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Abstract: The effects of synbiotic yogurt supplemented with inulin on the pathological manifestations
and gut microbiota–bile acid axis were investigated using a dehydroepiandrosterone (DHEA)-induced
polycystic ovary syndrome (PCOS) mice model. Female C57BL/6J mice were injected subcutaneously
with DHEA at a dose of 6 mg/100 g BW for 20 days to establish a PCOS mouse model. Then, the PCOS
mice were treated with yogurt containing inulin (6% w/w) at 15 mL/kg BW for 24 days. Results
showed that supplementation of synbiotic yogurt enriched with inulin to PCOS mice decreased
the body weight gain, improved estrus cycles and ovary morphology, and reduced the levels of
luteinizing hormone while increasing the levels of follicle-stimulating hormone and interleukin-22
in serum. At the genus level, synbiotic yogurt increased the relative abundance of Lactobacillus,
Bifidobacterium, and Akkermansia. PICRUSt analysis indicated that KEGG pathways including bile
acid biosynthesis were changed after inulin-enriched synbiotic yogurt supplementation. Synbiotic
yogurt enriched with inulin also modulated the bile acid profiles. In conclusion, inulin-enriched
synbiotic yogurt alleviated reproductive dysfunction and modulated gut microbiota and bile acid
profiles in PCOS mice.

Keywords: polycystic ovary syndrome; synbiotic yogurt; gut microbiota; bile acid; inulin

1. Introduction

Polycystic ovary syndrome (PCOS) is a common heterogeneous endocrine disease
with a high prevalence in reproductive-aged women worldwide [1]. This disorder is
the primary cause of female infertility defined by a combination of ovarian dysfunction,
dysfunctional follicular maturation, and ovarian hormone dysregulation, manifesting as
hyperandrogenism and the hypersecretion of luteinizing hormone (LH) [2]. PCOS patients
showed an accumulation of cystic follicles, an increase in ovarian stromal thickness, and a
reduction in corpus luteum, accompanied by the loose arrangement of granulosa cells in
the ovary, which has been replicated in PCOS mice [2,3]. Women suffering from PCOS have
an elevated risk of obesity, insulin resistance, hypertension, cardiovascular disease, and
other types of metabolic dysfunction [4]. Due to the high prevalence and association with
multiple metabolic diseases, controlling the development of PCOS is of great importance
for the reproductive health of women.

Gut microbiota has been proven to be key requirements in maintaining host health
including metabolic homeostasis, immunity, and gut barrier function [5]. Recent studies
showed that the dysbiosis of gut microbiota is linked to the progression of PCOS [6].
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Compared with healthy women, the gut microbial diversity was reduced in PCOS patients
with the change of relative abundance of specific Bacteroidetes and Firmicutes [7,8]. Gut
microbiome alteration was in relation to hyperandrogenism in women with PCOS, which
implies the potential role of testosterone in the structure of gut microbiota [8]. Bile acids
are cholesterol-derived endogenous metabolites produced in the liver [9]. Primary bile
acids are the immediate products of cholesterol catabolism and serve as substrates for
the enzymes derived from intestinal flora and then converted into secondary bile acids,
which are returned to the liver by the enterohepatic cycle [10]. The connection between
bile acids, gut microbiota, and metabolic disorders implies that bile acids can participate
in the regulation of metabolic dysfunction associated with PCOS [11]. KEGG analysis
showed that the pathways for bile acid metabolism were altered in women with PCOS [12].
The level of circulating conjugated primary bile acids was increased in PCOS individuals,
which was positively correlated with hyperandrogenism [13]. These data suggest that the
improvement of gut microbiota and bile acid metabolism may be a promising approach to
treat PCOS.

