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Keratoconus   (KC; Mendelian Inheritance in Man (OMIM) 14830) is a bilateral, progressive corneal defect 
affecting all ethnic groups around the world. It is the leading cause of corneal transplantation. The age of 
onset is at puberty, and the disorder is progressive until the 3rd–4th decade of life when it usually arrests. It is 
one of the major ocular problems with significant social and economic impacts as the disease affects young 
generation. Although genetic and environmental factors are associated with KC, but the precise etiology 
is still elusive. Results from complex segregation analysis suggests that genetic abnormalities may play an 
essential role in the susceptibility to KC. Due to genetic heterogeneity, a recent study revealed 17 different 
genomic loci identified in KC families by linkage mapping in various populations. The focus of this review 
is to provide a concise update on the current knowledge of the genetic basis of KC and genomic approaches 
to understand the disease pathogenesis.
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The completion of the Human Genome Project and the 
International HapMap Project, coupled with new technologies 
like, large-scale genome-wide association studies (GWAS) and 
in-depth next-generation sequencing (NGS) have allowed 
researchers to identify genetic variations linked to many human 
diseases. These new discoveries are likely to provide insight 
into the genes and gene variations involved in the disease 
which may lead to more accurate disease risk assessment and 
eventually to a personalized therapy.

Genetics and Genomics of Keratoconus
KC is a corneal ectasia that results in the conical shape of the 
cornea. It is no longer thought to be entirely non-inflammatory 
as was described in the past. With different diagnostic criteria 
utilized in a variety of studies, the prevalence of KC varies from 
8.8 to 54.4 per 100,000. The mean age of onset of KC is 39.3 
years.[1] It is a multifactorial disease, does not exhibit classical 
Mendelian patterns of inheritance, characteristically involves 
several genes that interact in complex mode with multiple 
environmental factors and systemic conditions.[2],[3],[4],[5],[6] It has 
been proved beyond doubt that KC is a complex heterogeneous 
disorder with multifactorial etiology, associated with genetic 
(familial inheritance) and environmental factors like contact 
lens wear, chronic eye rubbing, and atopy of the eye.[2],[7],[8] The 
biology of KC and cellular changes in cornea were described 
in Table 1.

KC is well-documented as a genetic predisposition with 
increased incidence in familial and monozygotic twins.[2],[9],[10] 
Most of the KC patients are sporadic and family history is 
reported in 6–10% of patients.[11],[12] So far the modes of disease 
inheritance in KC families are dominant and recessive, but in 
autosomal dominant inheritance, the disease shows incomplete 
penetrance with variable phenotype.[12] In addition, cellular 
pathways (inflammatory, apoptosis) are involved in the 
development of KC.[13] The exact cause of KC is uncertain, but 
has been associated with abnormal enzyme activity within the 
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Table 1: Cellular level changes in cornea found in patients 
with keratoconus

Parts of cornea Pathogenic features of keratoconus

Epithelium The corneal epithelium shows elongated 
superficial cells, arranged in a whorl-like 
fashion[9-12]

Iron particle deposition (Fleischer’s ring) [13,14]

Nerve fibers are thickened, visible, and less 
in number[15]

Bowman’s 
membrane

Ruptures/breakages resulting in direct 
contact between epithelial and stromal 
cells[16,17]

Stroma Thinning of stroma due to reduced number of 
lemellae and keratocytes
Vertical lines/striae in the deeper layers of 
stroma[2,3,9,10,18]

Descemet’s 
membrane

Ruptures and folds in keratoconus results in 
a porous membrane which leads to loss of 
endothelial cells[11,17]

Endothelium Unaffected in keratoconus or may 
demonstrate pleomorphisms and elongation 
of cells[2]

Avinash
Rectangle
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cornea.[14] A genetic link seems likely, as the incidence rate is 
greater if a family member has been diagnosed. Due to genetic 
heterogeneity, different genomic loci have been identified in 
KC families by linkage analysis.[15],[16],[17],[18],[19]

Candidate gene approach
Many eye diseases have a genetic basis and researchers often 
focus in identifying the genes responsible, for enabling early 
detection and possible treatments. Hence, the basic idea is 
to analyze the presence of the gene mutations in affected 
patients when compared with normal unaffected individuals. 
The candidate gene approach thus directly tests the effects 
of mutations located in specific genes for their “association” 
to the disease. The potential candidate genes in KC were 
selected based on the previously published association with 
other corneal disorders (corneal dystrophies) and their known 
functions in the eye development. Here, we discuss some of 
the candidate genes related to KC phenotype and their role in 
the pathogenesis.

