1016/j.jcis.2021.08.215.
- [27] M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO₂, J. Phys. Condens. Matter 24 (2012), https://doi.org/10.1088/0953-8984/24/19/195503.

- [28] H. Lin, L. Li, M. Zhao, X. Huang, X. Chen, G. Li, R. Yu, Synthesis of high-quality brookite TiO₂ single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive, J. Am. Chem. Soc. 134 (2012) 8328–8331, https://doi.org/10.1021/ja3014049.
- [29] A. Di Paola, M. Bellardita, L. Palmisano, Brookite, the Least Known TiO₂ Photocatalyst, 2013, https://doi.org/10.3390/catal3010036.
- [30] M. Manzoli, F.S. Freyria, N. Blangetti, B. Bonelli, Brookite, a sometimes under evaluated TiO₂ polymorph, RSC Adv. 12 (2022) 3322–3334, https://doi.org/ 10.1039/d1ra09057g.
- [31] M. Pérez-González, M. Morales-Luna, J. Santoyo-Salazar, H. Crotte-Ledesma, P.E. García-Tinoco, S.A. Tomás, Improved adsorption and photocatalytic removal of methylene blue by MoO₃ thin films: role of the sputtering power, film thickness, and sputtering working pressure, Catal. Today 360 (2021) 138–146, https:// doi.org/10.1016/j.cattod.2019.06.003.
- [32] S.S. Kamble, J.K. Radhakrishnan, Influence of O₂ flow rate on the characteristics of TiO₂ thin films deposited by RF reactive sputtering, Mater. Today Proc. 45 (2021) 3915–3919, https://doi.org/10.1016/j.matpr.2020.07.405.
- [33] A. Kozlovskiy, I. Shlimas, K. Dukenbayev, M. Zdorovets, Structure and corrosion properties of thin TiO₂ films obtained by magnetron sputtering, Vacuum 164 (2019) 224–232, https://doi.org/10.1016/j.vacuum.2019.03.026.
- [34] S. Gürakar, H. Ot, S. Horzum, T. Serin, Variation of structural and optical properties of TiO₂ films prepared by DC magnetron sputtering method with annealing temperature, Mater. Sci. Eng. B 262 (2020) 114782, https://doi.org/10.1016/j.mseb.2020.114782.

[35] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, second ed., William Andrew Publishing, Norwich, New York, U.S.A., 2002.

- [36] M.J. Zhao, J.F. Zhang, Q.H. Huang, W.Y. Wu, M.C. Tseng, S.Y. Lien, W.Z. Zhu, Effect of working pressure on Sn/In composition and optoelectronic properties of ITO films prepared by high power impulse magnetron sputtering, Vacuum 196 (2022) 110762, https://doi.org/10.1016/j.vacuum.2021.110762.
- [37] S.I. Son, D. Shin, Y.G. Son, C.S. Son, D.R. Kim, J.H. Park, S. Kim, D. Hwang, P. Song, Effect of working pressure on the properties of RF sputtered SnS thin films and photovoltaic performance of SnS-based solar cells, J. Alloys Compd. 831 (2020) 154626, https://doi.org/10.1016/j.jallcom.2020.154626.
- [38] H. Kong, J. He, L. Huang, L. Zhu, L. Sun, P. Yang, J. Chu, Effect of working pressure on growth of Cu(In,Ga)Se₂ thin film deposited by sputtering from a single quaternary target, Mater. Lett. 116 (2014) 75–78, https://doi.org/10.1016/j.matlet.2013.10.112.
- [39] V.K. Arepalli, Y. Shin, J. Kim, Influence of working pressure on the structural, optical, and electrical properties of RF-sputtered SnS thin films, Superlattice. Microst. 122 (2018) 253–261, https://doi.org/10.1016/j.spmi.2018.08.001.
- [40] J. Daughtry, A.S. Alotabi, L. Howard-Fabretto, G.G. Andersson, Composition and properties of RF-sputter deposited titanium dioxide thin films, Nanoscale Adv. 3 (2021) 1077–1086, https://doi.org/10.1039/d0na00861c.
- [41] A. Panepinto, M. Michiels, M.T. Dürrschnabel, L. Molina-Luna, C. Bittencourt, P.A. Cormier, R. Snyders, Synthesis of anatase (Core)/Rutile (shell) nanostructured TiO₂ thin films by magnetron sputtering methods for dye-sensitized solar cell applications, ACS Appl. Energy Mater. 3 (2020) 759–767, https:// doi.org/10.1021/acsaem.9b01910.
