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Interaction between the nasal microbiota and S.
pneumoniae in the context of live-attenuated
influenza vaccine
Wouter A.A. de Steenhuijsen Piters 1,2,3, Simon P. Jochems 4, Elena Mitsi 4, Jamie Rylance 4,

Sherin Pojar 4, Elissavet Nikolaou4, Esther L. German4, Mark Holloway4, Beatriz F. Carniel4,

Mei Ling J.N. Chu1,2, Kayleigh Arp1,2, Elisabeth A.M. Sanders1, Daniela M. Ferreira 4,5 & Debby Bogaert1,2,3,5

Streptococcus pneumoniae is the main bacterial pathogen involved in pneumonia. Pneumo-

coccal acquisition and colonization density is probably affected by viral co-infections, the

local microbiome composition and mucosal immunity. Here, we report the interactions

between live-attenuated influenza vaccine (LAIV), successive pneumococcal challenge, and

the healthy adult nasal microbiota and mucosal immunity using an experimental

human challenge model. Nasal microbiota profiles at baseline are associated with con-

secutive pneumococcal carriage outcome (non-carrier, low-dense and high-dense pneumo-

coccal carriage), independent of LAIV co-administration. Corynebacterium/Dolosigranulum-

dominated profiles are associated with low-density colonization. Lowest rates of natural viral

co-infection at baseline and post-LAIV influenza replication are detected in the low-density

carriers. Also, we detected the fewest microbiota perturbations and mucosal cytokine

responses in the low-density carriers compared to non-carriers or high-density carriers.

These results indicate that the complete respiratory ecosystem affects pneumococcal

behaviour following challenge, with low-density carriage representing the most stable

ecological state.
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Respiratory tract infections (RTIs), such as pneumonia, are a
major global health problem, accounting for ~15% of
childhood mortality1. These infections are caused by bac-

teria such as Streptococcus pneumoniae that commonly reside in
the healthy upper respiratory tract, where they are embedded in a
complex microbial ecosystem, referred to as the microbiome.
Carriage of these so-called pathobionts is a prerequisite for dis-
ease to develop2, with carriage density being associated with
invasive pneumococcal pneumonia3, although factors governing
acquisition and carriage—processes vital in RTI pathogenesis—
are incompletely understood.

Both initial colonization and subsequent dynamics are likely to
be impacted by the local microbiota through a process called
colonization resistance, which can be direct or immune
mediated4,5. This concept of colonization resistance may likely
also prevent pathogen overgrowth in the respiratory tract6,7, and
may therefore have a causal role on pneumococcal colonization
and elimination.

The process of pneumococcal colonization is further affected by
viral co-infections. Notably, during the 1918 Spanish influenza
epidemic, the majority of influenza fatalities was likely caused by
secondary pneumococcal pneumonia8. The role of influenza in
acquisition and blooming of pneumococci is demonstrated in a
controlled experimental infection model using wild-type influenza
virus9, and in studies testing live-attenuated influenza vaccine
(LAIV) in mice10 and humans11,12. Mechanistic pathways have been
partly delineated11,12; however, less is known on the effects of viral
infection on the resident respiratory microbiota and vice versa13,14.

To address these questions, we study the bacterial community
dynamics following pneumococcal challenge and colonization,
with and without antecedent viral infection using an experimental
human pneumococcal challenge (EHPC) model. Healthy adult
volunteers are challenged with a serotype 6B pneumococcal strain
and randomized to receive either tetravalent inactivated influenza
vaccine (control) or LAIV. In this model, a colonization rate of
50% is expected. For the primary study15,16, we found that
antecedent LAIV vaccination, that is, LAIV administration fol-
lowed by pneumococcal colonization, did not impact overall
pneumococcal acquisition, yet did drive time to acquisition, and
transiently increased pneumococcal carriage rate and density
(approximately 10-fold) compared to controls.

We hypothesize that the nasal microbiota at baseline affects the
likelihood and density of successful pneumococcal colonization.
Furthermore, we hypothesize that the effect of pneumococcal
challenge alone (i.e. without subsequent successful colonization)
has limited effects on nasal microbiota dynamics and stability.
Last, we anticipate that any perturbations caused by pneumo-
coccal carriage are augmented in the group who received LAIV
(i.e. during co-infections with attenuated influenza virus).

