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Abstract

Quantitative viral outgrowth assays (QVOA) use limiting dilutions of CD4+ T cells to measure

the size of the latent HIV-1 reservoir, a major obstacle to curing HIV-1. Efforts to reduce the

reservoir require assays that can reliably quantify its size in blood and tissues. Although

QVOA is regarded as a “gold standard” for reservoir measurement, little is known about its

accuracy and precision or about how cell storage conditions or laboratory-specific practices

affect results. Owing to this lack of knowledge, confidence intervals around reservoir size

estimates—as well as judgments of the ability of therapeutic interventions to alter the size of

the replication-competent but transcriptionally inactive latent reservoir—rely on theoretical

statistical assumptions about dilution assays. To address this gap, we have carried out a

Bayesian statistical analysis of QVOA reliability on 75 split samples of peripheral blood

mononuclear cells (PBMC) from 5 antiretroviral therapy (ART)-suppressed participants,

measured using four different QVOAs at separate labs, estimating assay precision and the

effect of frozen cell storage on estimated reservoir size. We found that typical assay results
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are expected to differ from the true value by a factor of 1.6 to 1.9 up or down. Systematic

assay differences comprised a 24-fold range between the assays with highest and lowest

scales, likely reflecting differences in viral outgrowth readout and input cell stimulation proto-

cols. We also found that controlled-rate freezing and storage of samples did not cause sub-

stantial differences in QVOA compared to use of fresh cells (95% probability of < 2-fold

change), supporting continued use of frozen storage to allow transport and batched analysis

of samples. Finally, we simulated an early-phase clinical trial to demonstrate that batched

analysis of pre- and post-therapy samples may increase power to detect a three-fold reser-

voir reduction by 15 to 24 percentage points.

Author summary

The latent reservoir of resting CD4+ T cells is a major, if not the primary, obstacle to cur-

ing HIV. Quantitative viral outgrowth assays (QVOAs) are used to measure the latent res-

ervoir in ART-suppressed HIV-infected people. Using QVOA is difficult, however, as the

fraction of cells constituting the latent reservoir is typically about one in one million, far

lower than other infectious disease biomarkers. To study reliability of these assays, we dis-

tributed 75 PBMC samples from five ART-suppressed HIV-infected participants among

four labs, each conducting QVOA and following prespecified sample batching proce-

dures. Using a Bayesian statistical method, we analyzed detailed assay output to under-

stand how results varied within batches, between batches, and between labs. We found

that, if batch variation can be controlled (i.e., a lab assays all samples in one batch), typical

assay results are expected to differ from the true value by a factor of 1.6 to 1.9 up or down.

We also found that freezing, storing, and thawing samples for later analysis caused no

more than a 2-fold change in results. These outcomes, and the statistical methods devel-

oped to obtain them, should lead towards more precise and powerful assessments of HIV

cure strategies.

Introduction

The latent HIV-1 reservoir that persists following treatment with suppressive ART exists pri-

marily in resting CD4+ T cells and is an obstacle to eradicating HIV-1 [1–4]. There are sub-

stantial ongoing efforts to eliminate or reduce the size of this reservoir [5–7]. Evaluating such

efforts requires assays that can reliably quantify its size in blood and tissues in order to monitor

its changes during curative intervention strategies. Replication-competent HIV-1 can be mea-

sured by QVOA. These terminal dilution assays place known numbers of resting CD4+ T cells

in culture wells, usually in serial dilutions of cells that cover several orders of magnitude, with

replicate wells at each dilution. The CD4+ T cells are activated before co-culture with cells

that are highly permissive for primary strains of HIV. The propagation of HIV replication is

detected by an assay for either p24 antigen or HIV RNA in the supernatant of these co-cultures

over a two- to three-week period [8]. Each well is read as negative or positive, which means

that replication-competent virus was present in at least one of the cells in the well. The number

of infectious units per million cells (IUPM) is then estimated by maximum likelihood assum-

ing single-hit Poisson dynamics [9]. This approach has represented the “gold standard,”

because it measures replication-competent virus in latently infected cells, which is crucial

because the majority of integrated HIV-1 DNA is replication-defective [10–12].
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Use of QVOA presents both practical and statistical challenges, many of which are attribut-

able to the rarity of the target entities: often on the order of only one CD4+ T cell in a million is

positive for replication-competent virus by a single-round QVOA. These challenges include:

1) QVOA requires that large volumes of blood be collected to generate large numbers of

Ficoll-purified peripheral blood mononuclear cells (PBMC), which are generally further pro-

cessed without freezing/thawing, into input resting CD4+ T cells, 2) each assay takes weeks to

complete and is expensive (�$3,000), 3) substantial personnel time is required for cell purifica-

tion, culture and monitoring supernatants for HIV replication, limiting test throughput to two

to four QVOAs per lab per week, 4) not all replication-competent virus is detected by a single

QVOA [11], and 5) different laboratories employ varying methods [8].

In addition, the performance characteristics of QVOAs performed within and between labs

have not been carefully evaluated, a gap that this study was designed to address. The rarity of

infectious units complicates the analysis of performance characteristics, because even split

samples from the same collection can have large relative differences in the true numbers of

infectious units that they contain. In addition, the number of infectious units in positive wells

is not known, which also adds to the assays’ variability. We describe in the next section Mar-

kov-chain Monte Carlo (MCMC) methods that we developed to account for these inevitable

background sources of variation while estimating additional variation, including batch effects

and inter-lab variation, as well as assessing the impact of freezing PBMC samples on assay per-

formance. We also describe simulations to validate these methods and to assess the implica-

tions of the parameter estimates. We then present the results of our method-validation

simulations, estimated model parameters based on the results of four QVOAs applied to 75

split samples, and simulation results evaluating some implications of the models, before con-

cluding with some additional discussion.

Materials and methods

Ethics statement

Participants in the RAVEN project are enrolled and followed as part of the UCSF OPTIONS

and SCOPE programs, with specific consent for apheresis collections and testing for this study

as approved by the UCSF Committee on Human Research (IRB) # 10-03244.

Experimental design

The five ART-suppressed HIV-1 infected participants for the current study were selected to

have diverse replication-competent reservoirs based on QVOA results from a previously pub-

lished study [10]. Leukapheresis collections from five HIV+ participants and one uninfected

control participant were divided into 12 aliquots (control) or 15 aliquots (each HIV+ partici-

pant). Each aliquot contained roughly 300—750 million PBMC as requested by the testing

labs. Three aliquots from each HIV+ participant comprised the fresh panel; all other aliquots

were stored at −180˚ C and comprised the frozen panel.

Four labs participated in the study: University of Pittsburgh (U. Pitt.), University of Califor-

nia San Diego (UCSD), Johns Hopkins University (JHU), and Southern Research (SR). One

aliquot per participant from the fresh panel was distributed for immediate testing to three of

the labs (all except SR). The frozen panel included 18 uniquely coded liquid nitrogen-cryopre-

served PBMC aliquots that were distributed to all four labs for testing 4—12 months after

freezing, depending on lab testing capacity. Aliquots were blinded as to participant and

aliquot identity, except that all labs had knowledge that the negative control was not included

in the fresh panel. Within each lab, the frozen panel was analyzed in balanced batches of two
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aliquots each, designed to enable measurement of both within-batch and between-batch varia-

tion (Fig 1).

