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Networks in the spinal cord, which are responsible for the generation of rhythmic

movements, commonly known as central pattern generators (CPGs), have remained

elusive for decades. Although it is well-known that many spinal neurons are rhythmically

active, little attention has been given to the distribution of firing rates across the

population. Here, we argue that firing rate distributions can provide an important clue

to the organization of the CPGs. The data that can be gleaned from the sparse literature

indicate a firing rate distribution, which is skewed toward zero with a long tail, akin to

a normal distribution on a log-scale, i.e., a “log-normal” distribution. Importantly, such

a shape is difficult to unite with the widespread assumption of modules composed

of recurrently connected excitatory neurons. Spinal modules with recurrent excitation

has the propensity to quickly escalate their firing rate and reach the maximum, hence

equalizing the spiking activity across the population. The population distribution of firing

rates hence would consist of a narrow peak near the maximum. This is incompatible

with experiments, that show wide distributions and a peak close to zero. A way to

resolve this puzzle is to include recurrent inhibition internally in each CPG modules.

Hence, we investigate the impact of recurrent inhibition in a model and find that the firing

rate distributions are closer to the experimentally observed. We therefore propose that

recurrent inhibition is a crucial element in motor circuits, and suggest that future models

of motor circuits should include recurrent inhibition as a mandatory element.

Keywords: spinal cord, central pattern generation, firing rate distribution, motor control, balanced network,

lognormal

1. INTRODUCTION

Although it is known that the core neural elements of rhythmic movement, the central pattern
generators (CPGs), are located in the spinal cord and the medulla, the neuronal architecture of
these networks has remained perplexing. Several working hypotheses for the principle behind
generation of movements have been proposed, e.g., muscle synergy and traveling wave (Cuellar
et al., 2009; Saltiel et al., 2016, 2017; Yokoyama et al., 2017), multiple unit burst generators
(Grillner, 1981), and multilayered half-center organization CPG (Ivanenko et al., 2006; McCrea
and Rybak, 2008). A common theme in the literature is the half-center organization inspired
by Brown (1914), where two rhythm generating modules, which have recurrent excitation, are
coupled reciprocally via inhibitory populations to ensure an alternating flexor and extensor activity
(McLean and Dougherty, 2015; Kiehn, 2016; Grillner and El Manira, 2020). Using optogenetics
and light activation or inhibition of spatially restricted regions in the spinal cord it was possible to
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exclusively activate either flexor or extensor rhythms suggesting
a modular organization (Hägglund et al., 2013). A modular
organization has also been suggested based on analysis of rodent
gaits and cellular ablation (Bellardita and Kiehn, 2015) and gaits
of human infants (Sylos-Labini et al., 2020). It has been widely
suggested that the rhythm generating modules are composed of
a recurrently connected excitatory networks, where the rhythm
is generated by a subset of neurons with pacemaker properties
(Grillner and El Manira, 2020). Nevertheless, modular structures
has been difficult to further isolate experimentally (Auyong
et al., 2011a,b), and many circuit elements seem to be involved
(McLean et al., 2008; Pham et al., 2020) and therefore the details
of their architecture, e.g., whether they indeed are composed of
recurrent excitation, have been difficult to substantiate. From a
stability point of view, however, it is well-known that a population
of recurrently connected excitatory neurons without inhibitory
interneurons have a propensity to increase their activity in a
catastrophic runawaymanner (Hennequin et al., 2017; Berg et al.,
2019). So, what decides if a network is stable and would a
network composed purely of recurrent excitation be sensible for
generation of motor activity?

2. RECURRENT NETWORKS: STABLE OR
UNSTABLE?

There are many different types of network structures, and the
topology of a network determines its stability. This is especially
true for recurrent excitatory networks, since activity can create
more activity in reverberation and runaway activity. However,
recurrent excitatory networks can also become completely silent.
So, what decides the stability of an recurrent excitatory network?
We may gain some intuition by viewing the recurrent network
as a tree-like structure with feed-forward motifs (Figure 1). The
overall topology can be approximated as a tree-like network, also
termed a branch–process, which is simpler to understand. This
tree-like assumption has been shown to be a good approximation
for many types of real recurrent networks (Melnik et al., 2011).