Results
Characteristics of the study population. Baseline characteristics
of the participants are described in Supplementary Table 1. All
volunteers were screened for pneumococcal carriage at baseline
(Fig. 1); individuals positive for natural pneumococcal carriage
were excluded from further analysis (n= 4; 3%). We analysed all
451 samples of 117 participants in total by 16S-based sequencing
and lytA-quantitative PCR (qPCR) (Supplementary Table 2).
Additionally, 115/116 baseline samples were screened for viral co-
infection. As more extensively described in a separate
manuscript15,16, 49 (41.9%) of the volunteers became high-dense
and 27 (23.1%) became low-dense carriers. The remaining
volunteers (n= 41 [35.0%]) were negative for pneumococcal
carriage at either day 2, 7 or 9 (i.e. non-carriers). Carriage out-
come was also tightly related to pneumococcal density of carriage

as calculated by area under the log10-transformed (lytA)
density–time curve (Supplementary Fig. 1).

Baseline nasopharyngeal microbiota composition. After sequen-
cing and quality control, we observed a total of 343 operational
taxonomic units (OTUs), representing 13 bacterial phyla. The pre-
sence of natural viral co-infection at baseline was detected in 9.6% of
samples. We first assessed the associations between baseline nasal
microbiota composition, natural viral co-infection (i.e. before
pneumococcal inoculation and vaccination) and pneumococcal
carriage outcome. We detected a significant association between
baseline nasal microbiota composition and consecutive pneumo-
coccal carriage outcome. This effect was stronger for carriage3 out-
come, that is, when volunteers were stratified in high-dense,
low-dense and non-carriers based on both conventional culture and
qPCR data (permutational multivariate analysis of variance (PER-
MANOVA), R2= 3.1%, p= 0.048; Fig. 2, Table 1 and Supplemen-
tary Fig. 2), compared to carriage2 outcome, where volunteers were
dichotomized in carriers or non-carriers based on culturing only
(Supplementary Fig. 3A and Supplementary Table 3A). The
importance of semi-quantitative information on pneumococcal
density in these analyses was further supported by a borderline
significant association between baseline microbiota composition and
density of pneumococcal colonization at day 2 (R2= 1.7%, p=
0.076; Supplementary Table 3B). Interestingly, volunteers who
became low-dense carriers demonstrated the lowest presence of
natural respiratory viruses at baseline (before intervention) and
showed the lowest rate of (replicating) influenza virus following
LAIV vaccination compared to both high-dense and non-carriers
(Supplementary Table 4). These associations were independent
(Supplementary Table 4E). We thus studied the potential interaction
between viral co-infection, microbiota composition and pneumo-
coccal carriage3 outcome; we observed that the association between
baseline microbiota and pneumococcal carriage acquisition was
dependent on viral co-infection at baseline, but not on LAIV vac-
cination (p= 0.011 and p= 0.640, respectively; Table 1). Stratified
analysis suggests, however, that the association between microbiota
and carriage3 outcome was slightly weaker for the LAIV cohort
compared to the control cohort (R2= 2.9 vs. R2= 4.2%, respectively;
Supplementary Fig. 3B and 3C), suggesting interactions between
both natural viral co-infection and iatrogenic LAIV infection, and
(1) baseline nasal microbiota and (2) pneumococcal carriage
receptiveness.

Baseline microbiota clusters and pneumococcal challenge. To
assess microbiota dynamics we performed an average linkage
hierarchical clustering using Bray–Curtis dissimilarity. We found
18 clusters of microbiota profiles, of which 8 clusters comprised of
≥10 samples, representing in total 418/451 samples (Supplemen-
tary Fig. 4). We identified the OTUs that discriminated most
between clusters using a random forest algorithm (referred to as
biomarker species; Supplementary Fig. 5A). The largest cluster
(STA; n= 132 [31.6%]) was characterized by Staphylococcus spp.,
followed by a cluster typified by several Corynebacterium (of which
the most abundant was Corynebacterium [3]) and Dolosigranulum
spp. (CDG; n= 104 [24.9%]), and a separate Corynebacterium (1)
cluster (COR; n= 102 [24.4%]). The other five rarer clusters,
characterized by Haemophilus spp. (HPH; n= 20 [4.8%]), Pepto-
niphilus, Anaerococcus, Finegoldia spp. and Streptococcus salivarius
(PEP/MIX; n= 17 [4.1%]), Moraxella spp. (MOR; n= 17 [4.1%]),
Fusobacterium (FUS; n= 14 [3.3%]) and Streptococcus spp. (STR;
n= 12 [2.9%]), each comprised <5% of samples (Fig. 3, Supple-
mentary Fig. 5B and Supplementary Table 5). In line with previous
findings, the cluster distribution at baseline was significantly dif-
ferent between low-dense and non-carriers (Fisher’s exact test with

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10814-9

2 NATURE COMMUNICATIONS |         (2019) 10:2981 | https://doi.org/10.1038/s41467-019-10814-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Monte Carlo simulation; p= 0.039). Baseline differences were
related to a higher proportion of CDG profiles in low-dense car-
riers vs. non-carriers (37.0 vs. 10.8%, respectively, p= 0.042).
Contrariwise, although non-significant, low-dense carriers specifi-
cally lacked STA-dominated profiles compared to both non-
carriers (18.5 vs. 43.2%, respectively, p= 0.058) and high-dense
carriers (39.5%, p= 0.111). These results were confirmed by a
stratified analysis where clustering was based on baseline samples
only, ruling out potential confounding of these associations by
profiles that emerge post-challenge.