Labs thawed aliquots (if frozen), isolated CD4+ T cells (CD4s), and performed QVOA per

lab protocol (S2 Table). S3 Table provides the well configurations (cell input counts and num-

ber of replicate wells) used for each aliquot. While QVOA output is typically reported as an

estimated infection frequency and confidence interval (expressed as infectious units per mil-

lion, or IUPM), all labs reported individual well outcomes (positive or negative for viral out-

growth). Reporting at this higher level of granularity allowed for more accurate statistical

modeling. Individual laboratory reports were unblinded, checked for transcription errors if

there were discrepancies in IUPMs calculated by the RAVEN statistical team and IUPMs

reported by the laboratories, and then compiled for statistical analysis. S4 Table reports the

resulting dataset.

The JHU lab used two different protocols for the fresh and frozen panels: For the fresh

panel, viral outgrowth was measured at day 7 and 14 of coculture for all aliquots, but continua-

tion to day 21 was contingent on the results at day 14. For the frozen panel, viral outgrowth

Fig 1. Experimental and analytical design of the study. Panel a: Three frozen aliquots were provided by each HIV+ participant to each lab; an

additional fresh aliquot was provided to each lab except SR. Panel b: Experimental design at one of the four labs (U. Pitt.). Fresh panel (five batches):

One aliquot from each HIV+ participant was studied fresh and was not batched with any other aliquots. Frozen panel (nine batches): Three aliquots

from each participant were cryopreserved and batched together with one other aliquot. Five batches contain two aliquots from the same HIV+

participant. Two HIV+ participants are chosen to supply one aliquot to the same batch (here, participants 2 and 3). The remaining three batches contain

an aliquot from one of the remaining HIV+ participants and an aliquot from the negative control. In each lab, different HIV+ participants are chosen for

the mixed batch (see S1 Table for complete experimental design). Panel c: Sketch of statistical model used to estimate IUPM for each participant (vi);
cryopreservation effect (βs); systematic effect for each lab (βl, set to zero for U. Pitt., which was arbitrarily chosen as reference); and random variation at

the level of aliquot, batch, and lab (aij, bkl, cil, respectively). These fixed and random effects combine to determine the likelihood that a given well is

positive, and the likelihood of the data equals the product of likelihoods of all wells (see Eq (3)).

https://doi.org/10.1371/journal.pcbi.1006849.g001
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was measured at days 7, 14 and 21 for all aliquots. Owing to this variance in methods, we pres-

ent analysis of the data in two ways, differing in treatment of the JHU lab: Our primary analy-

sis used cumulative QVOA results through day 21 measurements from the JHU frozen panel

and no measurements from the JHU fresh panel, while our secondary analysis used day 14

measurements from both panels. As some wells require the full 21 days for outgrowth to be

evident [13], the day 21 measurement is more sensitive, and so the primary analysis may yield

more relevant characterization of QVOA precision. The secondary analysis, however, draws

upon three labs instead of two for the fresh/frozen comparison and may yield more relevant

characterization of the effect of cryopreservation. Unless otherwise stated, all experimental

results reported draw upon the primary analysis.

Analytical methods

As noted in the Introduction, some variability in measured IUPM is unavoidable even for a

perfect assay, due to Poisson sampling variation and uncertainty about the number of infec-

tious units that were present in positive wells. We therefore developed a statistical model that

estimates additional sources of variation beyond this unavoidable background. The design per-

mitted identification of extra variation at the aliquot level, batch-to-batch variation within

each lab, and lab-to-lab variation. Below are details of the statistical model that accomplishes

this task, along with our methods for fitting the model. We did not include the control partici-

pant in this modeling.

Analyzing aliquots separately. Where a “raw” display of the data was desired (Fig 2), the

following mixed effects statistical model was not used, and instead each aliquot was analyzed

separately by a maximum likelihood method, as described in [9].

Statistical model. Wells in the experiment are indexed by study participant from which

the sample was obtained (i = 1. . .5), aliquot into which the sample was divided (j = 1. . .15 for

each participant, with 3—4 aliquots sent to each lab), assay batch (k = 1. . .14 for each lab), and

Fig 2. Infection frequency and 95% CI estimated separately for each aliquot by maximum likelihood (i.e., not

using the mixed effects statistical model, see Methods: “Analyzing aliquots separately”). Cryopreserved aliquots are

indicated by shaded symbols, fresh aliquots by open symbols. “Index i” is used in model output, and “Cohort ID”

represents the identifier used in the SCOPE/OPTIONS cohort.

https://doi.org/10.1371/journal.pcbi.1006849.g002
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the lab where the assay was performed (l = 1. . .4, referring to U. Pitt., UCSD, JHU, and SR,

respectively). Viral outgrowth was assumed to follow a Poisson model, in which a well contain-

ing n input cells and response R (1 if positive for outgrowth, 0 otherwise) has likelihood

PijklðRjnÞ ¼
1 � exp ð� nVijklÞ if R ¼ 1;

exp ð� nVijklÞ if R ¼ 0

8
<

:
ð1Þ

where Vijkl is the probability that a single cell in the well is capable of causing outgrowth. This

probability is determined by the sum of fixed and random effects applying to that well (Fig 1c):

Vijkl ¼ exp ðvi þ bl þ aij þ bkl þ cil þ bSSijÞ: ð2Þ

In this expression, Sij is set to one if aliquot j from participant i was cryopreserved before

the assay, and otherwise is set to zero. Each other term represents a fixed or random effect

(Table 1).

Each well is assumed to have independent probability of outgrowth, and so the full likeli-

hood of the data is

Y

8w

Piwjwkwlw
ðRwjnwÞ; ð3Þ

where subscript w indicates the the values corresponding to well w.

The random effects in the model (2) are normal i.i.d. variates:

aij � N ð0; saÞ

bkl � N ð0; sbÞ

cil � N ð0; scÞ

ð4Þ

In this framework, σa quantifies extra variation that is distinct for each single aliquot,

beyond what would be expected from Poisson sampling variability and binary readout of

wells. It may be thought of as an overdispersion parameter, similar to the extra-Poisson disper-

sion that is present in the negative binomial distribution. The parameter σb reflects additional

variation that equally influences both aliquots in the same batch, reflecting variation in labora-

tory personnel, condition of reagants used, or other aspects of laboratory environment. The

random perturbations cil apply to all split samples from the same participant at a particular lab,

but differ for the same participant at different labs. The parameter σc can therefore be thought

of as reflecting participant-specific differences in exactly what each lab measures, beyond the

systematic scale differences βl that apply equally to all participants. A non-zero σc indicates

that each lab is measuring a quantity that correlates imperfectly with the true latent reservoir

size, with smaller σc corresponding to better correlation and therefore less variation between

labs in what they are actually measuring.

Table 1. Fixed and random effects in the model of outgrowth, Eq (2).

Symbol Effect type Description

vi Fixed Log of infection frequency from study participant i
βl Fixed Scaling parameter for lab l, relative to reference (U. Pitt., l = 1)

aij Random Effect of aliquot-level random variation in aliquot j of study participant i
bkl Random Effect of batch-level random variation in batch k of lab l
cil Random Effect of lab-level random variation for participant i at lab l
βs Fixed Cryopreservation effect

https://doi.org/10.1371/journal.pcbi.1006849.t001
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Maximum likelihood estimation. We encountered difficulties fitting the above model by

maximum likelihood. We did not identify any existing maximum likelihood procedures in the

software packages SAS, Stata, or R that would apply directly to the above model. We therefore

considered a variation in which exp(aij) follow a Gamma distribution, Gð1=s2
a; 1=s

2
aÞ. This

results in the number of infectious units in an aliquot having a gamma mixture of Poisson dis-

tributions, which follows a negative binomial distribution with mean dispersion parameter

a ¼ s2
a [14]. To fit the resulting model using mixed effects negative binomial models, we calcu-

lated for each aliquot stand-in data rij and Nij such that a Poisson model applied to a single

observation of rij with offset log(Nij) (or equivalently, including Nij as the “exposure” variable)

results in the same estimated IUPM and confidence interval as the standard maximum likeli-

hood calculations for the well-by-well data [9, 15]. With pij = IUPMij/1000000 and Sij =

squared standard error of loge(IUPMij), these values are given by Nij = 1/(pij Sij) and rij = pij Nij.