Branching processes was first studied by Galton and Watson
without relation to neuroscience, but in regards to extinction
of aristocratic families, passing down family names from one
generation to the next (Watson and Galton, 1875). Another
example of branching processes is nuclear chain reactions.
Fission is utilized in nuclear power plants, and this process
also has a tree-like structure. Keeping the reaction going
requires careful regulation between activity and curbing the
fission process.

The activity that propagates in a tree-like network can either
be subcritical (left, Figure 1), critical (middle) or supercritical
(right). Whether a network is sub-critical or supercritical
depends on the so-called the “branching ratio,” i.e., the expected
number of action potentials in the receiver population that
an action potential induces. If the branching ratio is below
1, the neuronal activity will rapidly die out (subcritical).
If the branching ratio is above 1, it will rapidly increase
with exponential growth until the whole population is active
(supercritical). If the network is critical, i.e., between sub- and

supercritical, there is a simple power-law relation between the
number of activated neurons, n, i.e., the size of an avalanche, and
the probability (Beggs and Plenz, 2003; Larremore et al., 2014):

p(n) ∝ n−3/2

For activity to be between silence and runaway activity, i.e., the
critical propagation, the branching ratio has to be exactly 1 (Beggs
and Plenz, 2003), which makes it unlikely that the network is
in a critical state by accident. Rather it likely has some self-
organization toward a critical states in order to possess this
property (Hesse andGross, 2014; Rybarsch and Bornholdt, 2014).
If there is no such self-organization, the network is expected to
be either subcritical (quiescent) or supercritical i.e., activity is
rapidly propagating throughout the whole population.

So, are CPG modules subcritical or supercritical? Since the
neural activity in subcritical networks rapidly dyes out and
remain silent, supercritical networks must constitute the basis
for rhythm generation in spinal circuits. Spinal motor circuits
may involve multiple modules and layers. To keep things simple,
let us imagine a simple half-center model that is composed of
two supercritical modules with reciprocal inhibition (Figure 2A).
When one module becomes active, the network first undergoes
a runaway escalation of firing rates where excitation rapidly
propagation throughout the network. We consider this “the
exponential phase” (Figures 2B,C). Once the whole population
is reverberating, the neurons reach their maximum firing
rates, and the distribution of firing rates become narrow at
the highest possible value. In this saturated phase, adaptation
starts to be engaged, e.g., via accumulation of intracellular
calcium+, and the firing rates drops back down to zero. After
some time, the neurons recover and the cycle can start over.
Now we have gained an intuition of the basic principle of
recurrent excitatory networks, let us examine how the peak
firing rates would be distributed in a network-based model of a
half-center module.

3. DYNAMICS OF A RECURRENT
EXCITATORY NETWORK

In the following we consider a minimal network of recurrently
connected excitatory neurons. Let us assume that the excitatory
neurons are recurrently connected by synapses which have a
wide distribution (and no negative strengths; Figure 3A). The
synaptic connection strengths are randomly drawn from this
distribution resulting in a connectivity matrix (Figure 3B). If
the overall strength of recurrent connections is strong enough
the network becomes super-critical, so that a very small amount
of spontaneous activity or external activation will result in a
burst of neuronal activity. In such a burst all neurons fire at the
maximum firing rate in a synchronized manner when provided
by different external drives (Figures 3C,D). After a short time
intrinsic adaptation in the neurons becomes active to suppress
and ultimately terminate the population burst (Figure 3D, gray
traces). The adaptation is also the reason that the network
response is shorter than the input pulse (cf. Figures 3C,D).
An important aspect with this cyclic activity is that the firing
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FIGURE 1 | Dynamics of a recurrent excitatory network. (Left) A recurrent excitatory network often has embedded tree-like structures, e.g., the dark nodes. (Right)

The stability of networks with tree-like structure are more simple to characterize. They are either subcritical (left), critical (middle), or supercritical (right). Activity in

supercritical networks are unstable and will activate the entire network as exponential growth, whereas the activity in subcritical networks will decay exponentially.

