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Safety and efficacy of novel malaria vaccine regimens of RTS,
S/AS01B alone, or with concomitant ChAd63-MVA-vectored
vaccines expressing ME-TRAP
Tommy Rampling 1, Katie J. Ewer 1, Georgina Bowyer 1, Nick J. Edwards1, Danny Wright1, Saranya Sridhar1, Ruth Payne1,
Jonathan Powlson1, Carly Bliss1, Navin Venkatraman1, Ian D. Poulton1, Hans de Graaf2, Diane Gbesemete2, Amy Grobbelaar1,
Huw Davies3, Rachel Roberts1, Brian Angus1, Karen Ivinson4, Rich Weltzin4, Bebi-Yassin Rajkumar4, Ulrike Wille-Reece4, Cynthia Lee4,
Chris Ockenhouse4, Robert E. Sinden5, Stephen C. Gerry6, Alison M. Lawrie1, Johan Vekemans7, Danielle Morelle7, Marc Lievens7,
Ripley W. Ballou7, David J. M. Lewis8, Graham S. Cooke9, Saul N. Faust 2, Sarah Gilbert1 and Adrian V. S Hill 1

We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors
expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule.
RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human
malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults
received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia
Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week
8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and
5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-
circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced
immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of
MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than
the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/
AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization
sites in attempts to generate optimal efficacy.
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INTRODUCTION
Although the incidence of malaria has decreased globally since
2000, it remains a leading cause of mortality. An estimated 3.2
billion people remain at risk of disease, and approximately 445,000
deaths were attributed to malaria in 2016.1 No licensed malaria
vaccine is available, although several candidates are in develop-
ment, at stages ranging from demonstrated efficacy in controlled
human malaria infection (CHMI) studies,2–5 to completion of phase
3 efficacy testing and positive European Medicines Agency
scientific opinion.6,7 A strategy for increasing vaccine efficacy
(VE) is combining antigenically distinct vaccines, targeting
different stages of the parasite life cycle, into a single regimen.
There are strong arguments that combining vaccines targeting
different stages of the parasite life cycle into one regimen could
increase VE.8–11 Different vaccine platforms exert efficacy against
malaria through differing immune mechanisms,2–5 and an
additional benefit of combining vaccine types is induction of

both humoral and cellular immune responses to potentially
increase efficacy. Based on supportive pre-clinical findings,12–14

we previously reported a study demonstrating high VE (as defined
by sterile protection (SP) of subjects) against CHMI (14/17 subjects
protected; VE 82.4% (95% confidence interval (CI): 64–100)) in
healthy, malaria-naive adults with an estimated sustained sterile
efficacy of 72% observed in a subset of subjects who underwent
re-challenge at 6 months.15 Subjects received a vaccination
schedule consisting of three standard doses of the sporozoite
stage subunit vaccine RTS,S/AS01B, in addition to the hetero-
logous prime-boost viral vector vaccine regimen of ChAd63-
modified vaccinia Ankara (ChAd63-MVA) multiple-epitope throm-
bospondin-related adhesion protein (ME-TRAP), which targets the
liver stage of infection. This study was notable, not just because it
demonstrated high VE, but also in that it combined two distinct
vaccine types: the first (RTS,S) induces high-titer antibodies to the
circumsporozoite protein (CSP) and another inducing potent T cell
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responses to TRAP using viral vectors (ChAd63-MVA ME-TRAP).
Although the efficacy observed in the combination group was
higher than in the comparator group that received three standard
doses of RTS,S alone (12/16 subjects protected; VE 75% (95% CI:
54–96) estimated sustained VE at 6 months of 62.5%), the number
of subjects in the study was small, and the difference in efficacy

between the groups, or estimated sustained efficacy at re-
challenge, was not statistically significant. The need for further
evaluation of this approach was apparent. Furthermore, in this
study, the RTS,S and viral vector vaccines were given separately at
staggered time points, with a minimum interval of 2 weeks
between each dose, resulting in a five-dose vaccination regimen,
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over a course of 10 weeks. Cumulative number of doses is a
significant cost and logistic consideration for a vaccine regimen to
be deployable in malaria endemic countries. Ideally, a malaria
vaccine would be deliverable concurrently within the Expanded
Program of Immunizations (EPI) such as the three-dose diphtheria,
pertussis, and tetanus–hepatitis B virus vaccine.16,17