Visual system homeobox 1 is a protein that in humans is 
encoded by the VSX1  gene, plays a role in craniofacial and 
ocular development. VSX1 gene missense mutations (R166W 
and L159M) were identified in KC patients.[20] VSX1 is a 
member of the paired-like homeodomain transcription factors 
(TFs) which may regulate expression of the cone opsin genes 
during the embryonic development.[21],[22] Although it plays 
a role in the development of retinal bipolar interneurons,[23] 
no expression has been detected in the mouse and human  
cornea.[24] Animal models of VSX1 also did not support a role 
in cornea.[25] Thus, although VSX1 mutations are responsible 
for a very small fraction of KC cases[20] it may not play a major 
role in the pathogenesis of KC.[25],[26]

The dedicator of cytokinesis 9 (DOCK9) is a possible 
candidate gene, which encodes a member of the DOCK protein 
family that possesses guanosine triphosphate/guanosine 
diphosphate (GTP/GDP) exchange factor activity and 
specifically activates G-protein CDC42 involved in intracellular 
signaling networks. The expression patterns were observed 
in keratoconic and non-keratoconic corneas as well as in 
lymphoblastoid cell lines. Recently, mutation (Gln754His) was 
reported through sequencing candidate genes in a previously 
identified linkage locus, 13q32.[27] A mutation screening of 
eight candidate genes within the 13q32 locus identified three 
different sequence variants in the DOCK9 gene. This locus 
contains additional genes, IPO5 (importin 5) and STK24 (serine/
threonine kinase 24).[28] All these three genes are expressed in 
the human cornea but detailed expression analyses are required 
to determine their role in KC pathogenesis.[28] Another gene 
called transforming growth factor beta-induced (TGFβI) gene 
which is a cytokine, is responsible for many dominant corneal 
dystrophies.[29] It is a potent regulator of the extracellular 
matrix formation, during tissue injury and repair. Recently, a 
novel nonsense mutation of TGFβI (G535X), was observed in a 
Chinese patient with KC.[29] Though in contrast mouse embryos 
that lack TGFβ1, have normal signs of ocular development.[30] 
TGFβ1 is well-known to be involved in corneal fibrosis and 
scar formation.[31] An increase in TGFβ pathway markers was 
seen in severe KC cases.[32]

Oxidative stress has been demonstrated to be involved 
in several human diseases including corneal diseases.[33] 

SOD1 maps to the 20p11.2 and encodes a major cytoplasmic 
antioxidant enzyme that metabolizes superoxide radicals and 
provides a defense against oxygen toxicity.[33] A unique genomic 
7 bp deletion within intron 2 close to the 5' splice junction of the 
antioxidant related SOD1 gene was identified in three patients 
with KC.[34] Previously, SOD1 gene mutations were identified 
in familial amyotrophic lateral sclerosis (ALS) patients, but 
no significant corneal phenotype was noted.[34],[35] However, 
recently, several reports have shown the high levels of oxidative 
stress markers such as cytotoxic byproducts, mitochondrial 
DNA damage in KC corneas.[33],[36]

Another hypothetical explanation for KC pathogenesis 
could be related to underlying changes in the corneal collagen 
structure, function and/or during embryonic development. 
However, COL4A3 and COL4A4 mutation analysis revealed 
no pathogenic variants in 107 patients with KC. Interestingly, 
significant allele frequency (genetic variants) was found in 
KC cases that are D326Y variant in COL4A3 and M1237V 
and F1644F in COL4A4.[37] Another mutation study on 15 
Ecuadorian families with KC identified missense mutations but 
none of them segregated in with family members.[38] In parallel 
50 patients were investigated for COL8A1 and COL8A2, but yet 
again no pathogenic mutation was detected.[39] Thus, the role 
of collagen mutations remains debatable. Recent investigation 
has shown the keratocyte apoptosis observed in keratoconic 
cornea, emphasized the role of apoptotic processes in the 
pathogenesis.[40] The apoptosis related genetic risk factor for 
atopic dermatitis is filaggrin (FLG) mutations, expressed in the 
corneal epithelium. Loss of function of FLG alleles (R501X and 
2282del4) were found in five KC cases, suggesting the role of 
FLG in pathogenesis.[41]

ZEB1 is a transcription factor that has a role on modulating 
epithelial-to-mesenchymal transition (EMT) and negative 
regulatory binding sites on IL2. Mutations in ZEB1 are 
reported in patients with KC[42] and isolated patients (posterior 
polymorphous corneal dystrophy) with steep cornea without 
KC.[43] This indicates plausible association of ZEB1 in corneal 
diseases. Recently, a mutation altering the miR-184 seed region 
was reported in a family with KC and early-onset anterior 
polar cataract and KC.[44] This finding reveals the association 
of microRNA regulations in eye diseases.