Adapted with permission from Larremore et al. (2014).

FIGURE 2 | The dynamics of a burst-generator module has 3 phases. (A) The half-center organization consists of modules: flexor (F) and extensor (E) modules, which

generate rhythmic bursting activity and these are reciprocally connected via inhibitory modules to ensure F/E alternation. (B,C) The F/E modules are composed of

excitatory neurons with pacemaker properties, which are recurrently connected. The module has three phases: (a) When a neuron fire action potentials (arrows) these

quickly activate other neurons, since it is supercritical, resulting in an exponential increase in the network activity. More activity leads to more spikes activating more

neurons. Once the activity has propagated to the whole network, the neurons reach their max firing rate the network reach saturation (phase b). Shortly there after the

adaptation/pacemaker property turns off the firing in the adaptation phase c, and the activity decay back toward quiescence. During the adaptation phase the

quiescence also cease the inhibition to the opposite module, allowing a similar cycle to take place there with a delay. Hence, the population alternates between

quiescence and maximal firing rates for all the cells in the module.

rate of the constituent neurons reach their peak firing rates
simultaneously, and therefore the distribution of rates across
the population is narrow and clustered around the maximum
(Figures 3E,F). Hence, if this model is meaningful, it should be
relatively easy to verify whether a rhythm—generating module
is composed of excitatory recurrent connections by observing
the distribution of firing rates across the population and identify

those neurons who display a high peak firing rate. Surprisingly,
however, the distribution of firing rates have rarely been reported
neither in experimental studies nor in theoretical investigations
of spinal motor circuits. As we will see next, however, the few
experimental observations of firing rate distributions do not
seem to be in accord with a high and narrow distribution of
firing rates.
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FIGURE 3 | All-or-none behavior of recurrent excitatory networks: model. (A) Distribution of synaptic strengths in the model is a truncated Gaussian, with many

having zero (no connection). (B) Connectivity matrix of the non-zero connections in the network composed of 200 excitatory neurons. (C) The external drive to the

network has to be kept negative (inhibitory) to keep it silent because the network is unstable (supercritical). Positive pulses was given with increasing amplitude

imitating a rhythmic drive. (D) The firing rate of the neuronal population (gray overlay) has a prompt increase to maximal firing once the external drive becomes

positive. Intrinsic adaptation (green traces) curbs the activity and turns the firing off after some time. Note the population firing is at maximum regardless of input size.

(E,F) The linear and log distributions of peak firing rates across population have a single mode at maximal firing (arrows) regardless of the input.

4. EXPERIMENTALLY OBSERVED FIRING
RATE DISTRIBUTIONS

Our survey of the literature provides two observations: First,
a distribution of firing rates across neuronal population has
rarely been reported (Petersen and Berg, 2016; Cuellar et al.,
2018). Second, those experimental reports that do provide the
firing rate distribution, they seem in impressive agreement. The
precise firing rates vary from experiment to experiment and
region to region, but their distributions all seem to have the
same long-tail and skewness toward zero. Spinal interneuronal
recordings from cervical CPG of the mudpuppy (Figure 4A),
show rhythmic (black) and nonrhythmic discharging units
during locomotion, both types have distributions lopsided
toward the origin. Recordings from the spinal cord in awake
macaque monkeys, which were trained to perform visually
guided flexion and extension of their wrist in an active
ramp provided similar insight (Figure 4B). During both flexion
(left) and extension (inset) the distribution of firing rates
of interneurons in the cervical spine had a strong skewness
toward origin qualitatively similar to the mudpuppy data,
in spite of their differences in species and motor function.
Interneuronal recording from respiratory motor circuitry in
the thoracic spinal cord of cats also provided insight to
firing rate distributions in motor circuitry (Figure 4C). Left
column: inspiratory interneurons, right column: expiratory
interneurons. Top: identified by antidromic stimulation, bottom

both antidromic and by location, white and hatched, respectively.
Last, recordings from the lumbar spinal cord of turtle during
scratching had skewed firing rate distribution, that closely
resembles a log-normal distribution (blue fit, Figure 4D), i.e.,
normally distributed on a log-scale (inset). It is unknown
whether the exact shape of the distribution is best described
by a log-normal distribution or other skewed distributions, e.g.,
the gamma-distribution.