Nutritional interventions of probiotics, prebiotics, or synbiotics are effective ways to
improve the gut microbiota and metabolic diseases [14,15]. Consistently, synbiotic sup-
plementation had favorable effects on the insulin concentrations and the level of lipid
profile markers in serum of PCOS patients [16]. Probiotic supplementation modulated
the inflammatory biomarkers and improved clinical and laboratory features in PCOS
women [17]. As a prebiotic, inulin is a fructan-type oligosaccharide that can be fermented
by intestinal bacteria, including Bifidobacterium and Lactobacillus, and stimulate the growth
of probiotics [18]. Inulin can regulate the gut microbiota with the increase in Bifidobacteria
and Akkermansia muciniphila abundance, as well as improving metabolic disturbance in
obese or type 2 diabetic individuals [19,20]. Inulin treatment also alleviated PCOS via the
inhibition of inflammation and the modulation of gut microbiota in mice [21]. Yogurts
and other dairy products are rich in probiotic cultures in the diet. However, the effects of
yogurts supplemented with inulin on PCOS have not been examined, and the relationship
among synbiotics, gut microbiota–bile acid axis, and PCOS remain poorly understood.
Therefore, the effects of yogurt containing inulin on the pathological conditions, gut micro-
biota, and bile acid profiles in dehydroepiandrosterone (DHEA)-induced PCOS mice were
investigated in this study.

2. Materials and Methods
2.1. Animal Experiments

The animal study protocol was approved by the China Agricultural University Animal
Ethics Committee (Serial Number: AW12099102). Four-week-old female C57BL/6J mice
were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing,
China). Mice had free access to food and water and were housed in a temperature-controlled
room (22 ± 2 ◦C) under a 12:12 light–dark cycle.

After one-week acclimation, mice were randomly assigned to two groups. One group
was injected subcutaneously with DHEA (6 mg/100 g BW) dissolved in soybean oil for
continuous 20 days to establish an animal model of PCOS. Another group (control group,
n = 10) was injected daily with a soybean oil vehicle. Mice in the PCOS group exhibited
acyclic/irregular ovarian cyclicity. Then, the PCOS mice were assigned to three groups:
model group (n = 10), yogurt group (n = 10), and synbiotic yogurt group (n = 10).

The yogurt group was administered with fermented yogurt (15 mL/kg BW), while
the synbiotic yogurt group was administered with fermented yogurt containing inulin (6%
w/w) at 15 mL/kg BW daily by gavage for consecutive 24 days. At the end of the study,
mice were sacrificed. The livers and ovaries were excised for further analysis.

2.2. Assessment of Estrous Cycle

There are four stages of an estrous cycle—proestrus, estrous, metestrus, or diestrus.
Morphometric analysis of vaginal epithelial cells was conducted to determine the estrous
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cycle. The stage of the estrous cycle was assessed on account of the relative ratio of
cornified epithelial cells, leukocytes, and nucleated epithelial cells stained in the vaginal
smear. The ddH2O was pipetted gently over the vaginal opening and flushed several
times to collect vaginal cells. The final flush was moved to a glass slide, allowed to dry,
stained by Wright–Giemsa stain (Beyotime, China) for 5 min, and then visualized using
light microscopy.

2.3. Measurement of Hormones

The blood samples were centrifuged at 1000× g for 15 min at 4 ◦C to collect serum and
then kept at −20 ◦C until analysis. Progesterone (PROG), estradiol (E2), total testosterone
(T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRO)
were measured using corresponding ELISA kits (Cloud-Clone Corp, Houston, TX, USA).

2.4. Hematoxylin–Eosin (H&E) Staining

Ovarian specimens were separated and then fixed with 4% paraformaldehyde solution.
The samples were then dehydrated, embedded in paraffin, which was stained with H&E
staining, and mounted on a glass slide. The amounts of cystic follicle and corpora lutea
were morphologically examined using the Olympus light microscope to inspect the changes
in the ovary. Cystic follicles had a thin layer of theca cells and granulosa cells arranged
closely [21].

