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Abstract: Studies on the ways in which viroids are transmitted are important for understanding
their epidemiology and for developing effective control measures for viroid diseases. Viroids may be
spread via vegetative propagules, mechanical damage, seed, pollen, or biological vectors. Vegetative
propagation is the most prevalent mode of spread at the global, national and local level while further
dissemination can readily occur by mechanical transmission through crop handling with viroid-
contaminated hands or pruning and harvesting tools. The current knowledge of seed and pollen
transmission of viroids in different crops is described. Biological vectors shown to transmit viroids
include certain insects, parasitic plants, and goats. Under laboratory conditions, viroids were also
shown to replicate in and be transmitted by phytopathogenic ascomycete fungi; therefore, fungi
possibly serve as biological vectors of viroids in nature. The term “mycoviroids or fungal viroids” has
been introduced in order to denote these viroids. Experimentally, known sequence variants of viroids
can be transmitted as recombinant infectious cDNA clones or transcripts. In this review, we endeavor
to provide a comprehensive overview of the modes of viroid transmission under both natural and
experimental situations. A special focus is the key findings which can be applied to the control of
viroid diseases.

Keywords: viroids; modes of transmission; seed; pollen; vectors; insects; ascomycete fungi; mycovi-
roids (fungal viroids); cDNA clones or transcripts; disease control

1. Introduction

Many diseases of unknown etiology with symptoms similar to those caused by plant
viruses but for which no virions could be found were described during the middle half
of the twentieth century. In 1971, Diener demonstrated that the causal agent of potato
spindle disease, first described in the early 1920’s, is a small, highly structured, covalently
closed circular RNA known as potato-spindle-tuber viroid (PSTVd) [1,2]. In 1972, Semancik
and Wallace reported similar findings for the causal agent of citrus exocortis disease [3].
For such an unconventional agent the term viroid, suggested by Diener, was adopted in
1972 [4]. Viroids replicate autonomously, do not encode proteins, and use pre-existing
host-cell RNA polymerase and processing enzymes for replication and pathogenesis [5,6].
According to the International Committee on Taxonomy of Viruses (ICTV) in 2020 and 2021,
viroids are divided into two families: Pospiviroidae and Avsunviroidae including eight genera
and thirty-three species [7]. In addition, based on sequence properties and/or autonomous
replication, several viroids are classified as unassigned members of three genera [8]. Thus,
the unassigned viroids in the genus Apscaviroid are apple-fruit-crinkle viroid (AFCVd) and
grapevine-latent viroid (GLVd), in the genus Coleviroid are coleus-blumei viroid 5 (CbVd-5)
and coleus-blumei viroid 6 (CbVd-6), and in the genus Pospiviroid is portulaca-latent viroid
(PoLVd). Recently, two novel viroids have been described, apple-chlorotic-fruit-spot viroid
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(ACFSVd), a tentative new viroid in the genus Apscaviroid [9,10], and coleus-blumei viroid
7 (CbVd-7), a tentative new member of the genus Coleviroid [11].

We define viroid transmission as the process by which viroids spread between hosts,
either of the same or different species. The natural host range of viroids includes vegeta-
bles, field and ornamental crops, fruit and palm trees, and grapevine [5,6]. Recently, an
experimental test of the susceptibility of three phytopathogenic ascomycete fungi to seven
viroids showed that some of these fungi could support the replication of certain viroids [12].
Identifying the modes of transmission of viroids such as asexual vegetative propagation,
mechanical damage, sexual transmission via seed or pollen, or by vectors to new hosts are
important for determining viroid-disease epidemiology, and for developing appropriate
cultural control measures.

2. Vegetative Transmission

As they are systemic pathogens, viroids are transmitted where vegetative means of
propagation are used. Apart from the monocotyledonous palms which host CCCVd and
CTiVd and which do not have vegetative propagules, all other hosts subject to propagation
by grafting, budding, cuttings, bulbs, tubers and other methods will carry viroid infection
to the next planting. Somaclonal propagation that was developed for oil palm plantations
is expected to be a route for CCCVd to be distributed via vegetatively propagated ramets.

3. Mechanical Transmission of Viroids

Mechanical transmission of viroids may occur by viroid-infected sap or nucleic acids or
may occur by other means such as viroid-contaminated farming tools and agricultural and
horticultural practices in which viroid-contaminated instruments are used. The dilution
endpoint of between 10−2 and 10−3 for potato-leaf extracts [13] illustrates the high specific
infectivity of PSTVd.