Due to the rareness of experimental reports, we include and
analyze a data set from zebrafish larvae during active locomotion
in response to visual input, that was kindly made available (Severi
et al., 2018). It is known that inhibitory interneuron V1 and
V2b provide feedback inhibition (Callahan et al., 2019; Sengupta
et al., 2021) most notably via Renshaw cells. In this preparation
it is possible to record the fluorescent signal from a genetically
encoded calcium sensor (GCaMP5G), which is expressed in
glycinergic interneurons by the domain for expression of the
transcription factor “engrailed1b,” which is highly correlated
with the onset of locomotion. The fluorescent signal in these
inhibitory neurons is an indication of the degree of increase
in spiking activity. Hence, using the maximal fluorescent signal
across the population, we found the distribution to be skewed,
remarkably close to a log-normal (Figure 5). The distribution
of fluorescent signal could be interpreted in various ways. First,
the activity across the cells is uniform, but the distribution of
soma size—hence the fluorescent signal—could be log-normal,
although the cells have equal firing rates. Second, the cell
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size if normally distributed, but their firing rates are log-
normally distribution, hence giving a fluorescent signal with
a skewed distribution. The increase in fluorescent signal may
not ad linearly, as the spiking activity increases. Nevertheless,
the observation of a skewed distribution (Figure 5) appear in
accord with the previous observation and the most parsimonious
explanation is that the neurons has a log-normal distribution of
firing rates (blue fit, Figure 4).

In summary, the meta-analysis indicates a profile of activity
across the population, which is skewed toward zero, with a long
tail toward higher firing rates. This is at odds with the prediction
from a recurrent excitatory network as a driver, where the firing
rates should cluster around the maximal firing rate and zero.
What could explain this apparent lack of congruence between the
conventional model and experimental data?

5. COULD RECIPROCAL INHIBITION
HELP?

One of the cornerstones of the half-center organization is
reciprocal inhibition. Could reciprocal inhibition help stabilize
the firing rates so the population does not switch between
silence and maximal firing? The short answer is “no.” Reciprocal
inhibition exerts its effect on the antagonist module, which
is either already silent, or will become silent once the
reciprocal inhibition performs its action. When the activity of
the antagonistic module is reduced or completely silent, the
returning reciprocal inhibition is also reduced or silent. Hence,
reciprocal inhibition actually causes mutual dis-inhibition, which
is, in effect, positive feedback. Thus, the reciprocal inhibition in a
half-center organization actually provides no help in dampening
the firing rates, but rathermakes the situation worse, by removing
inhibition when it is needed.

6. INCLUSION OF RECURRENT
INHIBITION

Although there are indications of a sparse connectivity in the
CPG structure (Carroll and Ramirez, 2013; Radosevic et al.,
2019) the architecture and connectomics of circuits generating
motor programs are largely unknown. We know that reciprocal
inhibition is indirectly enhancing the instability via dis-inhibition
and therefore it does not provide a solution to the problem. So,
what is the simplest means to remedy the divergence between
these states? As it turns out, recurrent inhibition has an important
element in stabilizing the spinal activity. It is known that
firing rate distributions are broad for recurrent networks with a
balanced between inhibition and excitation (Vogels et al., 2005;
Hennequin et al., 2017) and strongly skewed (van Vreeswijk and
Sompolinsky, 1996) as seen in experiments. Recurrent inhibition
pulls the membrane potential to be less depolarized and in this
way the neuron will spike at a lower rate. This also has the effect
that more neurons fire action potentials in the fluctuation–driven
regime rather than in the mean–driven regime. It is known that
at least half of the neurons are active in the fluctuation driven
regime during rhythmic scratching (Petersen and Berg, 2016;

