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Prediction of years of life after diagnosis of breast
cancer using omics and omic-by-treatment interactions

Agustín González-Reymúndez1,5, Gustavo de los Campos1,2,5, Lucía Gutiérrez3, Sophia Y Lunt4 and
Ana I Vazquez*,1,5

Breast cancer (BC) is the second most common type of cancer and a major cause of death for women. Commonly, BC patients

are assigned to risk groups based on the combination of prognostic and prediction factors (eg, patient age, tumor size, tumor

grade, hormone receptor status, etc). Although this approach is able to identify risk groups with different prognosis, patients are

highly heterogeneous in their response to treatments. To improve the prediction of BC patients, we extended clinical models

(including prognostic and prediction factors with whole-omic data) to integrate omics profiles for gene expression and copy

number variants (CNVs). We describe a modeling framework that is able to incorporate clinical risk factors, high-dimensional

omics profiles, and interactions between omics and non-omic factors (eg, treatment). We used the proposed modeling framework

and data from METABRIC (Molecular Taxonomy of Breast Cancer Consortium) to assess the impact on the accuracy of BC

patient survival predictions when omics and omic-by-treatment interactions are being considered. Our analysis shows that omics

and omic-by-treatment interactions explain a sizable fraction of the variance on survival time that is not explained by commonly

used clinical covariates. The sizable interaction effects observed, together with the increase in prediction accuracy, suggest that

whole-omic profiles could be used to improve prognosis prediction among BC patients.
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INTRODUCTION

Breast cancer (BC) is the second most common cancer worldwide and
the main cause of cancer deaths in women.1,2 Advances in adjuvant
therapy have led to lower proportion of recurrence or metastasis in BC
patients. However, adjuvant therapy can have serious negative side
effects, including heart toxicity, infertility, cognitive impairment, and
secondary cancers, which may increase the probability of death due to
non-cancer causes.3–7 Indeed, a 5-year follow-up study of BC patients
reported a larger number of non-cancer deaths, many attributable to
the side effects of adjuvant therapy, compared with those attributed to
BC itself.8 Therefore, deaths could be prevented and suffering reduced
if we were able to predict, at the time of diagnosis, BC outcomes such
as the likelihood of recurrence, the probability of developing distant
metastasis, and the expected years of life after the diagnosis of BC.
The prognostic factors commonly used to assess the outcome of the

disease and to guide the BC treatment include axillary lymph-node
involvement, tumor size, patient age and ethnicity, lymphatic/vascular
invasion, histological type and grade of the tumor, estrogen/proges-
terone, and Her2/neu receptor status.9 More recently, there has been
an increased use of omic data to assess BC patients. For instance,
Perou et al10 showed that gene expression (GE) data could be used to
identify risk groups, which are both confirmatory of immunohisto-
chemistry BC subtypes (eg, luminals) and predictive of prognosis.11

Other omics such as CNVs, methylation, and miRNA have also been
considered for the assessment of prognosis.12–16

While clustering algorithms applied to GE data have succeeded in
identifying groups with different prognosis, the proportion of inter-
individual differences in survival explained by these groups remains
limited. A higher predictive power could be achieved using whole-
omic profiles (WOPs),14,16 integrating clinical and omics in a unified
risk assessment method.16,17 The integration of high-dimensional
inputs, such as WOPs, presents important statistical and computa-
tional challenges. Recent advances in the fields of regularized and
Bayesian regressions allow integrating high-dimensional inputs for
prediction of disease risk. These methods have been successfully
applied for the prediction of complex traits and disease using
DNA information, the so-called whole-genome-regression (WGR)
approach, in humans,18–20 plants,21 and animals.22 Methods similar
to those used in WGR could be used to integrate GE and other omics
for prediction of BC outcomes. For instance, VanRaden23 suggested
the use of Omic Kriging, a method equivalent to the so-called genomic
BLUP,24 to integrate omic data for prediction of complex traits.
Additionally, Vazquez and co-workers25 described a Bayesian frame-
work that allows integrating multiple omics platforms for prediction of
cancer outcomes.
Although advances in adjuvant therapy have led to a significant