3.1. Viroid Genera of the Family Pospiviroidae

Genus Pospiviroid: PSTVd is mechanically transmitted by normal cultivation activ-
ities [14] and can be readily disseminated in potato fields by contact of healthy vines
with contaminated cultivating and hilling tools and equipment [15]. Mechanical trans-
mission of CEVd with contaminated budding tools from citron to citron can be very
efficient [16]. The successful mechanical transmission of CEVd was also reported in com-
mercial clementine and lemon as well as in commercial plantations subjected to standard
agronomic practices [17]. CSVd is mechanically transmitted either by stem slashing with a
viroid-contaminated razor blade [18,19] or by stem injury with viroid-contaminated-needle
pricking [20]. CSVd can be transmitted by contaminated cutting tools [21]. Transmission in
chrysanthemums by plant-to-plant contact also occurs [18]. Root contact has been reported
to transmit the viroid [22]. IrVd-1 and PoLVd are transmitted mechanically; however, the
efficiency of the mechanical inoculation of PoLVd may be low [23].

Genus Hostuviroid: for HSVd in hops, the primary mode of viroid transmission is
through mechanical means [24]. Once the viroid becomes established in a hop plant-
ing, it is easily transmitted by workers, cutting tools, and equipment during cultural
activities. DLVd is transmitted by mechanical inoculation; infected dahlia plants are asymp-
tomatic [25].

Genus Apscaviroid: ASSVd may spread naturally from infected trees to uninfected
neighboring trees by root grafting [26,27]. ASSVd is also transmitted mechanically by
razor slashing of apple seedlings with viroid RNA preparation [28], and by using viroid-
contaminated pruning tools, to both lignified stems and green shoots of apple trees and
seedlings [29]. ADFVd is mechanically transmitted by stem slashing with razor blades
contaminated with purified viroid RNA [30]. The apple isolate of AFCVd is transmitted
mechanically by razor blade slashing of seedlings with a partially purified viroid prepara-
tion [31]. The mechanical transmission of the hop isolate is associated with farm operations
that lead to mechanical injury [31]. PBCVd can be mechanically transmitted by stem-slash
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inoculation with a razor blade that was previously immersed in nucleic-acid preparations
from infected tissue; these preparations may be mechanically inoculated to cucumber
leaves [32].

Genus Cocadviroid: CCCVd and CTiVd are transmitted under experimental condi-
tions to coconut and other palm seedlings by high-pressure injection and razor-blade
slashing with nucleic-acid inoculum [33,34]. CBCVd and HLVd are transmitted in citrus
orchards and hop gardens, respectively, by vegetative propagation, and mechanically by
contaminated tools or machinery [17].

Genus Coleviroid: Coleus plants are vegetatively propagated with no active monitoring
for viroid infection, which is often asymptomatic [11]. CbVd-1 can be transmitted to Coleus
blumei and Ocimum sanctum by mechanical wounding [35].

3.2. Viroid Genera of the Family Avsunviroidae

Genus Avsunviroid: ASBVd is transmitted by mechanical means such as viroid-
contaminated pruning and propagation tools [36,37]. Root grafting between avocado
trees may be another means of transmission [38,39].

Genus Pelamoviroid: PLMVd in the peach is transmitted mechanically by slashing
infected plants and then healthy ones [40] or by high-pressure injection with the viroid
purified from infected tissue [41]. The presence of PLMVd in almond and pear trees
neighboring infected peaches in Tunisia has been attributed to mechanical transmission by
contaminated tools [42]. CChMVd is transmitted by the mechanical inoculation of crude
extracts or total-nucleic-acid preparations from infected tissue [43].

Genus Elaviroid: ELVd has been mechanically transmitted by cutting tools [44].

4. Seed and Pollen Transmission

A number of viroids are known to be transmitted through seeds and/or pollen
(Table 1). These modes of transmission may play a key role in the epidemiology of vi-
roid diseases as epidemic outbreaks are dependent on the primary viroid inoculum brought
in by viroid-infected seed at the beginning of the growing season and/or pollen at a later
time. In conjunction with secondary viroid spread by mechanical and/or vector transmis-
sion, the introduction of viroids to new areas may lead to the development of viroid-disease
epidemics. Moreover, international seed and pollen trade and exchange are considered one
of the important contributing factors to the emergence of viroids and their diseases. There
are several factors that influence the rate of seed and/or pollen transmission. These may
include, but may not be limited to, plant species and cultivar, viroid variant, environmental
conditions, and time of infection. Effective phytosanitary measures to control movement of
pollen and seed are needed for these viroids.