Baseline microbiota biomarkers and pneumococcal carriage.
Using analysis of composition of microbiome (ANCOM), we
identified OTUs present at baseline that were associated with
pneumococcal carriage3 outcome, showing baseline

Corynebacterium (3) and Dolosigranulum (4) were positively asso-
ciated with low-dense carriers compared to non-carriers (Supple-
mentary Fig. 6). metagenomeSeq analysis confirmed this association
for Corynebacterium (3; Supplementary Fig. 7 and Supplementary
Table 6). Moreover, using metagenomeSeq, we detected an addi-
tional consortium of lower abundant OTUs also related to carriage3
outcome. These OTUs were positively associated with both high-
dense carriers compared to low-dense and non-carriers and
belonged to the families Prevotellaceae, Campylobacteraceae and
Neisseriaceae, which are (facultative) anaerobes, primarily residing
in the oral cavity (Supplementary Fig. 7 and Supplementary
Table 6). Lower abundance of these (facultative) anaerobes in low-
dense carriers was also associated with a reduced microbial diversity
compared to high-dense and non-carriers (Wilcoxon’s rank-sum
test; p= 0.01 and p= 0.03, respectively; Supplementary Fig. 8A and
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Fig. 2 Baseline nasal microbiota composition in association with pneumococcal carriage3 outcome. Non-metric multidimensional scaling (NMDS) plot
where each point represents the microbial community composition of one sample. Samples (n= 116) were coloured according to carriage3 outcome (red,
high-dense carriers, n= 49; blue, non-carriers, n= 40 and orange, low-dense carriers, n= 27). The standard deviation of data points within carriage
outcome groups is shown. In addition, the 10 highest ranked operational taxonomic units (OTUs) were simultaneously visualized (triangles). The stress
value indicates how well the high-dimensional data are represented in the two-dimensional space; a value of ~0.2 indicates a reasonable representation.
P values and effect sizes (R2) describing the strength and the significance of the association between baseline nasal microbiota and pneumococcal carriage
outcome were generated using PERMANOVA tests, and are adjusted for the month, presence of any virus at baseline, the interactions between carriage
outcome and the vaccination group/presence of any virus at baseline. See Table 1 for details
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Fig. 1 Schematic overview of the study design. Volunteers were screened for pneumococcal carriage on day −4, after which they received live-attenuated
influenza vaccine (LAIV) or control vaccine on day−3 (dashed arrow), followed by pneumococcal inoculation on day 0 (solid arrow) and sampling visits on
days 2, 7, 9 and 29. Only participants in whom S. pneumoniae 6B was detected by conventional culture at days 2, 7, and/or 9 were visited for sampling on
days 14 and 21 (grey shaded area). Red numbers mark the time points at which microbiota data were available
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Supplementary Table 7), and was independent of vaccination group
(based on stratified analyses; Supplementary Fig. 8B and 8C and
Supplementary Table 7).

Mucosal cytokines, baseline microbiota and S. pneumoniae.
Mucosal cytokine data were assayed from samples collected at day 0,