improvement in the survival of BC patients, it is also clear that
individuals are quite diverse in their responses to treatment.26–29 For
example, luminal A patients usually exhibit a poor response to
chemotherapy (CT), while luminal B patients are considered viable
candidates for the use of both anthracyclines and taxanes.30 Similarly,
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differential responses to treatment have been observed in other types
of cancer, such as colon cancer, where the differential risk of
recurrence strongly depends on the individual expression profiles
and application of either surgery alone or in combination with
adjuvant CT.31 From a statistical point of view, these differential
responses to treatments can be modeled as interactions between
omics, such as whole-genome GE and treatments.
None of the studies that have integrated whole omics for prediction

of disease outcomes (eg, Vazquez et al16 and VanRaden23) considered
treatments or interactions between omics and treatments. Therefore,
in this study, we extended the framework described in Vazquez et al16

to accommodate interactions between omics and treatments, adapting
at the same time, this framework for a survival model. We used the
resulting Bayesian model and data from Molecular Taxonomy of
Breast Cancer Consortium (METABRIC) to integrate clinical covari-
ates (COVs) (including age at the moment of diagnosis, cancer
subtype (CS), histological class, Nottingham Prognostic Index (NPI),
and treatment), whole-genome GE profiles, CNVs, and interactions
between these omics and treatments (CT, hormonal treatment (HT),
and radiotherapy (RT)). Using these data, we evaluated the contribu-
tion of COVs, omics, and interactions to interindividual differences in
years of life after a diagnosis of BC, using both variance components
and a measure of prediction accuracy in cross-validation.

MATERIALS AND METHODS

Data
The METABRIC data set12 comprised information from 1977 white Caucasian
women who were diagnosed with BC. Survival data consisted of patient state
(dead or alive) and time to either death or last follow-up. Feature data consisted
of COVs, along with GE and DNA CNV data. METABRIC CNV data (the
gene-by-patient matrix log 2 values from Synapse) is a measure of somatic copy
number alteration in the tumor. It identifies tumor CNV in reference to normal
tissue,12 meaning that any CNV present in the tumor, and also in the normal
tissue, was not considered as a tumor CNV. In addition to the original edition
criteria, four observations corresponding to genomic data outliers for at least
one omic were removed.
Our response variable was the time from diagnoses to death due to cancer.

Other non-cancer deaths, as well as loss of follow-up data (cases in which
the patients were alive at the last contact time), were treated as censored
observations. There were a total 622 deaths due to cancer, 50% occurring
at ~ 17 years. The same analysis was performed for overall survival
(Supplementary Material). The total number of deaths was 887 cases, with
50% of survival at ~ 12 years. For both sets, the 50% survival occurred at ~ 7
years (Supplementary Figure S5). The average times to censor were 9.2
(4.8 SDs) and 9.5 (4.9) years, for each set, respectively. The resulting Bayesian
model and data from METABRIC were used to integrate COVs (including age
at the moment of diagnosis (AGE), CS, type of carcinoma (TC), the NPI,32 and
treatment), whole-genome GE profiles, copy number variants (CNVs), and
interactions between these omics and treatments. The NPI consists of a well-
validated prognostic score that takes information from tumor size, grade, and
nodal involvement, specifically NPI= (0.417× size)+(0.76× lymph-node stage)
+(0–82× tumor grade), typically ranging between 2 and 7;33 the higher the
score the shorter the lifespan prognosis for the patient. Histological type was
defined as a TC and was subdivided into two levels: one including in situ
medullary, invasive medullary, mucinous or tubular ductal tumors; and the
other including non-ductal carcinomas, such as lobular, phyllodes, and ‘grab
bag’ classified tumors. CS11 was binary coded, either as whether the patient has
a triple negative BC (Her2− and ER− and PR−) or not ((Her2− and ER+ or PR+)
and Her2+ subtypes). Treatment included whether or not the patient received
CT, RT, and HT.
Normalization, quality control, and summarization for the GE and CNV

intensity (at a gene level in the CNV) data are described elsewhere.34 Briefly,
DNA genotypes and GE were performed on the Affymetrix SNP 6.0
(Affymetrix Inc., Santa Clara, CA, USA) and Illumina HT 12v.3 (Illumina

Inc., San Diego, CA, USA) platforms, respectively. In the case of GE, the data
were not summarized because the majority of the probes were designed to
interrogate distinct mRNA transcripts. The edited omic data included the log 2
of the intensity of the CNV for 18 538 regions and 49 473 bead-level GE array
probes.