- [42] A. Sezgin, R. Čtvrtlík, L. Václavek, J. Tomáštík, L. Nožka, E. Menşur, S. Türküz, Optical, structural and mechanical properties of TiO₂ and TiO₂-ZrO₂ thin films deposited on glass using magnetron sputtering, Mater. Today Commun. 35 (2023), https://doi.org/10.1016/j.mtcomm.2023.106334.
- [43] H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, P.V. Kamat, Extending the photoresponse of TiO₂ to the visible light region: photoelectrochemical behavior of TiO₂ thin films prepared by the radio frequency magnetron sputtering deposition method, J. Phys. Chem. B 110 (2006) 5537–5541, https://doi.org/ 10.1021/jp058262g.
- [44] J.Y. Zheng, S.H. Bao, Y. Guo, P. Jin, Anatase TiO₂ films with dominant {001} facets fabricated by direct-current reactive magnetron sputtering at room temperature: oxygen defects and enhanced visible-light photocatalytic behaviors, ACS Appl. Mater. Interfaces 6 (2014) 5940–5946, https://doi.org/10.1021/ am500979j.
- [45] B.I. Stefanov, G.A. Niklasson, C.G. Granqvist, L. Österlund, Quantitative relation between photocatalytic activity and degree of (001) orientation for anatase TiO₂ thin films, J. Mater. Chem. A 3 (2015) 17369–17375, https://doi.org/10.1039/c5ta04362j.
- [46] D. Rafieian, R.T. Driessen, W. Ogieglo, R.G.H. Lammertink, Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films, ACS Appl. Mater. Interfaces 7 (2015) 8727–8732, https://doi.org/10.1021/acsami.5b01047.
- [47] Y. Du, H. Cai, Y. Wu, Z. Xing, Z. Li, J. Xu, L. Huang, J. Ni, J. Li, J. Zhang, Enhanced planar perovskite solar cells with efficiency exceeding 16% via reducing the oxygen vacancy defect state in titanium oxide electrode, Phys. Chem. Chem. Phys. 19 (2017) 13679–13686, https://doi.org/10.1039/c7cp01936j.
- [48] G.J. Choi, H. Jung, D.H. Kim, Y. Sohn, J.S. Gwag, Photoelectrocatalytic effect of unbalanced RF magnetron sputtered TiO2 thin film on ITO-coated patterned SiO₂ nanocone arrays, Catal. Sci. Technol. 8 (2018) 898–906, https://doi.org/10.1039/c7cy02371e.
- [49] S.H. Salman, A.A. Shihab, A.H.K. Elttayef, Studying the effect of the type of substrate on the structural ,morphology and optical properties of TiO₂ thin films prepared by RF magnetron sputtering, Energy Proc. 157 (2019) 199–207, https://doi.org/10.1016/j.egypro.2018.11.181.
- [50] A.S. Alkadem Idriss, N.N.A. Nik Ab Razak, N.M. Ahmed, Y.A. Abdulla, Thermoluminescence properties of TiO₂/Cu/TiO₂ multilayer thin films fabricated by (RF/DC) sputtering for radiation dosimetry, J. Lumin. 260 (2023) 119886, https://doi.org/10.1016/j.jlumin.2023.119886.
- [51] H. Zhao, F. Pan, Y. Li, A review on the effects of TiO₂ surface point defects on CO₂ photoreduction with H2O, J. Mater. 3 (2017) 17–32, https://doi.org/ 10.1016/j.jmat.2016.12.001.
- [52] O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18), Phys. Chem. Chem. Phys. 14 (2012) 14567–14572, https://doi.org/10.1039/c2cp42763j.
- [53] D.K. Takci, Synthesis, characterization and dielectric properties of rutile TiO₂ nanoflowers, J. Cryst. Growth 578 (2022), https://doi.org/10.1016/j. jcrysgro.2021.126442.
- [54] M.C. Ceballos-Chuc, C.M. Ramos-Castillo, J.J. Alvarado-Gil, G. Oskam, G. Rodríguez-Gattorno, Influence of brookite impurities on the Raman spectrum of TiO₂ anatase nanocrystals, J. Phys. Chem. C 122 (2018) 19921–19930, https://doi.org/10.1021/acs.jpcc.8b04987.
- [55] H.H. Do, T.K.C. Tran, T.D.T. Ung, N.T. Dao, D.D. Nguyen, T.H. Trinh, T.D. Hoang, T.L. Le, T.T.H. Tran, Controllable fabrication of photocatalytic TiO₂ brookite thin film by 3D-printing approach for dyes decomposition, J. Water Process Eng. 43 (2021) 102319, https://doi.org/10.1016/j.jwpe.2021.102319.