2, 7, and 9 (Supplementary Fig. 9). We first assessed the links
between baseline nasal microbiota and cytokine levels at day 0 (i.e.
following LAIV vaccination), regardless of carriage3 outcome, using
both canonical correspondence analysis (CCA) and distance-based
redundancy analysis (dbRDA; Fig. 4). Intriguingly, the OTUs that
were most strongly related to the first two axes of both CCA and
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Fig. 3 Dynamics of nasal microbiota profile membership. The number of samples in each cluster at each time point was visualized in alluvial diagrams,
which were stratified by pneumococcal carriage3 outcome. Cluster membership was determined using average linkage hierarchical clustering based on the
Bray–Curtis dissimilarity matrix. Clusters were characterized by Staphylococcus (2; STA); Corynebacterium (3) and Dolosigranulum (4; CDG); Corynebacterium
(1; COR); Haemophilus (9; HPH), Moraxella (6; MOR), Fusobacterium (10; FUS), Streptococcus (7; STR), and Peptoniphilus (5), Finegoldia (8), Anaerococcus (11)
and Streptococcus salivarius (13; PEP/MIX). The dynamics of nasal microbiota profile membership were shown for high-dense carriers (a), low-dense
carriers (b) and non-carriers (c). The height of the figures corresponds with the total number of samples within that group. In addition, the height of the
nodes and the thickness of the edges connecting the nodes is proportional to the number of samples. The number of samples in each cluster at each time
point, stratified by carriage3 outcome, is provided in Supplementary Table 5. The number of cluster changes was lower in low-dense carriers compared to
both high-dense and non-carriers (see Tables 2 and 3). A higher proportion of CDG profiles was observed in low-dense vs. non-carriers. Contrariwise, low-
dense carriers specifically lacked STA-dominated profiles compared to both high-dense and non-carriers

Table 1 Associations between baseline nasal microbiota and carriage3 outcome

Variable Df F R2 P value

Carriage3 outcome 2 1.79 3.07% 0.048
Month 4 0.88 3.02% 0.628
Any virus at baseline 1 0.74 0.64% 0.613
Carriage3 outcome: Vaccine 3 0.86 2.22% 0.640
Carriage3 outcome: Any virus at baseline 2 2.00 3.44% 0.011
Residuals 102 87.60%
Total 114 100.00%

The association between baseline nasal microbiota composition and carriage3 outcome was adjusted for the month of sampling (i.e. seasonal effects), the presence of any virus at baseline (day −4) and
the interactions between carriage3 outcome and vaccine/presence of any virus at baseline (n= 116). These interactions (indicated by a colon) were included to properly assess the associations between
baseline microbiota and carriage3 outcome, the latter of which could have been impacted by viral co-infection. Analyses were performed using PERMANOVA. See Supplementary Table 3 for the detailed
assessment of associations between microbiota composition and carriage2 outcome/pneumococcal density
PERMANOVA permutational multivariate analysis of variance, df degrees of freedom, F F test statistic, R2 measure of variance
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dbRDA were mostly oral-type species, including Streptococcus,
Veillonella, Prevotella and Porphyromonas spp., and other previously
identified acquisition-associated microbiota members, including
Dolosigranulum (4) and Corynebacterium (3) (dbRDA). Only
granulocyte–macrophage colony-stimulating factor (GM-CSF) and
vascular endothelial growth factor (VEGF) were consistently and
significantly associated with baseline nasal microbiota (anova.cca-
function; p < 0.05). Cytokine levels at day 0 were significantly lower
in volunteers who became low-dense carriers compared to non-
carriers, although this was only significant in the LAIV but not in
the control group upon stratification (GM-CSF, interferon-α (IFN-
α), interleukin-12 (IL-12), IL-17, IL-1β, IL-2 and IL-4, within LAIV;
linear model, p < 0.05, Supplementary Table 8A). In general,
volunteers who became high-dense carriers had intermediate cyto-
kine levels at baseline. Following we combined baseline microbiota
plus cytokine data to study whether the combined data improved
the classification strength of carriage3 outcome. Indeed, combining
these data showed larger data separation than microbiota data alone
(Fig. 4), suggesting that both baseline microbiota composition and
baseline host responses are driving pneumococcal receptiveness.

Microbiata changes upon pneumococcal and LAIV challenge.
We next analysed microbial community behaviour following
pneumococcal challenge. We found that the overall microbiota
composition following pneumococcal challenge became most pro-
foundly different between high-dense carriers, non-carriers and low-
dense carriers, at days 2 and 7 (PERMANOVA, R2= 4.3%, p=
0.004 at day 2 and R2= 4.7%, p= 0.002 at day 7), after adjustment
for LAIV vaccination, the presence of virus at baseline and the
interactions between carriage3 outcome and vaccine/natural virus at
baseline. Results were identical after exclusion of the OTU corre-
sponding with S. pneumoniae from the OTU table, suggesting a
broader ecological impact of pneumococcal acquisition and chal-
lenge on microbiota perturbations than colonization of a single
species (pneumococcus) alone. At day 29, when pneumococcal
carriage was nearly eliminated, the microbiota composition between
outcome groups became similar again (R2= 1.8%, p= 0.505).