Berg, 2017). At the same time balanced inhibition and excitation
has been observed in at least a subset of neurons in various motor
networks (Berg et al., 2007; Petersen et al., 2014; Vestergaard
and Berg, 2015; Ramirez and Baertsch, 2018). To illuminate this
further, we expanded the model of a recurrent excitatory network
presented earlier (Figure 3) to include recurrent inhibition,
which is also known as “a balanced network.” While the
pure excitatory network had an all-or-none firing activity, the
inclusion of recurrent inhibition to replace the role of intrinsic
adaptation enriches the network with the capacity to have a
graded response to an external drive (Figure 6). Furthermore,
the firing rate distribution turns from having a single mode
at the maximal firing rate (Figures 3E,F) to having a widely
distributed peak firing across the population (Figures 6E,F). The
distributions is also similar to those observed in experiments,
i.e., skewed toward zeros with a log-normal appearance. The
difference between recurrent excitatory networks and networks
where recurrent inhibition is included can be summarized as:
(1) the firing rate distributions are very different both in width
an location of peaks. (2) the all-or-none vs. graded response to
external drive (Figure 7).

7. BLOCKING INHIBITION MAKES THE
NETWORK UNSTABLE

If recurrent inhibition is indeed a vital element of motor
networks, the effect of reducing inhibition should be to increase
the overall firing rates and to synchronize the spinal network.
Several experiments have been performed where the effects of a
systemic block of inhibition by application of either glycinergic
antagonists (e.g., strychnine) or GABAergic antagonists (e.g.,
picrotoxin, bicuculline; Cowley and Schmidt, 1995; Beato and
Nistri, 1999; Talpalar et al., 2011, 2013). The general effect is a
widespread barrage of intense activity across multiple segments
of the spinal cord, which was recorded via the motor nerve
output. When reducing inhibition the effective branching ratio
grows dramatically, i.e., the expected number of post-synaptic
action potential that a presynaptic neuron will increase, and
hence the network becomes highly supercritical (Figure 1). A
seizure-like barrage of activity quickly spread throughout within
milliseconds and reverberates the spinal network until some
form of adaptation or fatigue turns it off. This is similar to
the dynamics of a recurrent excitatory network (Figure 3). The
activity slowly alternates between intense activity with maximal
firing of individual neurons and quiescence, which represents a
recovery phase.

8. DISCUSSION

In spite of the striking insight into the CPG architecture
that firing rates distributions can provide, they have received
remarkably little attention in the motor control literature.
Other parts of neuroscience have identified distributions as an
important element in theoretical neuroscience (Vegué and Roxin,
2019) and e.g., in the processing of sleep regulation (Levenstein
et al., 2017) and decision making (Wohrer et al., 2013). The idea
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FIGURE 4 | Firing rate distributions across experimental preparations are skewed toward the origin. (A) The cervical CPG of the mudpuppy while performing

locomotion, show rhythmic (black) and nonrhythmic discharge. (B) Cervical interneurons in macaque monkeys performing wrist flexion and extension. (C)

Interneuronal recording from respiratory motor circuitry in the thoracic cord of cats. Left: inspiratory interneurons, right: expiratory interneurons. Top: identified by

antidromic stimulation, bottom inclusion identification by location, white and hatched, respectively. (D) Lumbar spinal cord of turtle during scratching has skewed firing

rate distribution (left) that is bell-shaped on log scale (blue fit). Reproduced with permission (A) Cheng et al. (2002), (B) Prut and Perlmutter (2003), (C) Kirkwood et al.

(1988), and (D) Petersen and Berg (2016).

FIGURE 5 | Neuronal imaging of calcium-dependent fluorescent signal in zebrafish larvae hindbrain during visuomotor response has a skewed lognormal-like

distribution in peak signal. (A) In-vivo tail-bending in response to visual input. (B) Fluorescent signal (1F/F ) at neuronal resolution of a glycinergic subpopulation which

provide inhibitory feedback during escape response (50 cells shown). (C) The maximal calcium response across cells in the population is skewed and lognormal-like

(lognormal fit, gray line). (D) Same distribution on log scale resembles a normal distribution (gray fit). (E) High skewness across the cohort (n = 10 animals). (F)

Skewness on a log scale is closer to zero, i.e., normal distribution. Data kindly provided by Severi et al. (2018) and reanalyzed with permission.

of the “log-normal” brain is inspired by the skewed shape of the
firing rate distributions (Mizuseki and Buzsáki, 2013; Buzsáki and
Mizuseki, 2014).