Statistical models
We modeled the logarithm of survival time in a Bayesian setting, accounting for
COVs, omics main effects, and their interactions. Inference was obtained from
the posterior distribution of the unknowns given the data and the hyperpara-
meters. The likelihood and prior distribution assumed to obtain the posterior
distribution are described below.
The model for log time to death can be represented as t*i= ηi+εi, where t

*
i is

the logarithm of the time to either the last follow-up or the time to death for
the ith subject (i= 1, …, n), ηi is a linear function of the COVs, omics, and
their interactions, and εi is the residual error that follows a normal distribution
centered on 0, with residual variance σ2ε. Alive subjects at the last follow-up
time were considered right-censored (ie, observations where the beginning of
the treatment was observed but not the occurrence of the event); therefore, the
joint conditional distribution of the log-transformed survival time (t*= [t*1, …,
t*n ]T) is then given by

p t�jg; sε2
� � ¼

Yn

i¼1
Nðt�i jZi;sε2Þ1�ci

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ovserved
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� �ci
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

censored

ð1Þ

where η= [η1, …, ηn ]T and ci indicates whether the data are censored (ci= 1, if
the subject was alive at the last observation and ci= 0, if the subject was dead at
the time of last follow-up observation, that is, the data are not censored).
To include prior information about the linear predictor, we assumed

multivariate normal distribution for the vector η, of the form N(Xβ, Σ), where
X was the model matrix of the standardized COVs as columns and individuals
as rows, β was the vector of COVs effects (assumed to have a flat prior
distribution), and Σ was the variance–covariance matrix of the genomic effects,
including the main effects of both omics and the interactions between GE and a
given treatment. For ease of notation, hereafter we will use only CT to account
for the interactions between GE and given treatment: the models including the
terms corresponding to HT or RT are equivalents, changing GE|CT by GE|HT
or GE|RT. So far, the full model linear predictor can be written as:

g ¼ Xbþ uCNV þ uGE þ uGEjyCT þ uGEjnCT ð2Þ

where uCNV was the vector of genomic main effects due to the CNV, uGE was
the vector of genomic effects due to GE, and uGE|yCT and uGE|nCT were the
interaction effects between GE and both levels of CT, either when CT was
applied (yCT) or not (nCT). Σ was obtained as described elsewhere,24 and
corresponds with a weighted sum of kernels. For instance, the kernels for GE,
GE|yCT, and GE|nCT, are respectively, computed as KGE ¼ WW 0

p ,
KGEjyCT ¼ DWW 0D

p , and KGEjnCT ¼ KGE � KGEjyCT, where W is the matrix of
standardized GE features, p is the number of features, and D is a diagonal
matrix with ones for those patients with CT, and zero otherwise.
To obtain the relative contribution of each omic main effects and GExCT

interactions, together with the model's prediction ability, we used the Gibbs
sampler implemented in the BGLR.35 Basically, BGLR allows to handle an
arbitrary number of linear predictors terms, each one with different distribu-
tional assumptions, while also allowing to fit numerical, categorical, or
truncated response variables.
A sequence of nested models was adjusted to evaluate the predictive accuracy

and to compare the impact of including COVs, omics, and the interaction
between omics and covariates. The baseline model (COV) included only COVs
and their effects. This model was further extended to include either copy
number variation (COV+CNV), GE (COV+GE), or (COV+GE+CNV). In
addition, COV+GE was also extended to include the interactions between each
treatment and GE, adding the effects of the interaction with the CT (COV+GE
+GExCT), RT (COV+GE+GExRT) and hormone therapy (COV+GE
+GExHT).
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Model prediction accuracy
We evaluated the models in terms of their ability in predicting survival. To do
that, we performed a 10-fold cross-validation (CV), repeating 10 times the
random assignation of subjects in folds. With the paired information of survival
probability and patient’s status at different time points (from 1 to 7 years), we
calculated the area under the receiver-operating characteristic curve (AUC) in
each CV. In addition, we performed a survival analysis, using the Kaplan–Meier
model with the time of follow-up as response and patient status as ‘event’, to
compare the models in their ability to discriminate between low- and high-risk
groups. These groups were defined based on the average predicted values across
CVs: subjects with predicted survival below the first quartile were considered in
the high-risk group, whereas those with values over the third quartile were
considered in the low-risk group.