The strength of the impact of LAIV per se or the presence of
replicating influenza virus at day 0/2 on the nasal microbiota
composition was highest at day 2 (R2= 1.7%) and diminished
over time (R2= 1.3% at both days 7 and 29). The differences in
overall microbiota composition after baseline were paralleled
by differences in α-diversity, unexpectedly with an increase in
microbial diversity in non-carriers compared to high-dense
carriers on days 2 and 7 (Supplementary Fig. 8 and Supplemen-
tary Table 7), suggesting ecological perturbations upon pneumo-
coccal challenge independent of whether the strain was acquired.

Microbiota dynamics following pneumococcal challenge. The
previously described baseline differences in microbiota compo-
sition that were related to carriage3 outcome translated into
variation in microbiota dynamics following pneumococcal chal-
lenge (Fig. 3). We measured microbiota profile shifts following
pneumococcal challenge (i.e. at day 2) compared to baseline, and
found less profile changes in low-dense carriers (11.1%), com-
pared to high-dense carriers (28.2%, generalized linear models,
p= 0.11), as well as non-carriers (31.4%, p= 0.07, Tables 2
and 3). In line, change in Bray–Curtis dissimilarity between
baseline and day 2 was significantly larger in high-dense carriers
compared to low-dense carriers (Table 3; p= 0.05). The large
number of profile changes over the challenge interval in non-
carriers underscores that pneumococcal exposure alone, without
subsequent colonization or antecedent vaccination, may also
perturb the ecological equilibrium.

Cytokine responses following pneumococcal acquisition.
Cytokine levels following LAIV and preceding pneumococcal
challenge (i.e. at day 0) were lower in low-dense carriers com-
pared to non-carriers (Supplementary Table 8A), which trans-
lated into lower cytokine levels over the whole study period (area
under the curve analyses days 0 to 9; IFN-α, IL-12, IL-17, IL-2
and IL-4; linear model, p < 0.05, within LAIV; Supplementary
Table 8B). In addition, non-carriers had higher levels of IL-1β
and IFN-α before as well as following pneumococcal challenge
when compared to high-dense carriers (p < 0.1, within LAIV;
Supplementary Table 8B), suggesting that pneumococcal acqui-
sition is related to variation in and extend of LAIV-induced
mucosal inflammation.

Discussion
We studied the association between the nasal microbial ecosystem
and pneumococcal acquisition and density in the context of
natural or induced (LAIV) viral co-infection in a controlled
human co-infection model. Baseline nasal microbiota composi-
tion was associated with pneumococcal carriage3 outcome. Con-
trary to our hypothesis, the largest ecological differences
(composition and mucosal inflammation at baseline and micro-
biota profile changes directly following pneumococcal exposure)
were not observed between high-dense and non-carriers, but
between low-dense and either high-dense/non-carriers. Further-
more, low-density carriage is associated with low cytokine levels
and limited viral co-infections at baseline, and followed by the
lowest LAIV replication and microbiota perturbations and least
mucosal inflammation upon acquisition of S. pneumoniae com-
pared to both high-dense and non-carriers. Finally, pneumo-
coccal exposure also causes perturbations of nasal microbiota and
host responses even where carriage is not established.

Evidence regarding the impact of nasal microbiota on an
individual’s receptiveness of pneumococcal carriage as well as the
ecological resonations following pneumococcal exposure is lim-
ited. Previous studies have focussed on the interactions between
different respiratory pathogens only, largely disregarding the
ecological background these bacteria are embedded in17. More
recently, next-generation sequencing-based studies have emerged,
describing associations between pneumococcal presence and
density and the local microbiota18–20. For example, it has
repeatedly been demonstrated that Corynebacterium and Dolosi-
granulum spp. abundances in infants are negatively associated
with S. pneumoniae colonization in infants18,19. It remained
however an open question whether the observed associations are
causally linked. Disentangling cause–effect relationships between
blooming of pathobionts, changes in host immune response and
shifts in microbiota composition is complex, especially in cohorts
which study respiratory infection, and require longitudinal and
experimental study approaches like we used here.

Our current findings hint towards the existence of specific
microbiota constellations, which control pneumococcal carriage
receptiveness. Interestingly, the impact of nasal microbiota on
pneumococcal carriage outcome was larger in controls than in
LAIV recipients, suggesting interference of the normal ecological
processes by influenza virus.