2.5. Sequencing and Analysis of Gut Microbiota

At the end of the protocol, fresh fecal samples were collected separately and stored at
−80 ◦C. Bacterial DNA was extracted using TruSeqTM DNA Sample Prep Kit. The DNA
purity and concentration were measured by NanoDrop2000 Spectrophotometer, and the
agarose gel electrophoresis was used to check the integrity of DNA. The variable region V3–
V4 of the 16S rRNA gene was amplified with primers 338F (5′-ACTCCTACGGGAGGCAGC
AG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). The PCR reactions were con-
ducted as 20 mL mixtures containing 4 mL 5 FastPfu Buffer, 2 mL 2.5 mM dNTPs, 0.8 mL
each primer (5 mM), 0.4 mL of FastPfu Polymerase, 0.2 mL BSA, and 10 ng of template
DNA. The PCR products were separated on a 2% agarose gel and purified by the AxyPrep
DNA Gel Extraction Kit. The TruSeqTM DNA Sample Prep Kit was used to construct
the Miseq library, and sample libraries were pooled and sequenced on an Illumina MiSeq
platform according to the established protocols of Majorbio Bio-Pharm Technology Co.,
Ltd. (Shanghai, China).

The processing and bioinformatics analyses of the raw data were performed as pre-
viously described [22]. Raw fastq files were analyzed by using QIIME (version 1.9.1)
software, and the reads that could not be assembled were deleted [23]. Sequencing
analyses were performed by Uparse software (version 7.1, http://drive5.com/uparse/,
accessed on 1 December 2021), and operational taxonomic units (OTUs) were clustered at
a 97% similarity level. Chimeric sequences were identified and removed with UCHIME
(http://www.drive5.com/uchime/uchime_download.html, accessed on 1 December 2021).
The taxonomy of each 16S rRNA gene sequence was analyzed using RDP Classifier (version
2.2, http://sourceforfe.net/projects/rdp-classifier/, accessed on 1 December 2021) against
the Silva 16S rRNA database [24]. Spearman’s correlations were presented by using R
packages heatmap (R3.1.0).

2.6. Quantitative Analysis of Bile Acids in Mouse Liver

Bile acids in the liver of mice were quantified by LC/MS. The separation of bile acid
was conducted using an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) (Waters,
Milford, MA, USA). The sample injection volume was 5 µL, with a column temperature at
40 ◦C. The mobile phase consisted of formic acid (0.01% in water, solvent A) and acetonitrile
(solvent B), at a flow rate of 0.25 mL/min. The gradient elution program was as follows:
0–4 min, 25% B; 4–9 min, 25–30% B; 9–14 min, 30–36% B; 14–18 min, 36–38% B; 18–24 min,

http://drive5.com/uparse/
http://www.drive5.com/uchime/uchime_download.html
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38–50% B; 24–32 min, 50–75% B; 32–35 min, 75–100% B; and 35–38 min, 100–25% B. The
samples were analyzed by a mass spectrometer in negative electrospray ionization under a
multiple reaction mode (MRM). Operating parameters were temperature, 500 ◦C; ion spray
voltage, −4500 V; curtain gas, 30 psi; collision gas, 6 psi; ion source gas 1, 50 psi; ion source
gas 2, 50 psi.

2.7. Statistical Analysis

Data were presented as the mean ± SEM. Statistical significance of difference was
determined with a one-way ANOVA analysis, followed by Duncan’s multiple range test.
All statistical analyses were calculated with SPSS 20.0 software (version 23.0, IBM Inc.,
Chicago, IL, USA).

3. Results
3.1. Synbiotic Yogurt Enriched with Inulin Reduces Weight Gain and Improves the Serum
Hormones Profiles in PCOS Mice

As shown in Figure 1A, the body weight showed no difference among the four groups
before the injection of DHEA. After 20 days of DHEA treatment, the body weight of DHEA-
treated mice was increased significantly, compared with the control group, while yogurt-
and synbiotic-yogurt-containing inulin treatment significantly lowered the body weight,
compared with that of DHEA-treated mice in the model group, and the effect of synbiotic
yogurt was more obvious than that of yogurt (Figure 1A).