Here, we inspect the dynamics of excitatory recurrent
networks driven by an external drive. Despite the absence of
experimental evidence, this type of network architecture has

often been proposed to constitute a module in a half-center
model or unit burst generator (McCrea and Rybak, 2008; Grillner
and El Manira, 2020). Nevertheless, for a recurrent network
to not be silent, it has to be supercritical. In such networks,
propagation of activity is rapid due to the tree-like structure
(Figure 1), which makes it unstable and prone to acceleration
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FIGURE 6 | Graded activity in a recurrent excitatory network balanced by inhibition: model. (A) Distribution of synaptic strengths in the model is a Gaussian, with a

balance around zero. It also have many connections with zero strength (no connection). (B) Connectivity matrix of the non-zero connections in the network composed

of 100 excitatory (blue) and 100 inhibitory (red) randomly connected neurons. (C) The external drive is negative (inhibitory) with positive pulses imitating a

rhythmogenic input with increasing amplitude. (D) the firing rate of a subset of the neuronal population has diverse peak firing. (E,F) The linear- and log-scale

distributions of peak firing rates are broad and skewed toward zero far from the maximal firing (arrow). The colors represent increasing external input, light blue:

lowest, blue: middle, dark blue: largest input.

FIGURE 7 | All-or-none vs. graded population response to external drive in two types of model networks: Purely recurrent excitatory network and one including

recurrent inhibition, i.e., a balanced network. (A) Firing rates of individual neurons in a recurrent excitatory network (gray) and a recurrent network with both excitation

and inhibition (orange), i.e., a balanced network, in response to external drive (bottom trace). All neurons in the excitatory network has the same firing rate, i.e., the

maximum or minimum, in response to input, whereas the balanced net has a graded mean response with a wide distribution. (B) The distribution of firing rates across

the population in the balanced net (orange) is wide and has a graded response to input, whereas the excitatory network has an all-or-none response that is narrow.

and reverberation until all cells fire at maximal rates. This also
causes recurrent excitatory networks to essentially work by all-
or-none activity: Either it is silent or it has maximal activity
(Figure 7). A consequence of this is that it does not respond in
a graded fashion to various external drives and has no ability to
modulate the output amplitude. This lack of flexibility seems sub-
optimal given the large variety of motor task that the body needs
to execute, e.g. fine motor skills vs. heavy lifting, and walking

peacefully vs. carrying a large load or walking uphill. Hence there
is a strong functional argument against an modular architecture
of pure recurrent excitatory connectivity.

Furthermore, comparing the firing rate distributions of
recurrent excitatory networks with those from experimental
reports, they are incompatible: Experiments show broad
distributions skewed toward very low rates, akin to a log-normal
(Figures 4, 5), whereas recurrent excitatory networks have a
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single mode at maximal firing, or at zero (Figures 3E,F). A single
mode atmaximal firing is the exact opposite of the experimentally
observed low firing with a wide skewed distribution. Hence,
there are functional arguments against the hypothesis of a
recurrent excitatory network as well as experimental evidence
against it.