Table 1. Seed and Pollen Transmission of Viroids.

Type of Transmission Viroid Acronym Reference

Seed

ACFSVd (in apple and mistletoe) [10]
ASBVd (in avocado) [45]

ASSVd (in apple) [29,46]
CbVd-1 (in coleus) [47]

CbVd-5 and CbVd-6 [48]
CCCVd (in Cocos nucifera) [49]

CEVd (in Impatients and Verbena
species) [50]

CLVd (in petunia and tomato) [51]
CSVd ( in chrysanthemum) [52,53]

CSVd (in tomato) [54]
ELVd (in eggplant) [44,55]
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Table 1. Cont.

Type of Transmission Viroid Acronym Reference

GYSVd-1 (in grapevine) [56,57]
HLVd (in hops) [58,59]

HSVd (in grapevine) [56]
PCFVd (in pepper) [60]
PSTVd (in potato) [61]

PSTVd (in tomato and potato) [62]
PSTVd (in true seed) [63]

PSTVd (in tomato, pepper, petunia) [51]
TASVd (in tomato) [64]
TCDVd (in tomato) [65,66]

TCDVd (in petunia and tomato) [51]

Pollen

ASBVd [67]
CCCVd (in Cocos nucifera) [49]

CSVd ( in chrysanthemum) [52,53]
CSVd (in tomato) [54]
HLVd (in hops) [58,59]

PLMVd (in peach) [68]
PSTVd (in potato) [61,69]
PSTVd (in tomato) [70]

PSTVd may have spread among potato germplasm collections world-wide in infected
true seed [63]; it is pollen transmitted in tomato [70] and potato [61,69]. There is no evidence
of seed transmission of CEVd in citrus species. However, in Impatiens and Verbena spp.,
relatively high but variable seed-transmission rates for the viroid were reported [50], which
explains the occurrence and prevalence of CEVd in these hosts. There is evidence that
TCDVd and CLVd are seed-transmitted in petunia and tomato [51]. In general, HSVd is
not transmitted through seeds; however, seed transmission may play a role in the survival
of HSVd in certain hosts such as grapevine [56]. ASSVd is seed-borne in apple [46], and
seedlings germinated from ASSVd-positive apple seeds demonstrated a 7.7% infection
rate [29]. ACFSVd is seed-transmitted from symptomatic apple fruit; seedlings that ger-
minated from infected apple seeds showed an infection rate of 2.8% [10]. Transmission of
GYSVd-1 via infected seeds in eight grapevine varieties has been demonstrated [56,57]. A
low rate of CCCVd transmission to coconut palms by pollen and seeds was reported [49].
HLVd transmission by pollen or seeds has been reported to be low [58,59]. CbVd-1 is also
seed-transmissible with the infection rate ranging from 0% to 100% depending on culti-
vars [47]. It was also reported that CbVd-5 and CbVd-6 can be transmitted via seeds [48].
Coleviroid infections are predominantly asymptomatic and they do not pose serious eco-
nomic or agricultural threats [11]. ASBVd is transmitted in seeds and transmission rates
of 86–100% have been observed in seeds from asymptomatic carrier trees, but rates are
much lower in seeds from symptomatic trees (0–5.5%) [45]. ELVd is seed-transmitted
with an efficiency of approximately 20% [44,55]. PLMVd in peach plants is pollen-borne
and -transmitted [68]. Thus, healthy plants that were experimentally pollinated with the
viroid-infected pollen resulted in infection with PLMVd at a rate dependent on the peach
cultivar; after six years, PLMVd was detected in five cultivars [68].

5. Vector Transmission

A vector is defined by Merriam-Webster Dictionary as “an organism that transmits a
pathogen from one organism or source to another”. An alternative definition of vector is:
“an agent (such as plasmid or virus) that contains or carries modified genetic material (such
as recombinant DNA) and can be used to introduce exogenous genes into the genome of an
organism”. Recombinant-DNA technology was developed by Paul Berg in 1972 [71] for
which he received the Nobel Prize in Chemistry in 1980.
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5.1. Transmission by Insects, Parasitic Plants and Goats

Viroid transmission by insects, parasitic plants, and goats is summarized in Table 2.