Paradoxically, we observed that important nasopharyngeal bac-
terial community members Corynebacterium and Dolosigranulum
spp., which previously have been associated with infant respiratory
health7,21, were lowest in abundance in non-carriers and highest in
low-dense carriers followed by high-dense carriers at baseline,
although the latter is relative, as pneumococcal abundance was
rarely dominating the microbial community in our adult setting. In
line, a recent community-based observation showed that co-
colonization of Streptococcus and Dolosigranulium spp. was related
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to low abundance of Streptococcus spp22. In addition, we identified a
species-rich consortium of low-abundant (facultative) anaerobic
OTUs belonging to, among others, the Prevotellaceae and Veillo-
nellaceae families, which were enriched in high-dense carriers and to
a lesser degree non-carriers, but not present in low-dense carriers.
These species appeared also strongly related to mucosal cytokine
profiles. In previous studies, (early) presence of these bacteria in the
nasopharynx in children has been associated with lack of microbiota
stability over time21, premature microbiota maturation and an
increased risk of consecutive respiratory infections7, as well as more
severe disease at times of a RTI23. Furthermore, vaccination with
pneumococcal conjugate vaccine-7 has been related to temporary
enrichment of, among others, Veillonella, Prevotella, Fusobacterium

and Leptotrichia spp. and non-pneumococcal streptococci24, sug-
gesting the existence of a biological interaction with pneumococcus.

We therefore hypothesize that controlled low-dense colonization
of S. pneumoniae might be the most beneficial phenotype for both
host and microbe, based on less ecological perturbations and a
reduced cytokine levels observed in low-dense carriers. In contrast,
especially in individuals who failed to become colonized, we
observed strong mucosal responses combined with increased
microbiota profile changes following challenge were observed. This
finding was in line with previous observations by our group,
demonstrating that pneumococcal exposure not followed by colo-
nization was still associated with augmented anti-protein immu-
noglobulin responses, suggesting induction of host immune
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pathways25. Apart from a difference in Dolosigranulum and Cor-
ynebacterium spp. in non-carriers compared to high-dense carriers,
these phenotypes were very alike, which suggests that in both cases
the physiological balance between microbiota and immune surveil-
lance is perturbed, presumably contributing to a self-enforcing
dysbiosis-inflammation cycle26. This feedback loop acknowledges
the bidirectionality of the links between immune response and
microbiota, which likely explains our observations in both high-
dense carriers and non-carriers. The unimodal, rather than linear
relationship between microbiota composition and carriage recep-
tiveness has not been identified before, since we previously had no
access to samples obtained before pneumococcal inoculation. In line
with previous work from our group focussing on the relationship
between LAIV and pneumococcal carriage15,16, our current findings
underline the importance of molecular pneumococcal detection
methods in discerning the low-dense carrier group.

Characterization of microbiota changes related to LAIV/
influenza virus was challenging, given the relatively large
pneumococcus-induced ecological perturbations observed in both
volunteers who became high-dense and non-carriers. Our data
suggest that LAIV only modestly modulates microbiota-mediated
receptiveness, and in addition, impacts pneumococcal acquisition
and density by the induced mucosal inflammation13,14.

Our study did not include a group without intervention, and
we did not expect that pneumococcal exposure not followed by
colonization would have such a strong effect on local microbiota
in the absence of colonization. We anticipate that our current
findings in healthy adults are nuanced when compared to risk
populations for colonization and infection such as children and
elderly, as both their microbiota composition differs, and their
immune system is either immature or senescent, potentially
allowing for the identification of a more pronounced impact of
microbiota-driven colonization resistance27.

Future research should certainly take the impact of pathobiont
exposure not followed by colonization into account, especially

since exposure without acquisition might vary strongly between
populations and groups and is not detected in surveillance stu-
dies. Furthermore, the experimental human challenge model may
be used to explore interactions between pathobionts colonization
and administration of pre-/probiotics.

We here showed that baseline nasal microbiota composition is
relevant in determining the receptiveness to pneumococcal
colonization in the context of antecedent LAIV administration.
The use of molecular techniques to determine pneumococcal
presence enabled us to detect new biological phenomena, showing
that particularly low-dense pneumococcal carriage represents
characteristics of a more stable mucosal microbiome–host equi-
librium compared with either high-dense and non-carriers.

Methods
Ethics statement. Ethical approval was granted by the Liverpool East NHS
Research Committee (14-NW-1460) and all participants gave written informed
consent.

Study design and participants. Details on the study design, in-/exclusion criteria
and participants were previously published15,16 and can be found in the Supple-
mentary Methods.

In brief, healthy non-smoking adults, aged 18–50 years, were enrolled in a
single-centre, double-blinded, placebo-controlled trial (2015–2016). LAIV was
administered prior to experimental inoculation with pneumococcus and
pneumococcal colonization rate and density were determined15,16. Participants
randomly received either LAIV and intramuscular placebo or intramuscular
vaccination paired with nasal placebo. Pneumococcal inoculation was performed as
previously described28,29. We excluded individuals who carried pneumococcus
based on culture at baseline (i.e. day −4).