So, if there are both experimental and functional arguments
against recurrent excitatory modules, what type of network
architecture could constitutemodules? As themost parsimonious
solution, we suggest including recurrent inhibition to curb the
activity. Networks that encompass both recurrent excitation
and inhibition has previously been considered “heterodox” and
“anarchistic” (Grillner and Jessell, 2009), but so far there are no
clear experimental evidence against the presence of recurrent
inhibition in motor networks. On the contrary, indications of
concurrent inhibition have been observed in various medullary
and spinal experiments (Ramirez and Baertsch, 2018; Berg
et al., 2019). Such balanced networks are also known to have
skewed firing rate distributions with low mean firing (van
Vreeswijk and Sompolinsky, 1996; Petersen and Berg, 2016).
Further, recurrent inhibition is certainly provided via a type
of inhibitory interneuron, the Renshaw cell, which receives
collateral excitatory fibers from alpha motor neurons, which it
also inhibits. Although, the role of these cells is unknown, they
may represent just one example of a general and widespread
element of recurrent inhibition in spinal motor circuits. Due
to the close proximity of Renshaw cells to motor neurons
they have been easy to identify, and therefore well-described.
Other types of recurrent inhibition in motor network may
be less easily identified and therefore likely to receive less
attention. There are many other types of inhibitory interneurons
(Bikoff et al., 2016), that have remained uncharacterized,
because their circuit motifs are more synaptic layers removed
from motoneurons.

To test the impact of recurrent inhibition in our simple
model, we substituted half of the excitatory neurons in
our model with inhibitory neurons, and this changes the
dynamics qualitatively in two ways (Figure 6). First, the
population response to a different external drive resulted
in a graded output (Figure 7), hence allowing a more
functional dynamics. Second, the firing rate distribution was
wide and skewed toward zero in accord with experimental
observations (Figures 6E,F). It is remarkable that such a
simple alteration of recurrent excitatory network can change
the population dynamics to something more functional and
closer to the experimentally observed. Hence, we propose
that recurrent inhibition is an indispensable element in
motor networks.

9. METHODS

To understand the effect of recurrent connectivity of the firing
rate distribution of spinal networks we consider a population of
N=200 neurons that we model in terms of their firing rates. The
firing rate ri of an example neuron i is determined by a static non-
linear firing rate function φ(x) that relates that activity variable xi

(analogous to a membrane potential) to the output firing rate:
ri(t) = φ[xi(t)]. We used

φ(xi) =

{

r0(1+ tanh[(xi − r0)/r0]), for xi ≤ r0
r0 + rmaxtanh[(xi − r0)/rmax], for xi > r0

(1)

where r0 represents the rate at the inflection point and rmax = 80
is the maximum deviation of the firing rate from this point. The
dynamics of the network is given by

{

τmẋi(t) = −xi +
∑

j Jijφ[xj(t)]− gwwi(t)+ Ie(t)

τaẇi(t) = −wi + φ[xi(t)]
(2)

where Jij represents the recurrent connections in the network (see
below) and Ie(t) is a time-varying external drive. The variable
wi represents an intrinsic adaptation that depends on the firing
rate and contributes as a negative input to the activity variable
xi with a strength set by the parameter gw. The time constants
τm and τa determines the time scale of the activity variable xi
and adaptation wi, respectively. Here we set τm = 50 ms and τa
= 300 ms. Below we outline two different scenarios used in this
study, either a network with recurrent excitation and intrinsic
adaptation (Figure 3) or a network with recurrent excitation and
inhibition (but lacking intrinsic adaptation) (Figure 6).

Recurrent Excitation and Intrinsic
Adaptation
For the case of a network with only recurrent excitation that
is counteracted by an intrinsic adaptation, we first generate
connection weights Jij from Gaussian distribution with zero
mean and a width (standard deviation) set to σ = 0.05.
Negative weights are then set to zero, resulting in a truncated
distribution with positive only values, where approximately
half of the possible connections are zero (Figure 3A). We
set the strength of adaptation gw to match the average sum
of the incoming connection weights to each neuron: gw =

1/N
∑

ij Jij.

Recurrent Excitation and Inhibition
In the model with recurrent excitation and inhibition we first
generate the connections as for the case above. Here, however,
we consider half of the neurons to be excitatory and half of them
to be inhibitory and adjust all connections from the inhibitory
connections by a factor gi =-1.5. This results in a network where
recurrent connections are dominated by inhibition (Figure 6A).
For simplicity we exclude the effect of the intrinsic adaption, i.e.,
we set gw = 0.

Software and Code Availability
Numerical simulations of the networkmodel were done using the
forward Euler method implemented in custom-written software
using Python 3.8. Code for reproducing Figures 3, 6, 7 is available
at Berg Lab website (https://berg-lab.net).
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