When no wells are positive, rij = 0 and Nij = the total number of cells in all the wells used for

the assay of the ijth aliquot. We then attempted to use software for mixed effects negative bino-

mial regression (Stata v13 menbreg command, R x64 3.4.0 glmer.nb command in the

lme4 package v1.1-13, or SAS v9.4 proc Glimmix) to fit the needed model to the rij and

Nij, with crossed random effects bkl and cil.
All the software packages failed to produce satisfactory results when applied to our data (see

“Simulation likelihood estimation underperformed MCMC”). The difficulty of reliably fitting

the crossed random effects model precluded application of maximum likelihood to simula-

tions of our full study (“Validation by simulation: Multiple labs”). In addition, simulation

results for the simplified situation of a single lab (“Validation by simulation: Single lab”) were

not fully satisfactory, with substantial bias toward random effect variances of zero and poor

coverage probabilities. For example, in the large variation case, more than half the estimates of

σb were zero and profile likelihood 95% confidence intervals covered the true value only 73%

of the time. Because of these difficulties and poor performance, we focused primarily on Bayes-

ian estimation as described in the next section.

Markov-chain Monte Carlo estimation. Given the difficulties with maximum likelihood

estimation and the versatility of Markov-chain Monte Carlo (MCMC) approaches, we devel-

oped a Bayesian estimation framework. In order to obtain posterior distributions that mainly

reflect the evidence provided by our data, we aimed to use prior distribution assumptions for

the parameters that were “weak.” To make our assumptions neutral about the existence of

nonzero random effects, we used prior distributions for each of σa, σb, and σc with 50% point

mass probability at zero.

A uniform or normal distribution was used as prior for each fixed-effect parameter, and a

mixture of a point-mass at zero and a half-Cauchy prior was used for each random effect

parameter; this prior has a heavy tail, allowing the model to explore large values of σ [16, 17],

while also allowing it to take on the null value of no extra variation at all:

vi � Uniformð� 30; � 4Þ ð10� 7 to 2� 104 IUPMÞ;

bl � N ð0; 6Þ ðl > 1Þ;

sa; sb; sc �
HCð0; tÞ w:p: 1

2

0 w:p: 1

2

(

;

bS � N ð0; 6Þ;

ð5Þ

where half-Cauchy scale parameters τ = 1, 2, 3, 4 (corresponding to the median of the distribu-

tion) were tried.
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Posterior distributions for parameters were estimated using PyStan 2.12 [18]. As this pro-

gram does not permit direct use of priors with point mass at zero, the implementation used an

ensemble model constructed from eight separate components, one for each combination of

the three random effects in Table 1. The posterior weight for each model component was cal-

culated using the Watanabe-Akaike Information Criterion (WAIC) [19]. This ensemble there-

fore achieves the prior distributions in Eq (5) (see [20], Section 6.5.2, “Model averaging”).

Complete Stan model files are provided in S1 Appendix.

For each model component, four parallel chains of 2500 iterations each were sampled. The

first half of each chain was discarded as warmup. To ensure a valid fit, trace plots of the chains

were visually inspected for mixing, and diagnostics Neff (effective sample size) > 200 and R̂
(scale reduction factor) < 1.1 were required; in most cases, diagnostics well exceeded these

criteria.

A set of 8000 independent samples from the posterior parameter distribution of the ensem-

ble model was then obtained by combining 1000 samples from the posterior of each compo-

nent. Using the component posterior weights, weighted quantiles of these 8000 samples were

computed. Posterior medians and 95% credible intervals (spanning 2.5 to 97.5 percentiles)

were reported. Unless otherwise noted, all reported results use these weighted ensemble esti-

mates. Where a sample from the joint posterior was required for simulation, 1000 of the 8000

samples were selected, roughly proportional to the component weights (“complete ensemble”).

An alternate ensemble of 1000 was also constructed setting batch effect to zero; in this case

only four of the eight model components were included (“batch variation-free ensemble”).

Finally, to provide more traditional estimates of fixed effects, posterior medians and 95% cred-

ible intervals were also reported for the model component excluding all excess variation.

Most estimates are reported as fold-changes, that is, the exponential of a model parameter.

Random variation at the aliquot and batch levels combined is reported as expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a þ s

2
b

p
Þ; vari-

ation at all three levels combined is reported as expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a þ s

2
b þ s

2
c

p
Þ.

Validation by simulation: Single lab. For single-lab simulations ignoring cryopreserva-

tion, the five participants’ IUPMs were based on preliminary estimates from fresh samples:

0.104, 0.591, 0.654, 0.835, 1.454. Three scenarios of extra-Poisson variation were considered:

Large variation (σa = σb = 0.7), moderate variation (σa = σb = 0.2), and no variation (σa = σb =

0). The large and moderate variation scenarios were chosen to bracket the range of preliminary

(maximum-likelihood) estimates from the data. The simulated assay used six replicate wells of

cell inputs 1,000,000, 300,000, 100,000, 30,000, 10,000. Nine batches were assigned for each

simulation: six batches with two aliquots each and three batches with a single aliquot each.

Two aliquots from each participant were assigned to the same batch, one aliquot from each of

two randomly chosen participants were assigned to a batch together, and the remaining three

aliquots (each from a separate participant) were assigned to the singleton batches. A separate

random choice of participants for the mixed batch was made for each simulation.

In the scenario with no variation, each well is positive with probability 1 − exp(−n exp(vi)),
where n is the number of input cells and vi is the log of infection frequency for participant i.
In each scenario with variation, two different formulations were tested. Normal formulation:

Random effects aij and bkl were sampled from normal distributions (4), and each well is posi-

tive with probability 1 − exp(−n exp(vi + aij + bkl)). Gamma formulation: Batch random

effect bkl was sampled as in the normal formulation, and each well is positive with probability

1 � ð1þ s2
anexpðvi þ bklÞÞ

� 1=s2
a , representing the probability that a negative binomial random

variable is positive when it has mean n exp(vi + bkl) and dispersion parameter s2
a.

Validation by simulation: Multiple labs. For multi-lab simulations including both fresh

and cryopreserved samples, the full experiment as specified in S3 Table was simulated, using
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ensemble posterior median parameter estimates reported in S10 Table (“All four labs, using

JHU day 21 readout”). On the natural log scale, these estimates are σa = 0.40, σb = 0.57, σc =

0.44, βS = −0.38, β2 = 2.22, β3 = −0.22, and β4 = −0.93. These estimates were obtained using the

HCð0; 1Þ prior, which was putatively chosen after preliminary analysis indicated that both σa
and σb were less than 1 (the median of the HCð0; 1Þ distribution). The multi-lab simulation

was then used to compare performance of HCð0; 1Þ to other priors and check the consistency

of the MCMC method. Random effects and the probability that each well is positive followed

the model described above (“Statistical model”).

In addition, to compute the probability that the method may overestimate σa, σb, or σc
despite the true parameter value equaling zero, we repeated the simulations three times, each

time replacing one of these three parameters with zero. We then reported the average probabil-

ity of overestimation among these simulations.