Table 2. Insects, Parasitic Plants and Goats Transmission of Viroids.

Vector Viroid Acronym Reference

INSECTS

A-Aphids
Dysaphis plantaginea ACFSVd [10]

Myzus persicae ACFSVd [10]
M. persicae PLMVd [72]

Macrosiphum euphorbiae PSTVd [73]
M. persicae PSTVd [74–76]
M. persicae TPMVd [77]

B-Codling Moth
Cydia pomonella ACFSVd [10]

C-Bumble Bees

Bombus ignitus TASVd [64]
TCDVd [78]

D-White flies
Trialeurodes vaporariorum ASSVd [79]

PARASITIC PLANTS

Mistletoe
ACFSVd [10]Viscum album subsp. Album

DOMESTICATED GOATS

Goat (Capra hircus) CEVd, HSVd [80]
horns PLMVd [81]

ACFSVd was transmitted by two species of aphids and by the larvae of a codling moth
that had been feeding directly on symptomatic, viroid-infected apple trees [10]. Desvi-
gnes [72] reported that Myzus persicae (the green peach aphid) experimentally transmitted
PLMVd, but at a low rate, suggesting minor relevance under natural peach-orchard condi-
tions [82]. PSTVd was transmitted by the aphid Macrosiphum euphorbiae in a non-persistent
manner [73], and persistently by the green peach aphid when the viroid was encapsidated
in potato-leafroll-virus (PLRV) particles [74–76]. The encapsidated viroid was transmitted
to potato, Physalis floridana, and Datura stramonium, although the aphid species was not a
significant vector for transmitting PSTVd alone. In potato, the efficiency of the green-peach-
aphid transmission of PSTVd when co-transmitted with PLRV ranged from 0% to 55%
depending on the potato cultivar used as the viroid inoculum or test plant [83]. TPMVd
was reported to be efficiently transmitted by the green peach aphid [77]. However, the
possibility of transmission of a pospiviroid by this aphid in the absence of a helper virus
is currently suggested to be discounted [84]. Bumblebees have been shown to efficiently
transmit TASVd [64] and TCDVd [78] in tomato plants. TASVd in the Netherlands is
the most prevalent pospiviroid in ornamentals, from which it may cause outbreaks in
tomatoes [85]. ASSVd is transmitted by the greenhouse whitefly from ASSVd-infected
herbaceous hosts such as bean and cucumber to cucumber, bean, tomato and pea plants [79].
The transmission to cucumber was enhanced by cucumber-phloem protein 2, which forms
a stable protein/ASSVd RNA complex in infected plants [79]. The hemi-parasitic plant
mistletoe is frequently found in apple orchards. Mistletoe comes directly into contact
with apple trees through haustoria, during which it may become systemically infected
with ACFSVd and transmit the viroid from infected to uninfected trees [10]. Domesti-
cated goats have been reported to transmit viroids when their horns were rubbed against
viroid-infected trees [80,81]. Transmission via goats could have facilitated the long-range
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spread of viroids among cultivated and wild plants and vice versa, as well as among
graft-incompatible plants.