Next, the serum hormones associated with ovarian function including E2, T, LH, FSH,
prolactin PRL, and PROG were measured. The serum levels of total T (Figure 1B) and
LH (Figure 1C) in PCOS mice were significantly higher than those in the control mice.
Yogurt and synbiotic yogurt decreased the serum levels of total T and LH. The levels of
E2 (Figure 1D), PROG (Figure 1E), PRL (Figure 1F), and FSH (Figure 1G) in serum were
significantly lower in the model group, while yogurt and synbiotic yogurt apparently
up-regulated these hormone levels in serum.

3.2. Synbiotic Yogurt Enriched with Inulin Improves Ovary Morphology and Estrous Cycle in
PCOS Mice

The histological analysis of ovaries showed normal features with multiple follicles
at different development stages in the control group. PCOS ovaries lacked corpora lutea
and contained multiple cystic follicles, followed by the attenuation of granulosa cell lay-
ers. Treatment with yogurt or synbiotic yogurt reduced the number of cystic follicles and
increased the number of corpora lutea in PCOS mice. Moreover, synbiotic yogurt supple-
mented with inulin had a stronger effect than yogurt (Figure 2A), suggesting a therapeutic
role of synbiotic yogurt in PCOS mice.

The vaginal cytological examination showed that the phases of the estrus cycle fol-
lowed the regular changes in the order of proestrus, estrus, metestrus, and diestrus in the
normal group (Figure 2B). The estrous cycle of the model group was disordered, as shown
by the disappearance of the diestrus period and the prolongation of the estrous period.
However, the intervention of yogurt and synbiotic yogurt partially improved estrus cycles
in PCOS mice.

3.3. Synbiotic Yogurt Enriched with Inulin Improves the Serum Levels of Immune Cell-Produced
Cytokines in PCOS Mice

The serum levels of immune cell-produced cytokines including IL-6, IL-22, and TNF-α
were also determined. PCOS mice showed a lower level of IL-22 (Figure 3A) and higher
levels of IL-6 (Figure 3B) and TNF-α (Figure 3C). However, the treatment of yogurt and
synbiotic yogurt supplemented with inulin significantly increased the levels of IL-22 while
decreasing the levels of IL-6 and TNF-α.
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Figure 1. Effect of synbiotic yogurt on body weight and the levels of serum sex hormones in PCOS
mice: (A) body weight; (B) serum testosterone levels (C) serum luteinizing hormone levels; (D) serum
estradiol levels; (E) serum follicle-stimulating hormone levels; (F) serum prolactin levels; (G) serum
progesterone levels. Data are expressed as the mean ± SEM (n = 6). * p < 0.05 vs. control group,
# p < 0.05 vs. model group.

3.4. Synbiotic Yogurt Enriched with Inulin Regulates the Composition of Gut Microbiota in PCOS Mice

At the genus level, the relative abundance of Lactobacillus (Figure 4B) and Bifidobac-
terium (Figure 4C) was decreased, and the relative abundance of Anaerotruncus (Figure 4E)
was increased in the model group, compared with the control group. The administration of
synbiotic-yogurt-containing inulin increased the relative abundance of Lactobacillus and
Bifidobacterium by 6.65 fold and 3.92 fold, respectively, and suppressed the abundance
of Anaerotruncus by 75.71%, compared with the model group. Additionally, compared
with the model group, synbiotic yogurt treatment also increased the relative abundance of
Prevotellaceae_UCG-001(3.70 fold) (Figure 4A) and Akkermansia (59.29 fold) (Figure 4D) in
PCOS mice.
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Figure 2. Effect of synbiotic yogurt on estrous cycle and ovarian morphology in PCOS mice:
(A) H&E staining analysis of ovarian morphology. Bar = 300 µm. The cystic follicle is marked
by red blocks, while the corpora lutea is marked by a blue block; (B) estrous cycle. M: metestrus, E:
estrus, P: proestrus, D: diestrus. Data are expressed as the mean ± SEM (n = 5).