2000 simulations of each specification were performed, except for the analysis considering

true parameter values of zero, for which only 100 were performed. ML estimation (above,

“Maximum likelihood estimation”) was used for data resulting from single-lab simulations,

and MCMC estimation (above, “Markov-chain Monte Carlo estimation”) was used for both

single- and multi-lab simulations. For a simulated true parameter θ and distribution of median

posterior estimates ŷ, accuracy of the MCMC method was characterized both as bias (median

and middle 95% of ðŷ � yÞ) and as absolute error (median of jŷ � yj); these values were

divided by ln(10), i.e., reported as log10-error.

Characterizing accuracy of assays. Simulations were used to illustrate the typical accu-

racy of each lab’s assay in the absence of batch effects (assuming that these could be rendered

irrelevant by assaying specimens from the same person—such as baseline and post-treat-

ment—in the same batch). For each of 1000 samples from the batch effect-free ensemble

posterior (see above, “Markov-chain Monte Carlo estimation”) and each assumed true

IUPM, 1000 simulations of well-by-well output were performed for each assay, each with

a separate random draw of aliquot-level and lab-level random effects. In each simulation,

the maximum likelihood estimate of IUPM was compared to the true IUPM (scaled by lab-

specific factor βl) to obtain the log10-error. The median of absolute log10-error was then

recorded for each of the 1000 samples from the ensemble posterior. For each lab’s assay, we

then report the median, 2.5%ile, and 97.5%ile of these median absolute errors across the pos-

terior sample.

We ran two versions of these simulations. For the first version, we supposed that each assay

has equal claim to biological truth and that lab-based random effects cil are discrepancies from

a consensus standard. These random effects were drawn from N ð0; scÞ, where σc is the esti-

mated value drawn from the ensemble posterior. For the second version, we chose the JHU

assay (index l = 3) to represent the standard against which other assays are measured. Under

this assumption, the differences cil − ci,3 are lab l’s discrepancies from the standard. To simulate

data in which the cil themselves are the discrepancies, we sampled these random effects from

N ð0;
ffiffiffi
2
p
� scÞ for all l 6¼ 3. All JHU lab-based random effects ci,3 were set to zero.

The same simulations were also used to compare accuracy between each pair of assays. For

each assumed true IUPM and ensemble posterior sample, the difference in median absolute

log10-error between two assays was recorded for the 1000 matched simulations. For each pair

of assays, we report the median, 2.5%ile, and 97.5%ile of these differences across the posterior

sample.

At JHU and SR, the number of replicate wells with one million cells apiece varied with the

number of rCD4s purified from each aliquot. First, to mimic typical aliquots, we simulated

the JHU assay with 26 replicates and the SR assay with 12 replicates. Second, to consider the
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situation where JHU and SR used a number of cells similar to those used by U. Pitt. and

UCSD, we simulated both assays with 8 replicates.

Simulation of clinical trial. Latency-reducing treatment was simulated to illustrate the

power and accuracy of QVOA for measuring changes in IUPM. Pretreatment log10 IUPM

from each participant was assumed to follow a normal distribution with mean −0.013 and

standard deviation 0.675, consistent with the cohort studied in [10]. Within-person change in

log10 IUPM from pre- to post-treatment was normally distributed with mean δ and standard

deviation σδ. In control participants, “pre” and “post” IUPMs were equal. Both JHU and

UCSD assay protocols were simulated, using ensemble posterior median parameter estimates

reported in S10 Table (“All four labs, using JHU day 21 readout”). For the JHU assay, we simu-

lated 50 million-cell wells for fresh samples, 26 million-cell wells for frozen samples, and two

wells of each other size (five-fold dilution from 200,000 to 320). The UCSD assay was simu-

lated according to the configuration in S3 Table.

Both batched and unbatched analyses were studied. In batched analysis, all samples were

treated as cryopreserved, and only aliquot- and lab-level excess variation were included (all

batch effects bkl = 0). In unbatched analysis, all samples were treated as fresh, and all three lev-

els of excess variation were included. In both cases, the same lab-level random effect cil was

assumed to hold for both samples from each participant. For each sample, the maximum likeli-

hood IUPM was estimated, with negative assay results replaced with a value equal to one-half

of the minimum possible positive assay value. A before-after change in log10 IUPM was calcu-

lated for each individual from these IUPM estimates.

Two treatment effects were studied: a 10-fold median reduction in IUPM (strong effect),

but with substantial person-to-person variation (δ = −1, σδ = 0.5), and a weak effect with lower

person-to-person variation (δ = −log10(3)� −0.48, σδ = 0.16). We intended the strong effect to

represent a treatment with clinical potential, and we simulated an early, discovery-oriented

study with 6 treated participants and no controls, analyzed by a paired t-test. We intended the

weak effect to represent a treatment with minor improvement over those currently reported

[21], of interest for providing information about the biology of HIV or as a possible compo-

nent of future combination treatments. We assumed greater concern in this situation about

background change over time and assay drift, so we simulated studies with 12 treated and 12

control individuals, with change in log10 IUPM analyzed by unpaired t-test. We also evaluated

an alternative approach to analysis of the simulated data. This approach used maximum likeli-

hood applied to all the well-level assay results to estimate a model with fixed effects for treat-

ment and each person’s baseline IUPM, along with a random effect for within-person change.

(For the weak effect scenario, different random effect variances were allowed for treated versus

control participants.) 1000 simulations were analyzed for each scenario, for 8000 simulations

in all (JHU/UCSD assay protocols, batched/unbatched analyses, weak/strong treatment effect).

Power was calculated as the fraction of simulations for which p< 0.05 in the t-test or maxi-

mum likelihood analysis.

Results

Simulation validates MCMC fitting of ensemble model

We first tested the MCMC method in simulations of the frozen panel at a single lab (Methods:

“Validation by simulation: Single lab”). We found that fitting a model that forces aliquot- and

batch-level random effects to be positive led to over-estimates of these effects, particularly

when the simulated effect was moderate or nonexistent (median biases up to +0.132 log 10, S5

Table). Analysis by maximum likelihood (Methods: “Maximum likelihood estimation”) gave

poorer results. These findings indicated that priors for the random effect variances would be
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suitable only if they included mass at zero. We therefore implemented priors with 50% point

masses at zero by using MCMC to fit an ensemble of eight separate model components,

together allowing for the eight possible combinations of presence/absence of the three random

effects (aliquot-level, batch-level, and lab-level, see Methods: “Markov-chain Monte Carlo

estimation”).

In simulations mimicking the 4-lab experimental design (Methods: “Validation by simula-

tion: Multiple labs”), we found that MCMC fits of the ensemble model estimated all fixed

effects and the between-lab random effect very well. Median biases in these estimates were

between −0.013 and +0.012 log 10, and 95% CI coverage was between 93.2% and 95.0%

(Table 2). The model produced similar estimates for all priors tested. The HCð0; 1Þ prior did

slightly outperform the other three priors tested (S6, S7 and S8 Tables), and so it was chosen

for all analyses of experimental data.

The method also estimated the combined effect of aliquot-level and batch-level variation

well (median bias −0.024 log 10, 95% CI coverage 96.6%). Yet it was more difficult to disentan-

gle variation between these two levels: Aliquot-level variation was overestimated slightly

(median bias +0.043 log 10), batch-level variation was substantially underestimated (median

bias −0.202 log 10), and both had coverage slightly lower than expected. This difficulty likely

arises from experimental constraints that limited batches to only one or two aliquots each.

This mis-assignment of batch-level variation to the aliquot level may also explain bias and low

coverage for the combined effect of aliquot-level and lab-level variation. An experimental

design with larger batches may be less vulnerable to these issues.