5.2. Fungal Transmission by Phytopathogenic Ascomycetes

ASBVd, of the family Avsunviroidae, has been reported to replicate in non-plant hosts:
the unicellular yeast fungus Saccharomyces cerevisiae [86] and the filamentous blue-green
cyanobacterium Nostoc sp. PCC 7120 [87]. Recently, it has been demonstrated that viroids
infect and replicate in phytopathogenic ascomycete fungi [12]). In this study, full-length
monomeric cDNA clones of seven viroids (Table 3), were tested for their infectivity to three
fungi, Cryphonectria parasitica, Valsa mali, and Fusarium graminearum using the transfection
of fungal spheroplasts. Among 21 viroid–fungus combinations, six (IrVd-1+C. parasitica,
HSVd+C. parasitica/V. mali/F. graminearum, ASBVd+C. parasitica/V. mali) showed stable
viroid accumulation in the fungi, persisting for at least eight subcultures, although its accu-
mulation level was at much lower level relative to that in a plant host. Moreover, the viroids
were horizontally transmitted during hyphal fusion and vertically maintained through
conidial transfer, indicating that these phytopathogenic ascomycete fungi can support vi-
roid replication. Most viroid infections were asymptomatic in the fungi, but HSVd infection
significantly reduced the growth and virulence of V. mali. It has been suggested that viroid
replication in fungi should also be verified by other detection techniques [88]. The sequence
analysis of the HSVd, which accumulated in F. graminearum, and of the ASBVd, which
accumulated in C. parasitica, after eight fungal subcultures showed nucleotide-sequence
substitutions, suggesting that these viroids were replicating in and adapting to the fungal
hosts [89]. Nucleotide-sequence substitutions were single-site substitutions, except for two
ASBVd mutants, with interchanges occurring between adenine/guanine or cytosine/uracil.
In addition, the sequence junction of the circularized plus RNAs of HSVd, which accumu-
lated in F. graminearum, was determined by inverse RT-PCR in order to provide additional
supporting evidence for viroid replication. This additional supporting evidence indicates
that the viroid replicated and adapted in fungi and suggests that genome evolution or
adaptation may occur during viroid replication in fungi [89].

When HSVd-infected F. graminearum was inoculated to Nicotiana benthamiana, the
plants became systemically infected with the viroid seven days later. Conversely, when
viroid-free F. graminearum was inoculated to HSVd-infected N. benthamiana, the fungus
acquired HSVd from plants and became viroid-infected as shown by re-isolating the fungus
from plants [12]. This finding demonstrates a two-way horizontal transfer of viroid between
plant and fungus. Notably, such a bidirectional transfer between plants and pathogenic
fungi has also been demonstrated in plants with the following viruses: cucumber mosaic
virus, tobacco mosaic virus, and Cryphonectria hypovirus 1 [90,91].

As plants commonly host various fungi in nature [92], the transfer of parasitic molecules/
organisms between plants and fungi as they exchange water, nutrients, and effector proteins
may occur during colonization of a plant by a fungus. Thus, fungi may be previously
under-estimated biological vectors of viroids and plant viruses in nature. Future studies of
viroid epidemiology should include the possible role of fungi in their spread, since fungi
have been reported to take up small RNA molecules from plant cells, as well as transfer
small fungal RNAs to plants in order to regulate host immunity responses [93,94]. Our
understanding of the viroid/virus cross-kingdom between plants and fungi is still in its
infancy. Further studies to decipher this novel phenomenon of viroid transmission to fungi
are necessary.
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Table 3. Vector Transmission of Viroids by Infectious cDNA Clones.

Viroid Acronym Infectious cDNA Clones Reference

AHVd
Dimeric head-to-tail transcripts of AHVd RNA are
infectious when inoculated to apple seedlings, thus

demonstrating that this RNA is a viroid.
[95,96]

ASBVd
ASSVd
CSVd
HSVd
IrVd

PLMVd
PSTVd

Monomeric full-length RNA transcripts of seven
viroid cDNA clones were inoculated by transfection

to spheroplasts of three plant-pathogenic
ascomycetes filamentous fungi, namely

Cryphonectria parasitica, Valsa mali and Fusarium
graminearun. Transmitted HSVd, IrVd and ASBVd

can stably replicate in at least one of those fungi. The
other five viroids stopped replication after the eighth

subculture of the transfected fungi.

[12]

ASSVd
Infection of apple and pear seedlings by

agroinfection of ASSVd recombinant constructs of
ASSVd

[97]

ASSVd

Infection of nine herbaceous plant species by
mechanical inoculation of in vitro ASSVd dimeric
transcripts and to a lesser degree by dimeric DNA

plasmids or sap inoculation

[98]

CbVds

RNAs synthesized in vitro from infecious clones of
CbVd-1, -3, -5, and -6 were used as inocula on

healthy coleus to study the biological properties of
the four viroids. The first detection time for the four
CbVds was different, ranging from about a month

and a half to 10 months.

[48]

CbVd-7

To study the infectivity of the novel CbVd-7, RNA
transcribed from CbVd-7 clones containing either

monomeric, dimeric, or trimeric CbVd-7 sequences
was used as inoculum to infect healthy coleus plants.

Transcribed RNA was infectious.