Figure 3. Effect of synbiotic yogurt on the levels of serum inflammatory cytokines in PCOS mice:
(A) serum IL-22 levels; (B) serum IL-6 levels; (C) serum TNF-a levels. Data are expressed as the
mean ± SEM (n = 6). * p < 0.05 vs. control group, # p < 0.05 vs. model group.
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Figure 4. Effect of synbiotic yogurt on the composition of gut microbiota in PCOS mice at the
genus level. Relative abundance of Prevotellaceae_UCG-001 (A), Lactobacillus (B), Bifidobacterium (C),
Akkermansia (D), and Anaerotruncus (E). Data are expressed as mean ± SEM (n = 6). * p < 0.05 vs.
control group, # p < 0.05 vs. model group.

3.5. PICRUSt Analysis and Prediction of Genomic Functional Changes

To further explore the effects of synbiotic yogurt supplemented with inulin on the
gut microbiota, hormone levels, and metabolism, the functional gene profiles of bacterial
communities were predicted by PICRUSt analysis. The predicted functions were blasted
with the database of the KEGG pathway. The KEGG pathway (level 3) compositions
in bacterial populations were analyzed, as shown in Figure 5. KEGG pathway analysis
showed that there were significant differences in progesterone-mediated oocyte maturation,
PPAR signaling pathway, primary bile acid biosynthesis, secondary bile acid biosynthesis,
and steroid hormone biosynthesis between the control group and model group. Compared
with the model group, the gene abundances in pathways of bile acid biosynthesis (primary
bile acid biosynthesis and secondary bile acid biosynthesis) were decreased after yogurt
supplementation. Moreover, synbiotic-yogurt-containing inulin treatment decreased the
gene abundances in the pathways of bile acid biosynthesis (primary bile acid biosynthesis
and secondary bile acid biosynthesis) and steroid hormone biosynthesis. These results
suggest that the shifts of gut bacterial functional profiles responding to gut community
changes induced by synbiotic yogurt might be related to the improvement of bile acid
biosynthesis and steroid hormone biosynthesis in PCOS mice.

3.6. Synbiotic Yogurt Enriched with Inulin Regulates the Composition of Gut Microbiota in PCOS Mice

To further investigate the effects of synbiotic yogurt enriched with inulin on bile acid
biosynthesis in PCOS mice, the bile acid profiles in the liver were measured by LC/MS.
As shown in Figure 6, compared with the control group, PCOS mice showed lower levels
of lithocholic acid (LCA), taurolithocholic acid sodium salt (TLCA), taurohyodeoxycholic
acid sodium salt + tauroursodeoxycholic acid sodium salt (THDCA + TUDCA), taurocholic
acid sodium salt (TCA), hyodeoxycholic acid (HDCA), and taurochenodeoxycholic acid
(TCDCA). Yogurt treatment significantly increased the concentrations of LCA and TLCA,
and synbiotic yogurt increased the concentrations of LCA, TLCA, THDCA + TUDCA, and
TCA in PCOS mice.
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Figure 5. Functional prediction of changed KEGG pathways by PICRUSt. The altered KEGG
pathways between control group and model group (A), between model group and yogurt group (B),
and between model group and synbiotic yogurt group (C). * p < 0.05.

3.7. Correlation between Gut Microbiota and Bile Acid Profiles

The correlations between gut microbiota and bile acid profiles were also calculated
by Spearman’s rho non-parametric correlation analysis (Figure 7). Results showed that
Acidaminococcaceae was positively associated with LCA and CA. Aerococcaceae, Clostridi-
ales_vadinBB60_group, and Muribaculaceae were positively associated with LCA. Akkerman-
siaceae was positively associated with CA. Deferribacteraceae had a positive relation with
TDCA. Enterococcaceae had a negative relation with HDCA. Eubacteriaceae had a positive
relation with TLCA. Helicobacteraceae had a positive relation with LCA and TDCA. The
heatmap also reflected significant positive correlations between Lactobacillaceae and LCA,
TLCA, THDCA + TUDCA, and TCA.
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Figure 6. Effect of synbiotic yogurt on the bile acid profiles in the liver of PCOS mice. The levels
of lithocholic acid (LCA) (A), taurolithocholic acid sodium salt (TLCA) (B), taurohyodeoxycholic
acid sodium salt + tauroursodeoxycholic acid sodium salt (THDCA + TUDCA) (C), taurocholic acid
sodium salt (TCA) (D), hyodeoxycholic acid (HDCA) (E), and taurochenodeoxycholic acid (TCDCA)
(F) were detected in PCOS mice. * p < 0.05 vs. control group, # p < 0.05 vs. model group.