In 1997, during the first CHMI trial of RTS,S, reactogenicity
concerns after the second dose of vaccine led to a reduction in the
third dose in two of the study groups. One group received a
regimen consisting of two standard doses of RTS,S/AS02 at 0 and
1 month, and a third dose at month 7 which was 1/5th of the
standard dose. Following CHMI, 6/7 subjects remained protected,
resulting in a VE of 86% (95% CI: 0.02–0.88, P < 0.005).5 The
beneficial effect of a fractional third dose on VE was further
demonstrated in a recent CHMI trial, in which subjects received a
0-month, 1-month, and 7-month regimen consisting of two
standard doses of RTS,S/AS01B followed by a fractional (1/5th)
third dose.18 Following CHMI, 26/30 subjects were protected
against malaria (VE 86.7% (95% CI: 66.8–94.6)) compared with 10/
16 in the standard 0-month, 1-month, 2-month full-dose group (VE
62.5 (95% CI: 29.4–80.1); log-rank P= 0.040).
In this phase I/IIa, open-label, CHMI study, we assessed whether

the efficacy of a standard three-dose regimen RTS,S/AS01B could
be improved by the concurrent, same site administration of
ChAd63 and MVA viral vectors expressing ME-TRAP. Safety and
immunogenicity of this novel schedule were also assessed. In
addition, we assessed for the first time whether the efficacy of a
standard three-dose regimen of RTS,S/AS01B could be improved
by a regimen consisting of two standard doses followed by a
fractional (1/5th) third dose given on a 0-month, 1-month, and 2-
month schedule, either alone or given concurrently with viral
vectors expressing ME-TRAP.

RESULTS
Study participants
Seventy-four subjects were screened for eligibility and 45 subjects
were identified as eligible at enrolment (Supplementary Figure
SF1). Ten subjects each were allocated to Groups 1, 2, and 3 to
receive R-R-R, R-R-r, or RA-RM-RM, respectively. Eleven subjects
were allocated to Group 4 to receive RA-RM-rM. Group allocation
numbers were lower than the planned 12 per group at CHMI, as a
result of consent withdrawals and ineligibility at the time of first
vaccination. Four subjects were allocated to Group 5 as
unvaccinated infectivity controls. Vaccinations took place between
5 January 2015 and 27 February 2015. CHMI was performed on 23
March 2015 and 24 March 2015.

Safety
The majority of adverse events (AEs) following vaccination in all
vaccine groups were mild in severity and self-limiting. There were
no serious AEs (SAEs) related to vaccination or suspected
unexpected serious adverse reactions (SUSARs). Commonly
reported AEs following vaccination were vaccine site pain,
feverishness, fatigue, malaise, headache, and myalgia. There were
no significant differences in the rates of occurrence of grade 3
(severe) solicited or unsolicited AEs, between the RTS,S/AS01B-
alone groups (1 and 2) and the RTS,S/AS01B plus viral vectors
groups (3 and 4) (Supplementary Table S4). Tabulations of AEs can
be found in the Supplementary Tables S1–S5.