To investigate whether MCMC fitting of the ensemble model might lead to a false conclu-

sion that variation is present at a given level, we simulated data for which one or more of

the three sources of variation was removed. When all three sources were removed from

Table 2. Performance of MCMC estimation using the ensemble model and HCð0; 1Þ prior, in simulation of multi-

lab experimental design in S3 Table. The experiment has a total of 194 million to 289 million cells from each of five

participants, distributed among four labs, encompassing 474 to 569 wells per participant. Bias and absolute error repre-

sent over- or underestimation of effect sizes, as difference in log10 of fold-change. For example, typical batch effects are

estimated to be 10−0.202 = 63% of the simulated truth. See Methods (“Validation by simulation: Multiple labs”) for sim-

ulation details.

Parameter Median [2.5, 97.5%ile] bias of

estimate (log10)

Median absolute error of

estimate (log10)

95% CI

coverage

Total variation

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a þ s

2
b þ s

2
c

p
Þ

+0.008 [−0.097, +0.132] 0.040 95.6%

Aliquot & batch

variation

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a þ s

2
b

p
Þ

−0.024 [−0.254, +0.126] 0.058 96.6%

Aliquot & lab variation

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
a þ s

2
c

p
Þ

+0.060 [−0.046, +0.169] 0.061 78.7%

Batch & lab variation

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
b þ s

2
c

p
Þ

−0.025 [−0.235, +0.130] 0.063 95.3%

σa +0.043 [−0.175, +0.168] 0.082 88.4%

σb −0.202 [−0.248, +0.093] 0.202 89.5%

σc +0.009 [−0.189, +0.191] 0.114 93.2%

βS −0.000 [−0.278, +0.268] 0.095 95.0%

β2 (UCSD) +0.012 [−0.333, +0.369] 0.126 93.4%

β3 (JHU) +0.000 [−0.390, +0.409] 0.135 93.2%

β4 (SR) −0.013 [−0.461, +0.417] 0.142 94.0%

https://doi.org/10.1371/journal.pcbi.1006849.t002
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simulations, MCMC rarely produced estimates surpassing the level of variation observed in

the experimental data (posterior probability weight typically no more than 0.1%, bottom row

of S9 Table). When one or two sources of variation were included, MCMC often misidentified

the source of variation, though misidentification as aliquot-level variation was less common

and typically produced estimates smaller than the experimental estimate. Even when one

source was misidentified as another, estimates of total variation coming from all three levels

performed well.

MCMC method estimates systematic and random variation in QVOA

Although the goal of each lab’s assay is the same—to quantify infectious provirus infecting

resting CD4+ T cells—infection levels reported by UCSD were consistently higher than those

reported by the other three labs (Fig 2). We used the Bayesian model to estimate the systematic

effect of assay characteristics and lab practices, measured as fold-change from U. Pitt. as refer-

ence (Table 3). When accounting for differing cell counts in each assay, as well as excess ran-

dom variation at the aliquot, batch, and lab levels, we found that UCSD reported IUPMs

averaging 9.2-fold higher than those reported by U. Pitt. (95% CI 3.8—24). For the other two

labs, credible intervals for this systematic effect spanned 1. This result is not surprising, given

methodological differences in each assay. U. Pitt., JHU, and SR each recorded a well as positive

for viral outgrowth if levels of viral protein p24 measured by ELISA exceeded that of a thresh-

old reference sample. UCSD, on the other hand, used viral RNA detection. While RNA detec-

tion is more sensitive than the p24 assay [22], it may have greater potential for false positive

results. In fact, two wells of a single negative coded control aliquot were reported as positive

(Fig 2).

Both the systematic effect and assay input cell counts determine the frequency of all-nega-

tive assay results. While SR’s experimental protocol was modeled on that of JHU (S2 Table),

they reported more all-negative aliquots (4 of 15 versus 1 of 15 aliquots for JHU). This observa-

tion reflects the fact that SR generally recovered fewer resting CD4s from each aliquot than

JHU did for input into QVOA (average of 12.7 versus 26.8 million cells per aliquot, S3 Table),

and it might also reflect a systematically lower IUPM scale (half that of JHU, although credible

intervals overlap).

In addition to this systematic lab effect, we determined that random variation in excess of

the baseline Poisson-binomial model was likely (posterior probability 0.85) at all three levels—

between-aliquot, between-batch, and between-lab. Excess variation in at least one level was a

near-certainty (posterior probability = 1 − 10−22). Table 4 summarizes estimates of excess vari-

ation at each level. As study design was limited to batches of only one or two aliquots, it is not

easy to disentangle variation at the aliquot and batch levels; estimates are inversely correlated

with one another (slope −0.69, S1 Fig). Combining variation at both of these levels, we estimate

that two aliquots, studied in two different batches at the same lab, are expected to vary 2.0-fold

in excess of Poisson variation (95% CI 1.6—2.7). Two aliquots, studied at two different labs,

are expected to vary 2.3-fold in excess of Poisson variation (95% CI 1.8—3.5), an estimate

obtained by combining variation at all three levels.

Table 3. Systematic lab effects, fold-change from U. Pitt. Posterior medians and 95% CIs shown.

Lab Ensemble model (accounting for excess variation) Enforcing model without excess variation

UCSD 9.2 (3.8—24) 7.4 (5.7—9.7)

JHU 0.81 (0.30—2.4) 0.75 (0.56—1.0)

SR 0.39 (0.13—1.12) 0.51 (0.35—0.75)

https://doi.org/10.1371/journal.pcbi.1006849.t003

Assessing precision and repeatability of outgrowth assays of HIV-1 latent reservoir size

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006849 April 12, 2019 12 / 24

https://doi.org/10.1371/journal.pcbi.1006849.t003
https://doi.org/10.1371/journal.pcbi.1006849


Cryopreservation did not have a major effect on QVOA outcomes

When accounting for excess variation, all credible intervals estimated for the effect of cryopres-

ervation spanned 1-fold change, or the absence of an effect (Table 5). When using results from

all three labs that tested fresh and frozen panel aliquots (SR did not test fresh PBMC samples)

to estimate a single effect size, we estimated between 0.56- and 1.97-fold change in infection

frequency compared to fresh aliquots. In the context of the large (> 100-fold) reductions

sought by latency-reducing therapies, this effect is not major. Credible intervals were wider

when the effect was estimated for each lab separately, and the interval was particularly wide for

JHU (25-fold difference between top and bottom of interval), owing to the larger number of

all-negative aliquots at this lab.

Precision within and across labs

Running MCMC analysis on each lab separately suggested that each lab’s assay offered a simi-

lar level of precision. The median estimates for aliquot- and batch-level variation for each lab

fell within the 95% credible interval of the joint estimates in Table 4, and none were more than

21% away from the corresponding median estimate (S10 Table, S2 Fig). Precision of early

readout (day 14) from JHU assays was, however, estimated to be lower than that of the other

assays: There was combined 3.5-fold variation at both levels (95% CI 2.0- to 10.7-fold), which

is 69% higher (95% CI 10% smaller to 458% higher) than the joint lab estimate that included

data from the later JHU readout. This difference in precision may reflect the fact that allowing

more time for exponential growth leads to a stronger p24 signal and clearer distinctions

between positive and negative wells. S11 Table provides full joint posteriors for each separate

analysis.

Table 4. Estimated excess variation in QVOA.