RESULTS

The outcome analyzed was survival (years of life) after diagnosis of
BC, with individuals who were alive at the last follow-up treated as
censored (results for analysis based on years of life for all-cause deaths
are given in the Supplementary Data). Years of life after diagnosis of
BC was regressed on COVs (including age at the moment of diagnosis,
NPI, hormone receptor status, histological type, and treatment) and
on WOP (including GE and CNV) and interactions between WOP
with treatments (RT, HT and CT all defined as Yes/No). COVs were
treated as fixed effects, whereas WOP and the interactions between
treatment and GE were treated as random (see Supplementary Table
S1 for the fixed-effects estimation for the full model COV+CNV+GE).
Models were fitted using the BGLR R-package.35 Further details about
the models used are given in the Materials and methods section.

Proportion of variance explained by COVs, omics, and omic-by-
treatment interactions
Figure 1 shows the (estimated) proportion of variance explained by
inputs for each of the models fitted. The baseline model used only
COV and explained ~ 19% of the interindividual differences in
survival time. When CNV data were added to the model, the total
proportion of variance explained increased by a small margin (about
6%). However, the addition of GE led to a substantial increase in the
proportion of variance explained by the model from 19% (COV
model) to 65.3% (COV+GE model). Combining CNV and GE (COV
+GE+CNV model) did not lead to a substantial increase in the
proportion of variance explained already reached by the model COV
+GE. Similarly, adding interactions between GE and either CT or RT

did not substantially increase the overall proportion of variance
explained by the model relative to COV+GE. However, adding
interactions between GE and HT lead to a substantial increase in
the total proportion of variance explained by the model. In the model
including COV+GE+GExHT, the proportion of variance explained by
the interaction term was substantial (25%). The results obtained using
survival defined based on all-cause mortality (see Supplementary
Figures S1 and S2) were similar to those reported in Figure 1.

Assessment of prediction accuracy in CV
We evaluated the ability of each model to predict future outcomes
using 10 replicates of a 10-fold CV. In each replicate, individuals were
randomly assigned to 10-fold CVs. In each replicate, we evaluated the
ability of each model to predict survival time (further details are given
in the Materials and methods section). Prediction accuracy was
measured using the CV AUC36) computed for dummy variables that
indicate whether an individual lives longer than x years. Figure 2
shows the average CV AUC for models accounting for covariates,
CNV, GE and the interaction between GE and HT. Supplementary
Table S2 shows the AUC of models considering GE by CT and GE by
HT interactions. Prediction accuracy improved from year 1 after
diagnoses to the fourth year and lowered towards the next years in all
models. Median survival time occurred at 7.4 years. Our results
suggest that reasonably high prediction accuracy (AUC of ~ 0.8 in a
testing subset of the data) can be achieved for prediction of whether a
BC patient will live longer than 4 years after diagnosis.
The model with only COV had AUC values between 0.70 and 0.78,

depending on how many years after treatment were being predicted.
Combining COV and CNV have gains in CV AUC of the order of two
points of AUC relative to the use of COV only for prediction of long-
term survival. However, adding CNV to the model did not result in a
substantial change in CV AUC for prediction of early mortality (eg,
whether a patient lived longer than 1 or 2 years after diagnosis of BC).
Combining GE with COV gave substantial gains (≥ 3.5) in CV AUC
relative to the COV model. These gains in CV AUC were observed
both for prediction of early, intermediate, and late mortality. The
results for overall survival (see Supplementary Figure S3) were similar
to those presented in Figure 2, which are based on deaths due to BC.
Using CV predictions of years of life, we classify individuals in high-

and low-risk groups (corresponding to the individuals ranking in the
lower and higher quartiles for predicted years of life) and subsequently
computed (Kaplan and Meier) survival curves for each of these
groups. Figure 3 displays these curves for the groups defined based on
predicted years of life using COV and COV+GE. Both methods
produce highly accurate classifications. For instance, at year 4, 495%
of the individuals classified as being in the low-risk groups were still
alive; on the other hand,o60% of the individuals classified as being at
high risk were alive after 4 years of diagnosis. The model using COV
+GE had greater discriminatory power than COV only; indeed; the
survival curve for the low (high)-risk groups identified with this model
run always above (below) the ones corresponding to the classification
based on COV.
None of the models that included interactions produced a clear

improvement in prediction accuracy relative to the model using COV
+GE (Supplementary Table S2).
The results shown in Figure 4 are based on the prediction accuracy

assessed using all patients. Using the predictions presented in Figures 2
and 3, we evaluated prediction accuracy for groups defined by the
treatments received. The figure shows the prediction accuracy
obtained by the COV and COV+GE models using sets of patients
who did or did not receive hormone therapy or CT (results for RT are

Figure 1 The proportion of interindividual differences (variance scale) in
survival explained by each of the input set considered by the model.
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shown in Supplementary Figure S4). Again, prediction accuracy is
expressed in AUC by thresholds of years of life after a diagnosis
of BC for each subgroup of women. This analysis revealed that
prediction accuracy increases for patients receiving treatment, and
such increment seems not to depend on the specific treatment.
Additionally, women receiving CT or HT showed better predictions
for longer periods (until the seventh year BC-specific death). Lower
predictive accuracy was obtained for overall survival. Nevertheless, the
same AUC variation across time was obtained (Supplementary
Figure S3).