Genome Wide Association Studies and KC
Multiple approaches have been used to identify common 
genetic factors that influence health and complex diseases. 
These include, whole-genome sequencing, whole-exome 
sequencing, targeted resequencing, and functional studies in 
transcriptome level. The genetic etiology of many complex 
diseases, including Fuchs’ corneal dystrophies (FECD) and 
central corneal thickness, GWAS are useful tools to identify 
single nucleotide polymorphisms. The allele frequency differs 
significantly between cases and controls, which is taken into 
account in identifying the associated risk or protective nature of 
the genetic factors.[45],[46],[47] Recent GWAS reveals few candidate 
genes identified including IL1B, CDH11, NUB1, COL27A1, and 
hepatocyte growth factor (HGF) RAB3GAP1 and LOX which 
are associated with risk factor for KC. Interleukin 1 (IL1) 
released and triggered by the corneal epithelial cell during 
keratocyte apoptosis has been reported in 60% keratoconic 
cornea.[48],[49],[50],[51] The guanosine triphosphatase (GTPase) 
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activating protein subunit 1 (RAB3GAP1) gene mutations 
have been previously reported to be associated with Warburg 
Micro Syndrome with ocular disorders.[52] HGF expression in 
corneal keratinocytes is upregulated in response to corneal 
injury, which has binding site for proinflammatory cytokine 
IL-6, which is elevated in KC patients.[53] The association of HGF 
with KC suggests the potential involvement of inflammatory 
pathway, moreover it has been shown as a risk factor for 
refractive error in several populations including Han Chinese 
and Caucasians.[54],[55] Lu and colleagues recently identified 
multiple loci associated with central corneal thickness (CCT) 
and KC. GWAS further showed that two CCT-associated loci, 
FOXO1 and FNDC3B, conferred relatively large risks for 
KC.[56] Recently, nonparametric linkage analysis identified a 
substitution at IL1RN and deletion at SLC4A11 that segregated 
with phenotype in familial KC in Ecuadorian origin.[57] IL1RN 
gene, member of cytokine family and modulator inflammatory 
response, mutations in SLC4A11, which encodes a membrane-
bound sodium-borate co-transporter associated with corneal 
endothelial dystrophy (CHED2) and Fuchs endothelial corneal 
dystrophy (FECD).[58]

So far genetic studies have suggested that KC has clinical 
variability and may be linked to multiple chromosomal regions, 
consistent with polygenic mode of inheritance. Despite several 
genomic loci, mutations were reported for disease susceptibility 
[Table 2], but lack of validation in larger numbers suggests 
genetic heterogeneity in KC.[2],[15] The whole-exome or genome 
sequencing and GWAS are significantly useful techniques, to 
explore novel genes and their functions in cellular pathways, 
which will provide the exact pathology of KC, thereby, aiding 
in designing better treatment modules. In example, LOX 
polymorphisms are associated with the treatment of collagen 
cross-linking to ensure that only “genotypically suitable” 
patients hopefully will undergo the gene-specific treatment, 
thus fulfilling the promise of personalized genomic medicine.[59]

Future Directions
Increasing our knowledge of genome sequence functionality 

will take us one step further in personalized medicine. These 
studies may enable prediction of genetic variant induced 
consequences beyond simple mapping for single nucleotide 
polymorphisms (SNPs). Emerging genomic approaches such 
as whole exome or genome sequencing will be very efficient 
to identify the disease causing mutations in families with 
KC.[56] However, the KC genetics and genomics approach is 
currently facing several challenges, including phenotype/
genotype correlation, biological validation of variant function, 
and correlation with clinical interpretation. These challenges 
of genomic research pertain to all complex diseases like KC, 
making it imperative to stringently classify the KC stages and 
phenotypes. The emerging potential to subclassify clinical 
populations based on increasing number of disease trait 
phenotype (clinical study) and multi-omics study, offers new 
opportunity to dissect the genetic components of disease.

Finally, as the literature suggests, KC is a complex disorder 
and possibly involves multiple genes and various mechanisms 
that contribute to the clinical disease etiology. As such, 
devising a gene therapy strategy for this disease is fraught 
with risk and requires a better molecular understanding of 
the disease. However, certain genes such as VSX1, DOCK9, 
or TGFB1 may have an essential,[60] albeit sufficient role in the 
disease. Such a gene (or set of genes) delivered to the cornea 
via viral vectors[61] or nanoparticles[62] under the control of a 
cornea-specific promoter could hold promise for treatment. 
Alternatively, recent reports have claimed the disease to be 
driven by inflammation. A gene therapy strategy can therefore 
be envisaged in conjunction with anti-inflammatory treatment 
to obtain better results. Nonetheless, such gene therapy studies 
must be done in an appropriate tissue or animal model, a lack 
of which represents a very important hurdle currently.

In conclusion, both genetic and proteomic approaches 
together should provide further information on disease 
pathogenesis which can lead to better management of the 
disease.
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