Figure 7. Spearman’s correlation between gut microbiota and bile acid profiles. * p < 0.05, ** p < 0.01.
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4. Discussion

Common to all classifications, the diagnosis of PCOS requires a minimum of two of the
following items including hyperandrogenism, oligoanovulation, and polycystic ovaries [2].
PCOS can also increase the risk of obesity, diabetes, and metabolic syndrome [7]. A PCOS-
mediated metabolic disorder is related to hyperandrogenism, which occurs regardless
of body mass index [4]. Since evaluating the etiology of PCOS and obtaining ovarian
tissue from patients are difficult, PCOS models induced by DHEA have been developed to
investigate different aspects of its pathogenesis [25]. DHEA-induced PCOS mice exhibit
many common features with PCOS individuals, such as hyperandrogenism, abnormal
maturation of ovarian follicles, anovulation, and insulin resistance [26]. In addition, DHEA-
induced PCOS mice also have symptoms of infertility, accompanied by an increase in the
number of atretic follicles and follicular cysts in the ovary [27]. Consistent with these
findings, in our study, DHEA treatment for 20 days increased the body weight gain,
disrupted the estrous cycle, and increased the number of multiple cystic follicles in ovaries,
indicating that the PCOS mouse model mimics PCOS symptoms in human patients.

Follicular development occurs under the influence of androgen hormones [28]. The
androgen hormones are produced by the ovary, which can be described by the classical
two-cells–two-hormones model [28]. In the theca cells, LH stimulates the production of
androgens (androstenedione and testosterone). Then, the androgens are converted to
estrogens (estradiol and estrone) by the action of aromatase in response to the stimulation
of FSH in granulosa cells [28]. In anovulatory women with PCOS, abnormal gonadotropic
derangements occur due to an increase in GnRH pulse frequency, which contributes to the
increase in LH levels and the reduction in FSH concentrations in serum [29]. The increased
LH/FSH ratio in the ovaries further increased the circulating androgen level that impairs
follicular development [30]. In our study, DHEA-induced PCOS mice also showed higher
levels of LH and T and lower levels of E2, PROG, PRL, and FSH in serum, suggesting the
disturbance of sex hormones. Only a few studies have explored the influence of probiotics
or synbiotic treatment on PCOS and its related metabolic disorders. Resistant dextrin
(a prebiotic) intervention for six months reduced the body weight in PCOS patients [1].
Intake of Lactobacillus acidophilus Strain T16, Lactobacillus casei Strain T2, and Bifidobacterium
bifidum Strain T1 plus inulin improved the metabolic status, accompanied by the reduction
in serum levels of insulin and triglycerides, in PCOS individuals [16]. Another study
showed that inulin decreased the body weight and the T levels, increased E2 levels, and
ameliorated PCOS symptoms in PCOS mice [21]. In our study, synbiotic yogurt also
reduced T levels and increased the levels of E2, PROG, PRL, and FSH in serum.