[11]

CCCVd

A cDNA clone of the oil-palm variant CCCVd 246op
was mechanically transmitted to oil-palm seedlings.
Orange-spotting symptoms were observed within

six months of inoculation, confirming the
pathogenicity of CCCVd246op

[99]

CChMVd
CChMVd was transmitted by plasmids containing

the viroid dimeric head-to-tail cDNA inserts or their
in vitro transcripts.

[100]

CSVd

In vitro-transcribed CSVd was infectious to the
chrysanthemum and other plants, Thus extending

the CSVd host range and its potoential to spread the
disease

[101]

GLVd Healthy grapevine seedlings were infected following
slash inoculation with in vitro transcripts of GLVd [57,95]

PLMVd PLMVd was transmitted by the viroid cDNA
clones/in vitro transcripts [41,102,103]

PoLVd

Mechanical inoculation by leaf rubbing of
head-to-tail dimeric transcripts of PoLVd generated
in vitro was successful as two out of six Portulaca

plants became infected.

[104]
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Table 3. Cont.

Viroid Acronym Infectious cDNA Clones Reference

PSTVd, CSVd
TCDVd, HSVd

Infectious monomeric linear viroid RNA from a
cDNA clone will facilitate mutational analyses by

in vitro mutagenesis
[105]

CEVd
The nucleotide sequence of full-length cDNA clones

of CEVdc purified from citron showed exchanges
that have not been reported for other CEVd variants

[106]

6. Mycoviruses (Fungal Viruses) and Possible Existence of Mycoviroids
(Fungal Vroids)

Mycoviruses (fungal viruses) are viruses that infect and replicate in fungi and are
usually associated with symptomless infections [107]. These viruses are widespread in all
major taxa of fungi, have shown remarkable diversity, and some may induce a reduction
in the virulence of phytopathogenic fungi and may be used in their biological control,
such as the mycoviruses of chestnut-blight fungus Cryphonectria parasitica [107]. It is worth
noting that the first mycovirus was reported in cultivated mushroom, Agaricus bisporus, a
basidiomycete, in 1962 [108] and there are now over 90 fungal viruses belonging to 10 fami-
lies [107]. Infection and replication of viroids in fungi under laboratory conditions [12] may
suggest that mycoviroids (fungal viroids) exist in nature. A mycoviroid may be defined
as a viroid that has the ability to infect healthy fungi. Wei et al. [12] reported that HSVd
infection significantly reduced the growth and virulence of the phytopathogenic fungal
host Valsa mali, the causal agent of valsa canker in apple. Thus, this mycoviroid could
conceivably be exploited for development of novel biocontrol strategies for V. mali. It is
expected in the next several years that research on mycoviroids will be expanded into other
host/viroid systems, which may include major taxa of fungi, oomycetes, and possibly the
unculturable biotrophic fungi as well as many viroid species and their variants.

7. Experimental Transmission by cDNA Clones

The transmission of viroids by infectious cDNA clones is summarized in Table 3. Three
ascomycetous filamentous fungi, namely C. parasitica, V. mali and F. graminearun, which
are the causal agents of chestnut blight, apple tree canker and wheat/barley head blight
and maize ear rot diseases, respectively, were investigated for the possible replication
of monomeric, full-length RNA transcripts of seven cDNA clones after inoculation of
fungal spheroplasts [12]. ASSVd, CSVd, PLMVd and PSTVd initially replicated in the
inoculated fungal hosts, then they were eliminated after the eighth fungal subculture;
however, HSVd, IrVd-1 and ASBVd consistently replicated in at least one of those fungi [12].
HSVd replicated in the three fungi while ASBVd replicated in C. parasitica and V. mali, and
IrVd-1 only replicated in C. parasitica. The growth of V. mali was severely affected by HSVd
infection. The deletion of dicer-like genes from C. parasitica and F. graminearun caused a
significant increase in the HSVd titer in these fungi [12]. Infectious cDNA clones were
used as vectors for transmitting AHVd, ASSVd, CbVds, CbVd-7, CCCVd, CChMVd, GLVd,
PLMVd, PoLVd, PSTVd, CSVd, TCDVd, HSVd, and CEVd in order to study the biological
properties of the viroids of interest (Table 3).