Level Posterior probability

of excess variation

Estimated variation, fold-change (posterior

median and 95% CI)

Between aliquot 0.980 1.5 (1.1–2.1)

Between batch 0.904 1.8 (1.0–2.4)

Between lab 0.963 1.5 (1.0–2.5)

Between aliquot & batch, combined 1−10−18 (var. at either

level)

2.0 (1.6–2.7)

Total excess variation between aliquots in

two different labs

At least one

level

1−10−22 2.3 (1.8–3.5)

At least two

levels

0.9948

All three

levels

0.85

https://doi.org/10.1371/journal.pcbi.1006849.t004

Table 5. Effect of cryopreservation, fold-change (posterior median and 95% CI).

Lab(s) Ensemble model (accounting for excess

variation)

Enforcing model without excess

variation

All four, using JHU day 14

readout

1.04 (0.56–1.97) 1.0 (0.78–1.26)

U. Pitt. 0.61 (0.18–1.65) 0.71 (0.42–1.18)

UCSD 0.79 (0.27–2.17) 0.75 (0.56–1.05)

JHU (day 14 readout) 2.89 (0.62–15.7) 2.09 (1.30–3.44)

https://doi.org/10.1371/journal.pcbi.1006849.t005
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Neglecting the strong evidence supporting excess random variation at multiple levels

(Table 4) can generate misleading interpretations about precision of lab procedures. To dem-

onstrate the relevance of accounting for excess random variation, we recomputed all estimates

in a model excluding this excess variation (Tables 3 and 5, right columns). While median esti-

mates did not change greatly, credible intervals shrank by 2- to 10-fold for each parameter.

Neglecting this excess variation therefore overstates certainty in parameter estimates. One par-

ticular effect of this error in our experiment would be to conclude, rather strongly (p< 0.001),

that cryopreservation increases observed infection frequencies in the JHU lab.

Paying close attention to the sources of random and systematic variation can help in choos-

ing assays for and optimizing design of clinical trials for latency-reducing therapies. In the

next two sections, we demonstrate how simulations based on the parameter estimates

described above may guide this effort.

Simulations based on experimental outcomes can be used to compare assay

accuracy

While each lab’s assay aims to measure the replication-competent HIV latent reservoir, proto-

cols differ among them: U. Pitt., JHU, and SR use a p24 antigen test to detect viral outgrowth,

while UCSD uses an RNA PCR test; U. Pitt., JHU, and SR use PHA and gamma-irradiated

PBMCs to stimulate resting cells, while UCSD uses antibody to CD3/CD28 bound to the cul-

ture plate (S2 Table). Additionally, target cells added to propagate virus differ among labs.

These protocol differences may explain both systematic and random variation between labs

(Tables 3 and 4). We may think of these labs as measuring different aspects of latency, each

with a valid claim to being a meaningful measure, with experimental and biological motiva-

tions for specific protocol choices.

In the absence of an external standard defining latent reservoir size, we can nonetheless

address how sensitivity of an assay affects its accuracy. Specifically, assays that use more

input cells overall or have systematically high IUPMs (high fold-change in Table 3) will have

improved sensitivity. By drawing from the joint posterior distribution (S11 Table) and simulat-

ing data for each draw, we investigated how sensitivity relates to the accuracy of measuring

small reservoirs (Methods: “Characterizing accuracy of assays”).

For typical infection frequencies (1 IUPM on the U. Pitt. scale, higher or lower for the other

assays according to systematic effect, Table 3), all four assays have nearly identical accuracy, as

measured by median absolute error from a consensus standard (Fig 3). As infection frequency

declines from this level, error increases for all four assays, most sharply for SR, but gradually

for UCSD and JHU. In the case of SR simulated at 0.1 IUPM on the U. Pitt. scale (median of

0.039 IUPM on the SR scale, Table 3), for a majority of parameter draws, a majority of simu-

lated assay outcomes are all-negative, resulting in infinite error on the log scale. In the case of

UCSD and JHU, improved accuracy has costs: The more sensitive RNA-based assay used by

UCSD may have a higher false positive rate (2 of 18 control wells with one million cells were

reported as positive, compared to none of the 193 control wells with one million cells among

the other three assays, S4 Table), and JHU exhausted a larger sample (26.5 million cells simu-

lated, versus 8.6 to 12.5 million for the other assays). If the JHU assay is simulated with fewer

cells, bringing it in line with the other assays, its accuracy profile lies between that of U. Pitt

and SR (S3 Fig); overlapping credible intervals in accuracy reflect overlapping credible inter-

vals in systematic lab effects.

If false positives did in fact occur in HIV+ samples studied by the UCSD RNA-based

assay, it would be reflected in our estimates as both improved sensitivity for UCSD (higher

β2) and reduced correlation between labs (higher σc). We used simulations to investigate
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the possible tradeoff between sensitivity and specificity, treating the JHU assay as a gold

standard (not subject to lab-based random effect) and subjecting UCSD to the total

between-lab variation (applying a random effect with standard deviation
ffiffiffi
2
p
� sc to each

participant). If an equal number of cells is made available to both assays, then the extra sensi-

tivity of RNA readout outweighs the cost of extra variability for particularly small reservoirs

(IUPM of 0.2 or less on the U. Pitt. scale, Fig 4). Uncertainty in estimates of between-lab var-

iation, UCSD systematic effect, and JHU systematic effect, however, make definitive com-

parisons difficult; credible intervals for the UCSD/JHU accuracy difference overlap zero

for all IUPMs simulated. If the JHU assay instead uses roughly three times as many cells as

UCSD, as in the experimental study, then it does not suffer the same disadvantage at the low

IUPMs simulated and enjoys a somewhat larger advantage at higher IUPMs. The accuracy

of any two assays may be compared head-to-head by the same simulation method, judging

their performance against a consensus standard (applying σc equally to both assays, S12 and

S13 Tables) or against a chosen standard assay (applying
ffiffiffi
2
p
� sc to other assays, S14 and

S15 Tables).

Fig 3. Accuracy of assays used in the experimental study. Each assay is measured against a consensus standard, appropriately scaled by βl for

that assay. “All-negative” represents infinite error on the fold-change scale, which occurs when the maximum likelihood estimate of IUPM is

zero. Median estimate and 95% credible intervals shown for 0.1, 0.2, 0.5, 1, 2, and 4 IUPM on the U. Pitt. scale. At IUPMs of 1 or more, measured

values in these assays are expected to be within 1.6- to 1.9-fold of the truth.

https://doi.org/10.1371/journal.pcbi.1006849.g003
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Batched study design can improve power to detect latency reduction

Cryopreserving specimens allows samples taken at different points in time to be thawed and

analyzed together in the same batch. This strategy eliminates the estimated 1.8-fold batch vari-

ation that would otherwise affect longitudinal comparisons in clinical trials, potentially boost-

ing power to detect reduction in latency. To investigate this possibility, we simulated and

analyzed data for two hypothetical latency-reducing therapies with strong effect (10-fold

reduction in latency) and weak effect (3-fold reduction) (see Methods: “Simulation of clinical

trial”). For each therapy, we simulated both a p24 assay based on JHU protocol, which uses all

available cells from a participant, and an RNA assay based on UCSD protocol, which uses a

fixed number of cells regardless of availability. Consistent with JHU assay cell counts (S3

Table), we supposed that roughly half as many cells would be recovered from cryopreservation

as would be available fresh.

For the weaker therapy, batching substantially improved power to detect and accuracy to

measure latency reduction following treatment (Table 6). Improvement was greater for the

UCSD protocol, with power increasing from 58.6% to 82.6% and median absolute error

declining from 0.14 log10 to 0.10 log10. Although freezing-thawing sacrificed half of the resting

cells available to the JHU protocol, the benefits of batching overcame this deficit, leading to a

15 percentage-point increase in study power.