Protective efficacy against CHMI
Forty subjects underwent CHMI and completed follow-up. By day
(D) 23 following CHMI, 6/8 subjects in Group 1 were protected (VE
75% (95% CI: 31.5–93.1)); in Group 2, 8/9 subjects were protected
(VE 88.9% (95% CI 43.3–98.4)); in Group 3, 6/10 subjects were
protected (VE 60% (95% CI: 25.3–82.7)); in Group 4, 5/9 subjects
were protected (VE 55.6% (95% CI: 20.4–80.5)) (Fig. 1a). All four
unvaccinated controls in Group 5 were diagnosed with malaria.
Pooling the outcome of subjects in Groups 1 and 2, who had
received RTS,S/AS01B alone, 14/17 subjects were protected (82.4%
(95% CI: 54.7–93.9)) compared with 11/19 subjects who had
received RTS,S/AS01B with viral vectors in Groups 3 and 4 (VE
57.9% (95% CI: 33.2–76.3); P= 0.074) (Fig. 1b). Mean time to
diagnosis was 11.6 days (range 11.5–12, SD= 0.22 days) in Group
5, while mean time to diagnosis was 15.5, 16.5, 14.1, and 14 days
in Groups 1, 2, 3, and 4 respectively. Analysis of time to
parasitemia measured by quantitative polymerase chain reaction
(qPCR) showed significant difference in time to parasitemia for all
vaccine groups compared with controls, using thresholds of either
20 or 500 parasites per milliliter of blood (Fig. 1c, d and
Supplementary Table S6).

T cell immunogenicity
T cell responses to vaccine antigens were measured by interferon
γ (IFNγ) enzyme-linked immunosorbent spot (ELISPOT) assay
(Supplementary Figure SF2). Responses at baseline and after
vaccination were assessed to CSP in all groups and to ME-TRAP in
Groups 3 and 4 only. CSP-specific T cell frequencies are described
in the supplementary information (Supplementary Figure SF2A). T
cell responses to ME-TRAP peaked 1 week after the first dose of
MVA at D35 (Supplementary Figure SF2B) at a median of 2531 SFC
(interquartile range (IQR): 1949–4042). This high level of cellular
immunogenicity is comparable to what we previously observed
after an 8-week prime-boost interval with ChAd63 and MVA ME-

Fig. 1 Efficacy of concomitant administration of RTS,S/AS01B with ChAd63-MVA ME-TRAP and RTS,S/AS01B immunization alone following
Plasmodium falciparum 3D7 sporozoite challenge. Kaplan–Meier survival analyses. Log-rank test for significance. a Kaplan–Meier survival
analysis of time to treatment following CHMI in individual groups. Mean time to diagnosis was 11.6 (±0.22) days for unvaccinated controls. All
vaccine recipients were undiagnosed by day 23 after CHMI, or were diagnosed after the control mean ± 2 SD. b Kaplan–Meier survival analysis
of time to treatment following CHMI in pooled vaccine groups. Vaccine recipients who had received a schedule consisting of RTS,S/AS01B
alone (Groups 1 and 2) were pooled, and vaccine recipients who had received a schedule consisting of RTS,S/AS01B with viral vectors
expressing ME-TRAP (Groups 3 and 4) were pooled. c Kaplan–Meier survival analysis of time to first sample with >20 parasites/mL detected by
quantitative polymerase chain reaction (qPCR). Mean time to this endpoint was 8.9 (±0.89) days for unvaccinated controls. Seven out of eight
subjects in Group 1 (87.5%), 9/9 (100%) subjects in Group 2, 9/10 (90%) subjects in Group 3, and 8/9 (88.9%) subjects in Group 4 did not reach
this endpoint, or did so after the control mean ± 2 SD. d Kaplan–Meier survival analysis of time to first sample with >500 parasites/mL
detected by qPCR. Mean time to this endpoint was 11.25 (±0.43) days for unvaccinated controls. Six out of eight subjects in Group 1 (75%), 9/9
(100%) subjects in Group 2, 7/10 (70%) subjects in Group 3, and 8/9 (88.9%) did not reach this endpoint, or did so after the control mean ±
2 SD. R-R-R, three standard doses (50 μg) of RTS,S/AS01B delivered at 4-week intervals; R-R-r, two standard doses (50 μg) of RTS,S/AS01B
followed by a fractional third dose (10 μg). Vaccines delivered at 4-week intervals; RA-RM-RM, three standard doses (50 μg) of RTS,S/AS01B
delivered at 4-week intervals with concomitant administration of Chimpanzee adenovirus 63 (ChAd63) expressing multiple-epitope
thrombospondin-related adhesion protein (ME-TRAP) at week 0, and modified vaccinia Ankara (MVA) expressing ME-TRAP at weeks 4 and 8;
RA-RM-rM, two standard doses (50 μg) of RTS,S/AS01B followed by a fractional third dose (10 μg) with concomitant administration of ChAd63
ME-TRAP at week 0, and MVA ME-TRAP at weeks 4 and 8
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TRAP (2436 SFC, IQR: 1064–3862, Supplementary Figure 2C).2