Sample collection and pneumococcal detection. Nasal wash samples for pneu-
mococcal detection were collected on days 2, 7, 9 and 29. Additional nasal washes
were performed at days 14 and 22 in volunteers who were carriage positive at day 2,
7 and/or 9. Next, nasal washes were processed as described previously28,29. As per
the study protocol, pneumococcal detection was performed using (1) conventional
culture28–31 and (2) qPCR targeting the pneumococcal lytA gene32. Nasal lining
fluid samples (Nasosorption™, Hunt Developments) for Luminex analysis were
collected and stored at −80 °C as previously described33.

Sample selection and DNA isolation microbiota analyses. We selected baseline
(day −4) and day 2, 7 and 29 nasal wash samples (four time points; Fig. 1) for
microbiota analyses. Bacterial DNA was isolated from 200 µL resuspended nasal
wash pellet (see Supplementary Methods) by bead beating in phenol32 and
quantified using a qPCR with primers directed at the 16S-rRNA gene21,34. DNA
was subsequently eluted in one aliquot of 50 μL elution buffer and stored at −20 °C
until further analysis.

16S-rRNA sequencing. Amplicon libraries of the 16S-rRNA gene (V4 region)
were generated, and sequencing was executed as previously described7. Amplicon
pools were paired-end sequenced in seven runs using an Illumina MiSeq instru-
ment (Illumina Inc., San Diego, CA, USA). Bioinformatic processing included
trimming, error correction, assembly and 97%-identity binning of reads into

Fig. 4 Associations between cytokine levels and nasal microbiota at baseline. Using canonical correspondence analysis (CCA) (a) and distance-based
redundancy analysis (dbRDA) (b), we assessed the links between cytokine levels day 0 and baseline nasal microbiota. It is assumed that the dependent
variables (log10+ 1-transformed relative abundance operational taxonomic units [OTUs]) respond in a unimodal or linear fashion to the predictor variables
(log2-transformed cytokine levels) for CCA and dbRDA, respectively. We simultaneously plotted the samples (data points, n= 71), significant (p < 0.05)
predictor variables (cytokines; arrows) and the OTUs that were most strongly associated with the first two axes (n= 10 for each axis, excluding
overlapping OTUs). Samples were coloured according to carriage3 outcome (red, high-dense carriers, n= 36; blue, non-carriers, n= 18 and orange, low-
dense carriers, n= 17), ellipses denote the standard deviation of the samples in each group. Note that carriage3 outcome was not accounted for when
simultaneously modelling cytokine/microbiota data, yet still are clearly discriminated, suggesting that baseline microbiota and cytokine levels at day 0
(following live-attenuated influenza vaccine (LAIV) and prior to pneumococcal challenge) are related to pneumococcal receptiveness. Data separation by
carriage3 outcome was higher when ordination was based on both microbiota and cytokine data (dbRDA and CCA; standardized absolute β-coefficient
0.43 and 0.32, respectively) compared to microbiota alone (non-metric multidimensional scaling [NMDS]; 0.22; Fig. 2). This was also true when
coefficients were split between X- or Y-coordinates. An extensive description on our method to compare data separation by carriage3 outcome is provided
in the Supplementary Methods section. CAP, constrained analysis of principal coordinates; GM-CSF, granulocyte–macrophage colony-stimulating factor;
VEGF, vascular endothelial growth factor; Cor, Corynebacterium; Dol, Dolosigranulum; Pep, Peptoniphilus; Mor, Moraxella; Fin, Finegoldia; Str, Streptococcus; Hae,
Haemophilus; Fus, Fusobacterium; Ana, Anaerococcus; Act, Actinobacillus; Pre, Prevotella; All, Alloprevotella; Por, Porphyromonas; Vei, Veillonella; Agg,
Aggregatibacter and Sel, Selomonas. Numbers correspond with overall mean relative abundance rank

Table 2 Microbiota cluster changes

Carriage3 outcome Change Total %

High-dense carriers 11 39 28.2
Low-dense carriers 3 27 11.1
Non-carriers 11 35 31.4

The number of change transitions (Change; i.e. transition to another cluster) and the total
number of transitions (Total; i.e. transition to the same or another cluster) over the challenge
interval (i.e. days −4 to 2) are shown. The percentage (%) is the number of change transitions
divided by the total number of transitions within carriage3 outcome groups
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OTUs. Following removal of chimeric reads, OTUs were taxonomically annotated
using SILVA. Details on processing, quality control and removal of environmental
and procedural contaminants are described in the Supplementary Methods. After
abundance filtering, a rarefied dataset was generated and used for downstream
analyses. α-Diversity measures were averaged over 100 rarefactions. β-Diversity
was assessed using the Bray–Curtis dissimilarity metric.