Fig 4. Difference in accuracy between UCSD and JHU assays, assuming that the JHU assay is a gold standard (not subject to lab-

based random effect). Batch variation-free ensemble estimates of parameters were used in simulations. Median estimate and 95%

credible intervals shown for 0.1, 0.2, 0.5, 1, and 2 IUPM on the U. Pitt. scale. All values plotted are also provided in S14 and S15

Tables.

https://doi.org/10.1371/journal.pcbi.1006849.g004
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For the stronger therapy studied in a smaller cohort, batching provided a modest benefit to

the UCSD protocol, but reduced cell availability in the JHU protocol eliminated this benefit

completely. Moreover, both protocols underestimated the effect of treatment (−7% to −34%

bias, Table 6). This outcome resulted from our use of an imputed IUPM in the case of negative

assay results, a common practice in the field [23]. Strong therapy that reduces latency 10-fold

can often result in true IUPMs well below the imputed value. In the batched JHU protocol,

35% of samples returned a negative assay, leading to the largest underestimate of treatment

effect. To provide an alternative to the t-test that avoided imputation, a maximum likelihood

estimate of effect size was also computed. When this method was used, batching improved

both power and accuracy in all cases, but the resulting confidence intervals had poorer cover-

age (S16 Table).

Maximum likelihood estimation underperformed MCMC

None of the three software packages that we tried produced fully satisfactory results when

applied to the experimental data (Methods: “Maximum likelihood estimation”). The best log-

likelihood obtained was from a model in Stata that excluded between-lab variation. When this

variation was included, the log-likelihood closely approached that of the best model before

ending with an error. In SAS, the model fitting completed for essentially the same model, with

σc = 0, but with most parameters having standard errors equal to zero. In R, the model con-

verged to substantially different parameter values, with a much worse log-likelihood.

Aside from the lack of between-lab variation, which may reflect the bias toward zero seen

in single-lab simulations (see Methods: Maximum likelihood estimation), many results by

maximum likelihood were similar to the MCMC results given above. The cryopreservation

effect and systematic lab effects were all within 10% of MCMC posterior medians. The

Table 6. Simulated results of latency reduction trials, using a t-test to compare pre- and post-treatment data.

JHU protocol

Weaker therapy (3x), N = 12 per arm Stronger therapy (10x), N = 6, no control

arm

Unbatched Batched Unbatched Batched

Median estimated fold-reduction 3.04 2.83 8.77 6.62

Median bias (%) +1% −6% −12% −34%

Median log10 absolute error 0.14 0.12 0.19 0.20

Accuracy improvement from batching (% reduction in abs. error) 14% −5%

Coverage of 95% CI 95.4% 93.9% 94.7% 90.5%

Power (p< 0.05) 57.8% 72.4% 75.1% 77.1%

Power improvement from batching (percentage point increase) 15% 2%

UCSD protocol

Weaker therapy (3x), N = 12 per arm Stronger therapy (10x), N = 6, no control

arm

Unbatched Batched Unbatched Batched

Median estimated fold-reduction 3.03 2.95 9.29 8.57

Median bias +1% −2% −7% −14%

Median log10 absolute error 0.14 0.10 0.19 0.17

Accuracy improvement from batching (% reduction in abs. error) 29% 11%

Coverage of 95% CI 94.6% 94.1% 94.5% 94.7%

Power (p< 0.05) 58.6% 82.6% 78.5% 86.4%

Power improvement from batching (percentage point increase) 24% 8%

https://doi.org/10.1371/journal.pcbi.1006849.t006
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typical between-aliquot excess variation was estimated to be 1.61-fold (vs 1.50-fold by

MCMC), with a p-value of 0.0003. The typical between-batch excess variation was estimated to

be 1.43-fold (vs 1.77-fold by MCMC), with p = 0.098. A likelihood ratio test for at least one

source of excess variation had p = 1.4 × 10−13.

Discussion

Rigorous evaluation of the performance of QVOAs is challenging due to their high cost and

the presence of unavoidable background variation. By applying detailed statistical analysis to

75 split PBMC samples from 5 ART-suppressed HIV+donors, we found strong evidence for

additional variation beyond the unavoidable background, even within a single batch at a single

lab. When a donor’s true IUPM is 1 or more (on the U. Pitt. scale; Table 3), we estimated that

assay results typically differ from the true IUPM by a factor of only 1.6 to 1.9 up or down (Fig

3). At lower true IUPMs, some assays had much larger median errors, while others avoided

major increases by use of a large number of input cells (JHU assay) or by use of a readout that

was more often positive (UCSD assay). We caution that these findings depend both on assay

configuration (number of wells of each input cell number) and consistency of experimental

protocols. In this study, QVOA was conducted by four labs with over 50 years’ combined expe-

rience developing and performing this labor-intensive assay; we do not know whether QVOA

performance may differ in other lab settings.

We found that the four assays appeared to differ from each other both systematically (in

scale; see Table 3) and randomly (between-lab variation in Table 4). These differences may

reflect the differing subsets of infectious units (IU) that the assays detect. Recent work suggests

that QVOAs detect only a fraction of the IU present in a sample [11]. The assays’ different

stimulation and detection procedures likely cause each to measure a different subset of IU. Dif-

ferent inducers of T cell activation have variable effectiveness. In one study, the use of antibod-

ies to CD3 and CD28 was more effective than other methods [24]. For the detection step, HIV

RNA by PCR is more sensitive than digital ELISA assays for p24 antigen (e.g., Simoa [25]),

which in turn is more sensitive than the standard ELISA assay for p24 antigen. Details of CD4

cell separation and aspects of cell co-culture details like cell type and medium could also create

variability between labs. Measuring a larger subset of IU is desirable, because sampling varia-

tion is relatively smaller when counts are higher, reducing relative error. A caveat, however, is

that the fraction of the total latent reservoir within a smaller subset could, at least in principle,

be more stable within and between individuals than that within a larger subset. We could not

assess this possibility, because we had no gold standard measurement of the entire reservoir.

In addition, higher readings that are due to false positive wells will not improve measurement.

The UCSD assay, which used an in-house RT-PCR assay to detect HIV RNA rather than p24

antigen in culture supernatants, had two false positive wells among 126 wells evaluated for an

HIV-uninfected donor. These were contiguous wells with one million cells each within a single

one of three split samples. This may have been due to contamination during culture superna-

tant testing by RT-PCR, and in any case would not be a high enough rate to account for much

of the UCSD scale factor.

The existence of substantial measurement error in QVOA has implications for the design

of clinical studies that use QVOA to evaluate eradication strategies. Classical sample size calcu-

lations depend on the size of the latency reduction effect and how much it varies from person

to person (δ and σδ in the simulated clinical trials described above). Measurement error

increases the effective person-to-person variation, which increases the sample size needed

for any given level of desired precision. We do not, however, recommend assuming that

measurement error is the only source of person-to-person variation in the observed effect.
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Interventions may well have truly differing effects for different people, and this variation may

be as large or larger than the variation due to measurement error. Unfortunately, the variation

in intervention effects may be difficult to accurately anticipate at the planning stage of a study

[26].

Another implication is the need to use designs that will not be biased by regression-to-

the-mean phenomena. For example, it might seem reasonable to exclude from an interven-

tion study potential participants who have QVOA results that are all negative (measured

IUPM = 0) at baseline, because they cannot go any lower. This exclusion, however, will

tend to cause the remaining participants to average lower on repeat testing than at baseline,

because the remaining subset has been depleted of some downward measurement errors

by the exclusion, while the repeat testing will include an unbiased array of measurement

errors. Therefore, a randomized parallel design should be used if such a baseline exclusion is

applied; treated and control arms will then have comparable regression to the mean, result-

ing in a fair assessment of the intervention effect.