Administration of a second dose of MVA induced a re-boosting of
T cell responses but to a significantly lower median magnitude
than after the first MVA dose (2531 SFC, IQR: 1949–4042 after first
MVA compared with 901 SFC, IQR: 509–1910, P= 0.04, one-way
analysis of variance).
Flow cytometry with intracellular cytokine staining (ICS)

demonstrated that cytokine responses to CSP were predominantly
from CD4+ T cells and were not significantly different between
groups either at D42 or C-1 (Supplementary Figure SF3A). ICS
responses to TRAP were assessed in Groups 3 and 4 only and
comprised expression of cytokines from similar proportions of
CD4+ and CD8+ T cells (Supplementary Figure SF3B). CD8+ T cell
responses to TRAP were dominated by cells expressing IFNγ either
alone or in combination with other cytokines. Responses did not
change substantially between post Ad and post first MVA, but the
second dose of MVA substantially reduced the proportion of
monofunctional cells expressing IFNγ (D63 and C-1, P= 0.007 two-
tailed t test), (Supplementary Figure SF4), a population that we
have previously shown to be associated with vaccine-induced
protection against malaria.2

Humoral Immunogenicity of RTS,S/AS01B co-administered with
ChAd63-MVA ME-TRAP
Antibody (Ab) responses induced by RTS,S vaccination were
measured by enzyme-linked immunosorbent assay (ELISA) against
the NANP repeats, C-terminal regions of CSP and the full-length
CSP protein (Fig. 2a–d). NANP IgG responses peaked at D42 in all
groups, declined by D56 and increased again following the third
vaccination in the groups receiving RTS,S alone (Groups 1 and 2)
but not in the RTS,S with viral vectors groups (Groups 3 and 4) (Fig.
2a). There was no significant difference in NANP IgG titers
between Groups 1 and 2 pooled compared with Groups 3 and 4
pooled after first vaccination (Fig. 2b), a trend to higher titers in
Groups 1 and 2 pooled after second vaccination (P= 0.06) and
significantly higher titers in this group after third vaccination (P=
0.0007). C-terminal IgG titers were comparable between groups
after the initial vaccination but were significantly lower in the RTS,
S with viral vectors group after the second and third vaccinations
(Fig. 2c P= 0.007 and 0.0005, respectively). Similarly, Ab responses
against full-length CS protein were not significantly different
between groups at D28, but were significantly higher in the RTS,S-
only group at D56 and C-1 (Fig. 2d, P= 0.03, P= 0.001). There
were no significant differences in anti-CSP IgG titers at C-1 when
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comparing the groups that received the fractional third dose of
RTS,S with those that received the full dose (P= 0.905, P= 0.842 in
comparing Groups 1 with Group 2, and Groups 3 with 4,
respectively)

Avidity of IgG responses to CSP and total IgG responses to TRAP
Differences in the quality of the Ab response in each group were
compared using a sodium thiocyanate displacement ELISA to
measure avidity of total IgG against full-length CSP at D28, D56,
and C-1 (Fig. 3a), and of total IgG, IgG1, and IgG2 against NANP at
C-1 (Fig. 3b). Avidity of CSP-specific IgG increased significantly
after the second vaccination and was not further increased by a
third dose in any group. There were no significant differences in
CSP IgG avidity between groups at any time point. There were no
significant differences in the avidity of NANP-specific total IgG, or
IgG2 between groups at C-1. The avidity of NANP-specific IgG1
was significantly higher in Group 2 compared with Group 1
directly (Mann–Whitney analysis, P= 0.01), but there were no
significant differences in a comparison of all groups
(Kruskal–Wallis with Dunn’s correction P= 0.0837). Total IgG
responses to TRAP are described in Supplementary Information
(Fig. 3c, d).