DISCUSSION

In this study, we first determined the importance of genomic effects of
CNVs and GE on survival. Additionally, we determined the prediction
achieved when covariates, omics, and interactions between omics and
treatments are being accounted. Accordingly, survival models were
implemented for both BC-specific and overall deaths. In a primary
analysis, we first studied the survival rates for each COV separately,
preselecting the covariates associated with survival. Using the sig-
nificant covariates with the integrative model (ie, COV+CNV+GE),
younger (under 50 years) and older (above 70 years) age women have
the worst prognosis. In older patients, factors such as chronic diseases
and lower applications of CT can be associated with bad prognosis.37

Poor prognosis for younger patients, on the other hand, is attributed
to more aggressive tumors.38 Additionally, the NPI showed an inverse
relationship with prognosis: the prognosis decrease as the NPI values
increase.39,40

CNVs can modify GE by changing gene dosages or by breaking
down regulatory sites.41 In BC, CNV has been reported as affecting
genes associated with survival and tumor development (eg, PIK3CA,
EGFR, FOXA1, and HER2).42 The addition of CNV to COVs allowed
to explain an extra 6.5% more of the survival variance. Although this
proportion of variance explained is smaller than that of GE, we note
that adding CNV to a model based on COVs increased prediction
accuracy. However, these results were moderated as compared with
GE. Accordingly, Curtis et al12 also found a less relevant effect on
survival of germline copy numbers (the CNV used here) than somatic
copy numbers (CNA, the copy number originated by the tumoral
process). Our results are also consistent with those from Vazquez
et al,42 although they had a considerably smaller sample size and only
explored survival at the third year. The inclusion of GE in the
covariates model increased, even more, the prediction accuracy and
explained even a bigger portion of the survival variance than the
model COV+CNV. A possible reason for the moderated variance
explained by CNV may be due to the fact that CNV was summarized
at the gene level, leaving all non-coding regions not represented in the
summary (see Supplementary Materials from Curtis et al12). Even-
tually, an underestimated effect of CNV could be related to missing
CNVs in non-codifying regions distally affecting transcription.43

GE is an important disease risk indicator, which can relegate
individuals into cancer subtypes.11,12,44–47 Subgroups can also be
derived by combining several platforms to define consensus groups
by meta-analysis.48 We confirmed not only the primary role of the GE
by explaining cancer subtype but also that GE explains a larger portion
of the total survival variability than cancer subtype clusters. Models
including GE explained the largest amount of survival variability and
increased the prediction accuracy by many AUC units. Interestingly,
overall survival showed a lower proportion of overall death survival
variance, explained by the model containing both CNV and GE,
further suggesting a more relevant role of both GE and CNV in the
cancer process and less in unrelated deaths. The overall deaths
included cancer-related deaths and other non-cancer-related ones.
Although other causes of death are also related to more aggressive
cancer (thus patients are exposed to more aggressive treatments), our
results indicate that only predicting cancer-related deaths is more
accurate (ie, omics are related to cancer deaths and not to overall
survival). However, it is likely that deaths not due to BC could be
actually induced or related to the cancer treatment. Other studies have
indicated a higher rate of cancer unrelated deaths in BC patients than
the expected mortality rate.8

BC patients can have a heterogeneous response to a given treat-
ment, due to evolving subclonal architecture49 and stroma

Figure 2 Prediction ability by model and time point in terms of AUC across
CVs: the lines represent the average AUC across 10 repetitions of 10-fold
CVs (the vertical segments represent standard error across CV). The number
of dead and alive subjects at any time point is represented by the bars
stacked. This figure includes the most relevant models: COV model, COV
plus CNV (COV+CNV), COV plus GE (COV+GE), and covariates plus GE and
interaction between GE and RT (COV+GE+GExHT).