8. Control of Viroid Transmission

The movement of viroid-infected, vegetatively propagated plant material has con-
tributed significantly to the global spread of viroids. Viroids are considered to be of
quarantine and certification importance in many countries and their regulations may vary
from country to country or from continent to continent. Viroids of quarantine importance in
the United States include: HSVd (cachexia strain), PBCVd, and PSTVd; in Canada: ASSVd,
PBCVd and PSTVd; in Mexico: ChCMVd, CSVd, CEVd, CCCVd, ELVd, HSVd (cachexia
strain), PLMVd, PBCVd and PSTVd [109]. The European Union is considered a unique
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“country”/region with different entry points. The inspection service at each entry point is
responsible for preventing any circulation of infected vegetatively propagative plants. The
following viroids must be absent from certified propagative material in the EU: ADFVd,
ASSVd, CEVd, HSVd (cachexia strain), PBCVd, PLMVd [109] and CCCVd [110]. Other
countries may have similar or different viroids of quarantine or certification importance.
For example, Australia considers all viroids to be of quarantine importance; however, China
considers the following viroids to be of quarantine significance: HSVd (cachexia strain),
CEVd and CCCVd; while Chile considers ASBVd, CCCVd, PSTVd, TASVd and TCDVd to
be of quarantine importance [109,111]. A complete list of viroids of quarantine importance
in many countries was reported by [109]. Next-generation sequencing may be used as
the major diagnostic method for viroids in quarantine and certification systems [111,112],
where various restrictions apply and viroid detection and identification is critical.

Cultural practices such as de-leafing, fruit picking, other frequent hands-on activities,
pruning, and long production cycles have created many opportunities for the mechanical
transmission of viroids. Therefore, it is necessary to use effective disinfectants to prevent
viroid dissemination. Several chemical disinfectants have been described which are effective
in disinfecting cutting tools against viroid transmission [113]. Among these disinfectants,
household bleach (0.5–1% sodium hypochlorite) diluted to 10–20% was effective against
many contaminating viroids, thus preventing the mechanical transmission of viroids [113].

At least 18 viroids have been reported as seed-transmitted (Table 1). Therefore, it
is important for planting seeds of interest to select seed lots that have been certified as
viroid-free by a rigorous seed-certification program.

Different approaches have been utilized over the years for viroid elimination from
infected plants [114–116]. Recently, Barba et al. [117] described the possible viroid elimi-
nation from infected plant tissue by thermotherapy, cold therapy, tissue culture, in vitro
micrografting, or cryotherapy. Among the viroids that were eliminated from infected
plants by one or more of these techniques were ASSVd from apple and pear, HLVd and
HSVd from hop, CSVd, CChMVd, and HSVd from chrysanthemum, HSVd from peach
and pear, PSTVd from potato and tomato, PLMVd from peach, CEVd and HSVd from
citrus, and CEVd and TCDVd from tomato [117]. Viroid-elimination frequency varied with
viroid–host combinations.
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crinkle viroid; AHVd, apple hammerhead viroid; ASSVd, apple scar skin viroid; AGVd, Australian
grapevine viroid; ASBVd, avocado sunblotch viroid; CChMVd, chrysanthemum chlorotic mottle
viroid; CSVd, chrysanthemum stunt viroid; CBCVd, citrus bark cracking viroid; CBLVd; citrus bent
leaf viroid; CDVd, citrus dwarfing viroid; CEVd, citrus exocortis viroid; CVd-V, citrus viroid V;
CVd-VI, citrus viroid VI; CCCVd, coconut cadang-cadang viroid; CTiVd, coconut tinangaja viroid;
CbVd-1, coleus blumei viroid 1; CbVd-3, coleus blumei viroid 3; CbVd-5, coleus blumei viroid 5;
CbVd-6, coleus blumei viroid 6; CbVd-7, coleus blumei viroid 7; CLVd, columnea latent viroid; ELVd,
eggplant latent viroid; GLVd; grapevine latent viroid; GYSVd 1, grapevine yellow speckle viroid-1;
GYSVd 2, grapevine yellow speckle viroid-2; HLVd, hop latent viroid; HSVd, hop stunt viroid; IrVd-1,
Iresine viroid 1; PCFVd, pepper chat fruit viroid; PLMVd, peach latent mosaic viroid; PBCVd, pear
blister canker viroid; PoLVd, portulaca latent viroid; PSTVd, potato spindle tuber viroid; PVd 2,
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persimmon viroid-2; TASVd, tomato apical stunt viroid; TCDVd, tomato chlorotic dwarf viroid;
TPMVd, tomato planta macho viroid.
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