Anti-vector Ab responses
Antibody responses to MVA were measured using the WR113/D8L
protein from MVA19 in Groups 3 and 4 by total IgG ELISA at
baseline, and after each MVA vaccination (D42, D76/C-1) (Fig. 4a).
At baseline, two volunteers were borderline positive and one
volunteer was strongly positive for anti-MVA antibodies, although
none had received smallpox vaccination. Anti-MVA IgG titers
significantly increased after the first MVA vaccination and again
after the second vaccination, after which all volunteers were
seropositive (Kruskal–Wallis analysis with Dunn’s correction P <
0.0001). The increase in anti-vector antibodies after initial MVA
vaccination at 4 weeks was comparable to that induced by a
single MVA given at 8 weeks in a previous trial (Fig. 4b). However,
the fold change in anti-MVA titers was significantly higher after
two MVA doses (Kruskal–Wallis analysis with Dunn’s correction P
= 0.0002). Anti-MVA titers at baseline and C-1 were comparable
between protected and non-protected volunteers, but titers were
significantly higher in non-protected volunteers after the initial
MVA vaccination (Fig. 4c, P= 0.02). There was a trend towards a
negative association between anti-MVA IgG after the initial MVA
(D42) and TRAP-specific T cell responses after the second MVA (C-
1) (Fig. 4d, r=−0.6333, P= 0.08), but no association between anti-
MVA antibodies at D42 and TRAP-specific T cell responses at D42
(Supplementary Figure SF5A) or between anti-MVA antibodies at
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C-1 and TRAP-specific T cells at C-1 after a single MVA
administered at 8 weeks (Supplementary Figure SF5B). However,
some of the lowest C-1 TRAP T cell responses were observed in
individuals with high titers of anti-MVA IgG at D42.

Potential additive effect of TRAP-specific T cells to efficacy in co-
administration groups
In the groups that received RTS,S alone (Groups 1 and 2), SP was
achieved with CSP titers as low as 451 ELISA units (EU), with 100%
of volunteers protected above 1600 EU. A statistically significant
reduction in CSP IgG titer was observed between groups that
received RTS,S in combination with viral vectors as compared to
groups that received RTS,S alone (p= 0.009, two-tailed
Mann–Whitney test, Fig. 5a, left-hand axis). Median NANP-
specific IgG titers at C-1 in the combination group with SP
(659 EU, IQR: 374–1520) were comparable to non-protected (NP)
volunteers in the RTS,S-alone group (667, IQR: 394–968) and were
not significantly different to median CSP IgG titers in non-
protected volunteers receiving RTS,S with viral vectors (462 EU,
IQR: 259–595, P= 0.15, Mann–Whitney test). Interestingly, median
ELISPOT responses were twice as high in SP volunteers in the
combination group (median 1505 SFC, IQR: 898–2167, Fig. 5, right-
hand axis) compared with NP (median 738, I:QR 382–1827),
although differences were not statistically significant (P= 0.09,

Mann–Whitney test). Individual ELISPOT and Ab titers with
protection status indicated are presented in Fig. 5b.

DISCUSSION
This is the second study to combine RTS,S and the viral vectors
ChAd63 and MVA encoding ME-TRAP in the same regimen,15 but
the first in which viral vectors have been concomitantly
administered with RTS,S. It is the third study to evaluate an RTS,
S5,18 regimen that incorporates a fractional third dose, but the first
with it administered in a 0-month, 1-month, and 2-month
schedule. We have shown that administering these vaccines
concomitantly is safe, with no SUSARs, and no vaccine-related
SAEs. As expected, a higher frequency of AEs was observed in the
groups that received the viral vectors with RTS,S, but the majority
of AEs were mild, and all were self-limiting.
In this study, we have again observed a high level of VE in the