Figure 3 Average Kaplan–Meier estimates by risk group for COV and COV
+GE models across CVs: the curves show the average across CV and
separating individuals as high or low risk. COV, model with COVs; COV+GE,
model with COVs plus whole-genome GE.
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microenvironment conditions50 of the tumor. For instance, abnormal
vasculature creates poorly oxygenated zones and can limit the supply
of nutrients and drugs that affect the success of both radio and CTs.50

This variability was echoed in this work by the variance of BC survival
explained by the GE×Treatment interactions (ie, variance magnitude
dependent on whether a treatment was given or not), with different
magnitudes by treatment perhaps due to how they were administrated
in these data set. Most likely, all patients in our data received RT, while
application CT was more restricted: almost all ER-negative patients
(triple negative, Her2+, and some luminal patients) received CT, while
ER positives (most of the luminal patients) did not.12 On the other
hand, the administration of HT is provided to patients with positive
hormone receptor status, markedly reducing the possibility of obser-
ving a sizable GExHT interaction.
The lack of improvement in AUC when interactions are included in

the model may reflect poor sensitivity of AUC. To evaluate this, we
also assessed prediction accuracy as the correlation between CV
predictions of time to death and observed survival among patients
with known time to death. This analysis showed a benefit of adding
GE (the prediction correlation for COV was 0.22 and increase to 0.31
when GE was added to the model). However, the model including
COV+GE+TRTxGE did not yield higher prediction correlation than
the one using COV+GE. This was also true when all the interactions
were included into the model (Supplementary Table S3).
To get an insight about which genes were contributing the most to

survival variance, we also performed an ad hoc analysis using a spike-
slab model to declare genes as up- or downregulated (ie, associated
with either increasing or decreasing days of life, respectively)
(Supplementary Figure S6). We found three genes with a probability
of inclusion in the model 40.5: two upregulated on the sample of all

patients (FGD3 and DNAJB9), and one downregulated on the subset
of patients with hormone therapy (SERPINE3). FGD3 product is
involved in signaling pathways regulating apoptosis.51,52 On the other
hand, DNAJB9 belongs to a group of genes related with the GIPC
family that has an essential role in carcinogenesis and development.53

Finally, SERPINE3 is a member of the Serpin family, a very diverse
group of proteins involved in many different biological processes, such
as inflammation, immune function and tumorigenesis.54 Its product
belongs to the clade E of human serpins (nexin/plasminogen activator
inhibitor 1), although its function is not well understood.54 Addition-
ally, our original method allows us to extract a very interesting
biological interpretation of the results: the amount of interindividual
differences in survival that can be explained by (1) well-known and
widely used COVs (such as the state of the cancer, the cancer subtype,
or a clinical treatment), (2) all the gene products (GE) present in the
tumors, (3) CNV from the tumor, and (4) any possible interaction
between treatments and GE.
This article focuses on the comparison of models based on COVs

commonly used in clinical practice with others that incorporate WOPs
as well as interactions of omics with treatments. Perou and co-
workers55 demonstrated that clusters derived from GE profiles are
confirmatory of the BC subtypes. Our COV model incorporates
already the BC subtypes and therefore fully incorporates clustering.
For these reasons the COV model is a high-quality benchmark for the
model comparison. Nevertheless, the statistical learning literature offer
a vast array of methods for incorporating high-dimensional inputs,
including shrinkage and variable selection methods,56 support vector
machines,57 and random forests.58 We considered the use of Bayesian
regressions with Gaussian priors, which induce shrinkage of estimates.
We also considered Bayesian models that combine variable selection

Figure 4 Prediction ability obtained with COV and COV+GE by sets of patients with and without treatment: the treatments are CT and HT. Prediction
accuracy for patients who received treatment are in the top panels; the bottom panels correspond with those without treatment. Prediction accuracy was
obtained as the average AUC for each treatment. Average AUC is presented for subjects with (upper panels) and without treatment (lower panels). The
models compared contained COVs and COVs plus GE (COV+GE).
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and shrinkage simultaneously and did not find noticeable differences
in neither proportion of variance explained nor in prediction accuracy.
These results are in agreement with previous studies that have
reported limited differences between various types of regularized
regressions.59 In Breiman’s words: ‘when it comes to prediction there
are usually many equally good models’.58 However, our study is clearly
not exhaustive, and Bayesian models are not necessarily granted to be
universally superior methods. Further research involving comparison
of these approaches with others such as support vector machines or
random forest is granted.
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