- [56] H. Tran Thi Thuong, C. Tran Thi Kim, L. Nguyen Quang, H. Kosslick, Highly active brookite TiO₂-assisted photocatalytic degradation of dyes under the simulated solar–UVA radiation, Prog. Nat. Sci. Mater. Int. 29 (2019) 641–647, https://doi.org/10.1016/j.pnsc.2019.10.001.
- [57] L. Jianguo, S. Fujita, T. Kawaharamura, H. Nishinaka, Carrier concentration dependence of band gap shift in n -type ZnO:Al films, J. Appl. Phys. 101 (2007) 083705, https://doi.org/10.1063/1.2721374.
- [58] B. Liu, L. Wen, X. Zhao, The photoluminescence spectroscopic study of anatase TiO₂ prepared by magnetron sputtering, Mater. Chem. Phys. 106 (2007) 350–353, https://doi.org/10.1016/j.matchemphys.2007.06.012.
- [59] N.D. Abazović, M.I. Čomor, M.D. Dramićanin, D.J. Jovanović, S.P. Ahrenkiel, J.M. Nedeljković, Photoluminescence of anatase and rutile TiO₂ particles, J. Phys. Chem. B 110 (2006) 25366–25370, https://doi.org/10.1021/jp064454f.
- [60] B. Bharti, S. Kumar, H.N. Lee, R. Kumar, Formation of oxygen vacancies and Ti³⁺ state in TiO₂ thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (2016) 1–12, https://doi.org/10.1038/srep32355.
- [61] X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO₂ with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale 5 (2013) 3601–3614, https://doi.org/10.1039/c3nr00476g.
- [62] X. Bi, G. Du, A. Kalam, D. Sun, Y. Yu, Q. Su, B. Xu, A.G. Al-Sehemi, Tuning oxygen vacancy content in TiO₂ nanoparticles to enhance the photocatalytic performance, Chem. Eng. Sci. 234 (2021) 116440, https://doi.org/10.1016/j.ces.2021.116440.
- [63] B. Erdem, R.A. Hunsicker, G.W. Simmons, E. David Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO₂ particles used in polymer encapsulation, Langmuir 17 (2001) 2664–2669, https://doi.org/10.1021/la0015213.
- [64] P. Krishnan, M. Liu, P.A. Itty, Z. Liu, V. Rheinheimer, M.H. Zhang, P.J.M. Monteiro, L.E. Yu, Characterization of photocatalytic TiO₂ powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy, Sci. Rep. 7 (2017) 1–11, https://doi.org/10.1038/srep43298.
- [65] D. Barreca, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, TiO₂ thin films by chemical vapor deposition: an XPS characterization, Surf. Sci. Spectra 14 (2007) 27–33, https://doi.org/10.1116/11.20070902.

- [66] A. Sanchez-Martinez, C. Koop-Santa, O. Ceballos-Sanchez, E.R. López-Mena, M.A. González, V. Rangel-Cobián, E. Orozco-Guareño, M. García-Guaderrama, Study of the preparation of TiO₂ powder by different synthesis methods, Mater. Res. Express 6 (2019), https://doi.org/10.1088/2053-1591/ab21e8.
- [67] D.S. Jensen, S.S. Kanyal, N. Madaan, M.A. Vail, A.E. Dadson, M.H. Engelhard, M.R. Linford, Silicon (100)/SiO₂ by XPS, Surf. Sci. Spectra 20 (2013) 36–42, https://doi.org/10.1116/11.20121101.
- [68] Y. Song, X. Lu, Z. Liu, W. Liu, L. Gai, X. Gao, H. Ma, Efficient removal of Cr(VI) by TiO₂ based micro-nano reactor via the synergy of adsorption and photocatalysis, Nanomaterials 12 (2022) 1–15, https://doi.org/10.3390/nano12020291.
- [69] K.M. Joshi, V.S. Shrivastava, Photocatalytic degradation of Chromium (VI) from wastewater using nanomaterials like TiO₂, ZnO, and CdS, Appl. Nanosci. 1 (2011) 147–155, https://doi.org/10.1007/s13204-011-0023-2.
- [70] K. Uma, S. Pawar, TiO₂/g-C₃N₄ composites for the removal of chromium in wastewater, Results Chem 5 (2023) 3–9, https://doi.org/10.1016/j. rechem.2022.100743.