groups that received only RTS,S either at three full standard doses
or with a reduced third dose. However, in the groups that received
viral vectors and RTS,S, observed VE was lower than in the RTS,S-
alone groups. Although no comparisons of VE between vaccinated
groups are statistically significant, they suggest that concomitant
administration of these vaccines, according to the schedules and
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immunization routes used in this trial, may reduce Ab responses to
CSP and negatively impact VE.
As with previous CHMI studies of RTS,S/AS01B,3,15,20 anti-CSP Ab

titers in this study were significantly higher in protected subjects
immediately prior to CHMI than in non-protected subjects. In this
study, the third dose of RTS,S appears to be ineffective at boosting
to levels greater than those after the second dose, and in the
subjects receiving RTS,S with viral vectors the third dose of RTS,S
was ineffective at even maintaining anti-CSP Ab titers. As a result,
anti-CSP Ab titers were significantly lower on the day preceding
challenge (C-1) in the RTS,S plus viral vectors groups than in the
RTS,S-alone groups.
Prior studies of RTS,S and viral vector combination regimens

have administered RTS,S at intervals of at least 2 weeks from viral
vectors.15,21 In the current study, subjects in Groups 3 and 4
received a combinations of antigens that included the NANP
repeats and T cell epitopes of CSP, and the hepatitis B surface
antigen in addition to multiple antigens on the surface of either
the ChAd63 or MVA vectors. With simultaneous exposure to
multiple antigens, there is a potential for each to interfere with
immune responses to the others, and in this study the interval
between administration of MVA doses was also reduced, which
may have also contributed to intereference. Studies of non-
malaria vaccines show that immune interference is complex and
may result in enhancement or depression of responses to one or
more antigens22 and therefore may alter the resulting efficacy. In
this trial Groups 3 and 4 received a viral vector at the same

immunization site as RTS,S in addition to the potent adjuvant
AS01B. This appears to have enhanced immune responses to the
MVA vector, but not T cells to ME-TRAP expressed by the MVA
insert. The second dose of MVA co-administered with RTS,S/AS01B
at the third immunization time point led to no boosting of the Ab
response to CSP. Notably, we observed a profound boosting effect
of the second vaccination on anti-CSP Ab titers in all the trial
groups, with strong Ab responses to the MVA vector protein
induced by the first MVA at 4 weeks suggesting that this anti-
vector immunity might have contributed to lack of boosting of
CSP-specific antibodies after the third dose. This striking
immunological interference was surprising as pre-clinical murine
studies found no detrimental impact of same site administration
on immunogenicity or efficacy of the vaccine components (Collins
et al., unpublished).
Vaccine-induced TRAP-specific CD8+ T cells have previously

been shown to correlate with protection against CHMI.2 In this
study, we observed protection in some subjects with very low
anti-CSP Ab titers, but substantial TRAP-specific T cell responses.
This supports, but does not prove, the hypothesis that where titers
of CSP antibodies are suboptimal for protection, TRAP-specific
T cells induced by vaccination could potentially add a substantial
element of protection by eliminating a reduced number of
infected hepatocytes following the anti-sporozoite effect of CSP
antibodies. The failure of the third dose of RTS,S to boost anti-CSP
antibodies when administered with viral vectors in this study,
however, is clearly concerning, and would negate any potential
additional beneficial effect of TRAP-specific T cells on efficacy. The
numbers of non-protected subjects, or subjects with low anti-CSP
antibodies in the RTS,S-alone group, was too small to draw any
meaningful statistical comparisons with subjects in the combina-
tion groups with similarly low anti-CSP Ab titers. Further work
would be necessary to determine whether the negative effect of
concomitant administration can be overcome and to identify
whether vaccines inducing TRAP-specific T cells could contribute
to efficacy in combination with anti-CSP Ab-inducing vaccines
when administered simultaneously. Alternative solutions include
concomitant administration but at different vaccination sites,
administering only a single dose of MVA ME-TRAP, or adjusting
the vaccine dose or formulation. Other options include separation
of the administration time points of the anti-sporozoite-stage and
anti-liver-stage vectors, based on the durable high efficacy of this
approach which we reported previously.15 The RTS,S phase 3 trial
showed highest immunogenicity and efficacy of this vaccine in
children aged 5–17 months compared to 6–12 week olds, leading
to the WHO recommendation for pilot implementation in the
older age group. In addition, anti-CSP IgG titers are a surrogate of
protection, with reduced efficacy and durability also observed in
the younger age group.23 In contrast, recent phase Ib data on ME-
TRAP vector administration in Gambian and Burkinabe infants24,25