Viral qPCR. Nucleic acids for viral qPCR were extracted from one aliquot of 250 µL
oropharyngeal swab and/or 80–120 µL Nasosorption sample using the PurelinkTM

Viral RNA/DNA Mini Kit (Life Technologies Corporation, Carlsbad, CA, USA)
according to the manufacturer’s instructions. We tested for a broad panel of
respiratory viruses using primers, probes and PCR assay conditions specific for
adenoviruses, parainfluenza virus 1–435, human bocavirus36, human coronavirus
OC43, NL63 and 229E37,38, respiratory syncytial virus (A and B)39,40, human
metapneumovirus41, human rhinoviruses, enteroviruses and human influenza virus
A42 and B43 (Supplementary Table 9).

Luminex analysis of nasal lining fluid. Cytokines were eluted from stored
Nasosorption filters using 100 µL of assay buffer (Thermo Fisher). Samples were
centrifuged for 10 min at 16,000 × g to clear them prior to acquisition. Samples
were acquired using a 30-plex magnetic human Luminex Cytokine Kit (Thermo
Fisher) and analysed on a LX200 (Bio-Rad) with xPonent3.1 software (Luminex
Corp) following the manufacturer’s instructions. A representative subset of 12
cytokines was selected for further analyses (based on co-clustering analyses and
literature44). Samples were analysed in duplicates and samples with a coefficient of
variation >25% were excluded.

Variable definitions. In the manuscript describing the initial results of the LAIV-
EHPC project, focussing on the effect of LAIV on pneumococcal carriage, results
based on both pneumococcal detection methods (i.e. conventional culture and
molecular) were presented, underscoring the importance of the increased sensi-
tivity of molecular techniques15,16. For this manuscript, we therefore decided to test
two carriage outcome variables on the basis of nasal washes from days 2, 7 and 9:
(1) carriage2 outcome (based on pneumococcal detection using conventional cul-
ture only), carriers, with a culture-positive sample at any point and non-carriers,
who were culture-negative at all times; and (2) carriage3 outcome (combination of
pneumococcal detection using both conventional culture and molecular techni-
ques), coded as high-dense carriers (culture-positive at any point), low-dense
carriers (qPCR-positive and culture-negative) and non-carriers (qPCR- and
culture-negative at every point). Initial explorative analyses demonstrated higher
explanatory power of carriage3 outcome, that is, the variable incorporating qPCR
results. We therefore decided to use this outcome variable throughout the rest of
the manuscript instead of carriage2 outcome.

Statistical analysis. All analyses were performed in the R version 3.3.0 within R
studio version 0.99.902. We provided a detailed schematic on the research ques-
tions/associations explored and a data analysis flow chart depicting an overview of
the methods used (Supplementary Fig. 10). Detailed information on our statistical
analysis can be found in the Supplementary Methods.

In short, using PERMANOVA tests, we studied the associations between
carriage outcome and the overall microbiota composition at baseline and each
subsequent time point. In conjunction, we assessed the association between
microbiota composition and month (i.e. seasonal effects), the presence of virus(es)
at baseline and the interaction between LAIV or presence of viruses at baseline and
carriage outcome. The relationships between microbiota composition and carriage
outcome were visualized using NMDS plots. Differentially abundant OTUs at
baseline associated with pneumococcal carriage3 outcome were detected using
several statistical techniques, including (1) ANCOM45 and (2) metagenomeSeq46.
Differences in α-diversity according to carriage3 outcome were tested using (1)
Wilcoxon’s rank-sum tests and (2) linear mixed-effects models with carriage
outcome, time point and the interaction between carriage outcome and time points
as fixed effects and subject as random effect. We used the multcomp package to

determine significant differences within specific contrasts. To assess the microbiota
dynamics related to carriage3 outcome over time, we performed an unsupervised
average linkage hierarchical clustering based on the Bray–Curtis dissimilarity
matrix. The optimal number of clusters and biomarkers for each cluster were
determined as previously described7. Comparisons of cytokine levels according to
carriage3 outcome was performed using a linear model, including vaccine, carriage
outcome and the interaction between vaccine and carriage outcome. We
simultaneously assessed the associations between baseline nasal microbiota and day
0 cytokine levels using CCA and dbRDA.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
16S-rRNA sequencing data from this study are available from NCBI under BioProject
accession number PRJNA421976. All other data are available in the manuscript (and
its Supplementary Information files) or from the corresponding author upon reasonable
request.
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