We found evidence that controlled-rate freezing and liquid nitrogen storage and shipping

of PBMC did not cause substantial differences in QVOA results compared to use of fresh cells.

This is encouraging because of the practical difficulties in using fresh cells and because storage

enables assaying multiple specimens from the same person in the same batch, eliminating

batch variation from estimates of within-person changes. It also permits clinical trials to be

more readily conducted in trial sites without local laboratories qualified to perform reservoir

assays. Our simulations showed the potential for gains in power and precision from such

batching. There are, however, some important caveats regarding storage. We had only 15

results on fresh cells, with no split samples evaluated at the same lab. Despite this, our CI’s

were narrow enough to provide good evidence against any systematic change due to storage of

2-fold or more (Table 5). In addition, the lack of split fresh samples precluded effective evalua-

tion of the effect of storage on measurement variability. We also did not evaluate the effect of

storage duration. The SR assay was performed later, after longer storage, than the other assays,

and it also tended to have the lowest IUPMs. Using similar protocols to the JHU assay, it also

obtained lower numbers of input cells, and JHU obtained lower input from stored samples

than from the fresh samples collected at the same time. Consequently, until additonal studies

on impact of duration of storage on QVOA IUPMs are conducted, we recommend that serial

PBMC samples from participants in intervention studies be frozen and batch tested as soon as

practical following collection.

Our statistical methods and results indicate potential value for additional statistical research

on how to estimate and analyze QVOA data (and data from similar limiting dilution assays).

We found a 98% posterior probability of extra-Poisson variation between split samples in the

same batch at the same lab (Table 4). This suggests that there could also be extra-Poisson vari-

ability between wells within a single assay run, which would violate the single-hit Poisson

dynamics that are typically assumed when calculating IUPM. A modified approach might be

warranted in which the usual Poisson formulas are replaced with formulas based on the nega-

tive binomial distribution, which allows for overdispersion. A reasonable choice of overdisper-

sion parameter would be our posterior median estimated s2
a of about 0.16, or it could be

estimated as an auxiliary parameter of the calculation. Alternatively, the usual maximum likeli-

hood approach could be replaced with a Bayesian posterior median. For analysis of the full 75

QVOA results in our study, we found that Bayesian MCMC estimation outperformed maxi-

mum likelihood. Although our study differs from clinical studies of interventions to reduce

the latent reservoir, there may be potential for MCMC estimation to improve the analysis of

clinical studies, too.
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Conclusion

This study provides evidence that QVOA assays have extra variation, beyond what is theoreti-

cally inevitable, at three levels: between split samples even in the same batch, between batches

run using the same assay, and between different assays. Results for stored frozen samples did

not appear to differ systematically from those on fresh samples. We developed and validated

methods for fitting detailed statistical models of assay variation. We are now using these meth-

ods to evaluate faster and cheaper alternatives to the classical QVOA assays evaluated here

[27].
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S2 Table. Laboratory protocols.
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S3 Table. QVOA well configuration.
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S5 Table. Performance of MCMC estimation using the model with positive aliquot- and
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S6 Table. Performance of MCMC estimation using the ensemble model and HCð0; 2Þ
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S7 Table. Performance of MCMC estimation using the ensemble model and HCð0; 3Þ
prior, in multi-lab simulation, as in Table 2.
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S8 Table. Performance of MCMC estimation using the ensemble model and HCð0; 4Þ
prior, in multi-lab simulation, as in Table 2.
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S9 Table. Performance of MCMC estimation assuming a true random effect parameter of

zero, using HCð0; 1Þ prior, in multi-lab simulation.
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S10 Table. Summary of model fits. Parameter distributions of the ensemble model are

reported as weighted quantiles of 8000 posterior samples, and the number of samples in the

discrete ensembles are shown (see Methods: “Markov-chain Monte Carlo estimation”). Analy-

sis is shown for eight different subsets of the data: three subsets including multiple labs, and

five subsets including a single lab each.

(XLSX)

S11 Table. Full joint posteriors for model fits and membership in discrete ensemble poste-

riors. Both discrete ensemble posteriors are provided for each subset of the data, each contain-

ing 1000 samples (see Methods: “Markov-chain Monte Carlo estimation”). Quantiles of

both discrete ensembles are shown. Additionally, quantiles are shown for the single model
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estimating all three random effects.

(XLSX)

S12 Table. Pairwise comparisons of assay accuracy for lower IUPMs, assuming that each

assay has equal claim to biological truth (σc applied to both assays). Batch variation-free

ensemble estimates of parameters were used in simulations. Each entry shows median

improvement of row versus column assay (median and 95% CI sampling from ensemble

parameter distribution). IUPMs are shown on the U. Pitt. scale. Darker shading: Entire CI is

above zero (green) or below zero (red). Lighter shading: Median estimate is above 0.05 (> 12%

increase, green) or below −0.05 (> 11% decrease, red), but the CI crosses zero. “Infinite” dif-

ference in accuracy indicates that a majority of simulations of the disfavored assay have all-

negative outcomes (maximum likelihood estimate of zero). Assay configurations match those

in the experimental study, except “JHU (8M)” and “SR (8M),” which use fewer wells to match

the cell input count of U. Pitt. and UCSD assays.

(PDF)

S13 Table. Pairwise comparisons of assay accuracy for higher IUPMs, assuming that each

assay has equal claim to biological truth (σc applied to both assays). Method and format

match S12 Table.

(PDF)

S14 Table. Pairwise comparisons of assay accuracy for lower IUPMs, treating the JHU assay

as gold standard (
ffiffiffi
2
p
� σc applied to other assays). Method and format match S12 Table.

(PDF)

S15 Table. Pairwise comparisons of assay accuracy for higher IUPMs, treating the JHU assay

as gold standard (
ffiffiffi
2
p
� σc applied to other assays). Method and format match S12 Table.

(PDF)

S16 Table. Simulated results of latency reduction trials, maximum likelihood estimation

to compare pre- and post-treatment data.

(PDF)

S1 Fig. Scatterplot of estimates of excess variation at the aliquot, batch, and lab levels,

expressed as the natural log of fold-change (parameters σa, σb, σc). Panels show robust linear

regression and Wald test p-values (null model = zero slope) of 1000 samples from the ensem-

ble posterior.

(TIF)

S2 Fig. Sensitivity analysis of of aliquot-level, batch-level, and lab-level variation.

(TIF)

S3 Fig. Accuracy of assays used in the experimental study, with JHU and SR assays modi-

fied to use the same number of input cells as U. Pitt. and UCSD. Each assay is measured

against a consensus standard, appropriately scaled by βl for that assay. “All-negative” on the y-

axis represents infinite error on the fold-change scale, which occurs when the maximum likeli-

hood estimate of IUPM is zero. Bars show 95% credible intervals around median posterior

estimates.

(TIF)

S1 Appendix. Stan model code. Complete model specifications are provided in the Stan pro-

gramming language (version 2.12) as supplementary text files. Each filename has a binary

code, indicating presence/absence of aliquot and batch effects (for single-lab models) or
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presence/absence of aliquot, batch, and lab effects (for multi-lab models). In the code, Sour-
ceID refers to participant index i, UniqAliquot refers to concatenated participant-aliquot

index ij, UniqBatch refers to concatenated batch-lab index kl, AssaySourceID refers to

concatenated participant-lab index il, Assay refers to lab index l, and Stored refers to cryo-

preservation indicator Sij. Note that all effects are represented as logit values, ensuring that all

frequencies remain between 0 and 1 as MCMC explores the parameter space.

(ZIP)
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