showed optimal T cell immunogenicity in 2–4-month-old infants
even when the vectored vaccines were co-administered with
standard EPI vaccines. Hence, vaccination strategies aimed at
exploiting the differences in immune responses in this younger
age group should be explored.
In conclusion, no safety concerns arose from concomitant

administration of ChAd63 and MVA viral vectors encoding ME-
TRAP with RTS,S. Further work is required to evaluate the impact
of concomitant administration, and the use of a fractional third
dose of RTS,S on VE.

METHODS
Participants
Recruitment and vaccination was conducted at four UK sites: Oxford,
Southampton, London, and Guildford. The CHMI procedure was performed
as previously described26 using five infectious bites from P. falciparum 3D7-
strain-infected Anopheles stephensi mosquitoes at Imperial College,
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London. All subjects were infected with a single batch of infected
mosquitoes supplied by the Department of Entomology, Walter Reed Army
Institute of Research, Washington DC, USA. Healthy, malaria-naive males
and non-pregnant females aged 18–45 years were invited to participate in
the study. Volunteers gave written informed consent prior to participation.
The study was conducted according to the principles of the Declaration of
Helsinki and in accordance with Good Clinical Practice (GCP).

Ethical and regulatory approval
Required approvals for the study were granted by the UK National
Research Ethics Service, Committee South Central—Oxford A (Ref: 14/SC/
0227), and the UK Medicines and Healthcare Products Regulatory Agency
(Ref: 21584/0333/001-0001). The trial was registered with ClinicalTrials.gov
(Ref: NCT02252640). The study was conducted according to all relevant
guidelines and procedures. The Local Safety Committee provided safety
oversight and GCP compliance was monitored by the Clinical Trials and
Research Governance Team of the University of Oxford.

Study design
This phase IIa, open-label, partially randomized challenge trial consisted of
four vaccine cohorts (target n= 13) and an unvaccinated infectivity control
group (n= 4). Vaccine regimens (Table 1) consisted of three doses of RTS,
S/AS01B alone, or concomitanty administered with ChAd63/MVA ME-TRAP.
All vaccinations were administered intramuscularly (IM) into the deltoid
region of the arm. For subjects in Groups 3 and 4, RTS,S/AS01B was
administered first followed by viral vector vaccination at the same site no
longer than 5min after the RTS,S vaccination. All subjects underwent CHMI
by mosquito bite at the same time (3 weeks after final vaccination for
vaccinated subjects). Following CHMI, a diagnosis of blood stage malaria
infection was made in subjects with symptoms suggestive of malaria and
positive thick film microscopy, or qPCR result >500 parasites/mL if either
thick film was negative, or symptoms were absent.27 Vaccinated subjects
who had not developed blood stage malaria detectable by any assay by
D23 after CHMI were deemed sterilely protected.
Further details of the sample size, study sites, inclusion/exclusion criteria,

the vaccines, randomization, clinical follow-up, safety monitoring, malaria
treatment and diagnosis, immunological and molecular methods, and
statistics are given in the Supplementary material.

Previous presentations
Some of the data in this manuscript were previously presented orally at the
American Society of Tropical Medicine and Hygiene annual meeting in
October 2015, abstract 1277 http://www.abstractsonline.com/Plan/
ViewAbstract.aspx?sKey=bdff3977-bc89-4514-a8af-
8e9f04867120&cKey=f2cfd4b7-7966-474d-98ba-5ad1b5cca678&mKey=%
7bAB652FDF-0111-45C7-A5E5-0BA9D4AF5E12%7d

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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