Recently, several studies have shown a connection between gut microbiota and PCOS.
The disturbances in gut microbiota, often referred to as “dysbiosis of the gut microbiota”,
promote intestinal permeability with the massive release of lipopolysaccharide (LPS) pro-
duced by Gram-negative bacteria into the bloodstream, triggering a chronic inflammatory
response [6]. A meta-analysis study suggested that women with PCOS showed higher
concentrations of pro-inflammatory factors including IL-6, which may serve as monitoring
biomarkers for the treatment of PCOS [31]. Our study indicated a significant reduction in
IL-6 and TNF-α in PCOS mice after synbiotic yogurt treatment. In addition, the resultant
hyperinsulinemia induced by the chronic inflammatory response drives the excess produc-
tion of androgen and impairs follicular development, leading to PCOS [6]. Many species of
gut microbiota, especially Bifidobacteria and Lactobacillus, exert health-promoting properties,
which are generally considered to be “good” or “beneficial” bacteria [32]. The treatment
of Lactobacillus and fecal microbiota transplantation to PCOS rats decreased the levels of
androgens and restored the estrous cycles, thus improving the ovarian functions [33]. Pro-
biotic Bifidobacterium lactis V9 modulated the gut microbiome and regulated the secretion
of sex hormones in women of PCOS [34]. A study showed that PCOS women or PCOS
rats exhibited lower Bifidobacterium and Lactobacillus [34], and we observed a decrease in
the relative abundance of Bifidobacterium in the model group, compared with the control
group. However, in our study, synbiotic treatment increased the relative abundance of
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Bifidobacterium and Lactobacillus in PCOS mice, which was in accordance with reports about
the role of inulin on the gut microbiota of PCOS mice [21]. PCOS patients showed a
reduction in the abundance of Akkermansia regardless of obesity [7]. In our study, after
treatment of synbiotic, PCOS mice became enriched with Akkermansia, while no difference
was observed between the control group and model group. Consistent with this finding,
metformin administration to PCOS women increased the relative abundance of Akker-
mansia [35]. These results suggest Akkermansia may have a beneficial effect in combating
PCOS-related metabolic disorders.

The bile acid metabolism pathway is a potential mechanism between the gut micro-
biome and PCOS [12]. Gut microbiota have a variety of metabolic functions, including
the capacity to synthetize, metabolize, and reabsorb bile acids [36]. Quantitative profiling
of bile acids found that the levels of secondary bile acids including GDCA and TUDCA
were markedly decreased in serum and feces of PCOS women, compared with those in
healthy women [12]. Metabolomics analysis showed that PCOS women had a lower level
of glycocholic acid in serum, suggesting that the lipid absorption becomes disordered [37].
In our study, the concentrations of several bile acids including LCA, TLCA, and TCA were
also decreased in PCOS mice, which was reversed by synbiotic supplementation. A recent
study demonstrated that Bacteroides vulgatus abundance was markedly elevated in PCOS
patients, accompanied by the reduction in glycodeoxycholic acid levels. Mechanistically,
glycodeoxycholic acid activated GATA3, to induce the excretion of IL-22, which further mit-
igated PCOS symptoms, suggesting the regulatory effect of gut microbiota–bile acid-IL-22
axis on the etiology of PCOS [12]. In accordance with this finding, correlation analysis in our
study showed that many specific bacteria, including Akkermansiaceae and Lactobacillaceae,
were associated with bile acid profiles. Moreover, the serum level of IL-22 was lower in
PCOS mice, compared with the control group, which was also reversed by synbiotic yogurt
treatment. These suggest that the regulation of gut microbiota by synbiotic may further
improve the bile acid profiles. As signaling molecules, bile acids can also bind and activate
receptors in the pathway of G protein-coupled bile acid receptor (TGR5), farnesoid X recep-
tor (FXR), and vitamin D receptor (VDR) [9]. Therefore, the contributions of gut bacteria
that can deconjugate bile acids, and the influence and mechanism of synbiotic yogurt on
the specific bile acids in PCOS remain unclear and need to be further investigated.

5. Conclusions

Through 24-day yogurt treatment of PCOS mice, yogurt supplemented with inulin
decreased the body weight gain, improved the sex hormones and pro-inflammatory factors
profiles, and alleviated ovarian dysfunction. Inulin-enriched synbiotic yogurt also regulated
gut microbiota composition, along with the improvement in bile acid profiles, suggesting
that synbiotic yogurt treatment displayed potential for prevention and therapy of PCOS.
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