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Whole brain dynamics intuitively depend upon the internal wiring
of the brain; but to which extent the individual structural con-
nectome constrains the corresponding functional connectome is
unknown, even though its importance is uncontested. After acquir-
ing structural data from individual mice, we virtualized their brain
networks and simulated in silico functional MRI data. Theoretical
results were validated against empirical awake functional MRI data
obtained from the same mice. We demonstrate that individual
structural connectomes predict the functional organization of indi-
vidual brains. Using a virtual mouse brain derived from the Allen
Mouse Brain Connectivity Atlas, we further show that the dominant
predictors of individual structure–function relations are the asymme-
try and the weights of the structural links. Model predictions were
validated experimentally using tracer injections, identifying which
missing connections (not measurable with diffusion MRI) are impor-
tant for whole brain dynamics in the mouse. Individual variations
thus define a specific structural fingerprint with direct impact upon
the functional organization of individual brains, a key feature for
personalized medicine.
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Structural connectivity (SC) refers to a set of physical links
between brain areas (connectome, ref. 1) and constitutes an

individual fingerprint in humans (2, 3). Since the connectome
provides the physical substrate for information flow in the brain,
it should impose strong constraints on whole brain dynamics.
Functional connectivity (FC), in the context of resting-state
functional MRI, refers to coherent slow spontaneous fluctua-
tions in the blood oxygenation level-dependent (BOLD) signals
measured in the passive awake individual. FC is commonly used
to assess whole brain dynamics and function (4). Similar to SC,
FC constitutes an individual functional fingerprint (5–7) and
shows specific alterations during aging and in brain disorders (8).
There is thus a strong correlation between the structural and the
functional connectome. However, the causal relation between
SC and FC remains unknown. Large-scale brain modeling offers
a way to explore causality between structural and functional
connectivity. Combining experimental and theoretical appro-
aches, we here unravel and quantify the degree to which the
individual’s SC explains the same individual’s variations in FC.
We use The Virtual Brain (TVB), which allows building in-

dividual brain network models based on structural data (9). This
brain network modeling approach operationalizes the functional
consequences of structural network variations (10, 11) and allows
us to systematically investigate SC–FC relations in individual
human brains (12–15). If SC constrains FC, SC-based simula-
tions of FC should match empirical FC within the bounds of
validity of the metric. In primates and rodents, individual SCs are
derived from diffusion MRI (dMRI). However, dMRI does not
provide information on fiber directionality or synaptic details
(distribution and type of neurotransmitter) and suffers from
limitations, such as underestimation of fiber length and mis-
identification of crossing fiber tracks (16, 17). Given the impre-
cision of dMRI-derived SC, it is difficult to estimate the validity
of the simulations. This would require the knowledge of the

ground truth connectome of an individual, which cannot be
measured at present. However, the currently best gold standard
can be derived in mice from cellular-level tracing of axonal
projections (18), here named the Allen connectome. Although
individuality is lost (the SC is a composite of many mice) and
despite other limitations (19, 20), the Allen connectome provides
details not available otherwise and in particular not available in
humans. Focusing our attention on simulating mouse brain dy-
namics, we can thus use this detailed connectome to explore
which missing features in the dMRI account for individual SC–
FC relations. Specifically, we predict that fiber directionality and
fine grain connectivity patterns should be key determinants.
Using dMRI data of 19 mice, we constructed 19 virtual mouse

brain models (21) and compared predicted FC with empirical FC
data acquired from the same mice during passive wakefulness
(22). We found that individual SC predicts individual FC better
than the dMRI-based averaged SC, and that predictions can be
improved by considering fiber directionality, coupling weights
and specific fiber tracks derived from the Allen connectome. We
also found that hemispherical lateralization in the mouse con-
nectome influences whole brain dynamics.

Significance

The structural connectome is a key determinant of brain function
and dysfunction. The connectome-based model approach aims to
understand the functional organization of the brain by modeling
the brain as a dynamical system, then studying how the func-
tional architecture rises from the underlying structural skeleton.
Here, taking advantage of mice studies, we systematically in-
vestigated the informative content of different structural features
in explaining the emergence of the functional ones. We demon-
strate that individual variations define a specific structural fin-
gerprint with a direct impact upon the functional organization of
individual brains stressing the importance of using individualized
models to understand brain function. We show how limitations of
connectome reconstruction with the diffusion-MRI method re-
strict our comprehension of the structural–functional relation.
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Results
We collected both dMRI and awake resting-state fMRI data
(7 sessions per animal) from 19 hybrid B6/129P mice. We extracted
SC from dMRI data to build individual virtual brains, which were
imported into The Virtual Mouse Brain (TVMB), the extension of
the open source neuroinformatic platform TVB (9) designed
for accommodating large-scale simulations and analysis in the
mouse, to generate in silico BOLD activity (21) using the reduced
Wong Wang model (14, 23). We then compared simulated and
empirical FC for each mouse in order to assess the power that an
individual SC has to predict individual empirical FC derived from
resting-state fMRI data (SI Appendix, Fig. S1). Further, SC was
also obtained from the Allen connectome (our gold standard) in
TVMB (21) to determine the contribution of information not
available in dMRI-based SC. Experimental and simulated resting-
state activity was characterized by a dynamical switching between
stable functional configurations as revealed by the typical check-
erboard patterns of functional connectivity dynamics (FCD, SI
Appendix, Fig. S2 A and B), as observed previously (14, 24, 25). As
expected, FCD varied across recording sessions (SI Appendix, Fig.
S2B). In contrast, static FC was stable between experimental re-
cording sessions (Fig. 1A and SI Appendix, Fig. S2C). To compare
the goodness of in silico resting-state dynamics against in vivo data,
we needed a metric stable across experimental recording sessions
in individual subjects, and thus we used the static FC for evaluating
the predictive power (PP) of a SC, instead of FCD.
We first defined the upper bound of the PP. The correlation

value calculated between any pair of empirical FC for each
mouse provides us with an upper boundary of the PP, taking into
account intersession variability and other sources of noise that
preclude 100% PP accuracy (7, 26). In keeping with human data
(6, 27), we found a high intersession correlation for each of the
19 mice, demonstrating stability across different recording ses-
sions in a given mouse (Fig. 1A). Intersession correlations within
the same animal were greater than intersubject correlations, in-
dicating that there is an individual functional organization per
mouse, which may act as a functional fingerprint. Next, we
sought to examine the extent to which individual functional
connectomes correspond to individual structural connectomes.

SC Obtained with a Deterministic Algorithm Is a Better Predictor of
FC. Here we considered probabilistic (Fig. 1B) and deterministic
(Fig. 1C) dMRI-based SCs, using iFOD2 (28) and SD_Stream
(29) within MRtrix3 software (29) tractography algorithms,
respectively. SC obtained with the deterministic algorithm
yielded a greater PP than the SC obtained with the probabilistic
one (PPIndividual−det = 0.415± 0.005, PPIndividual−prob = 0.392± 0.005,
mean± SD=

ffiffiffiffi

N
p

, P= 0.008 for the Welch’s test Bonferroni cor-
rected, Cohen’s d = 0.45, 95% CI = [0.19, 0.71], n = 120; Fig. 1E).
The significative density difference in the 2 kinds of connectomes
(DensityIndividual−Prob = 69± 1%, DensityIndividual−det = 28.2± 0.2%,
P= 3e−20 for the Welch’s test, Cohen’s d = 12, 95% CI = [8, 17]),
by itself, is not enough to explain the observed discrepancy in the
PP. Connection density does not fully account for the predictive
power of a connectome, but instead the relation depends on the
connectome derivation (SI Appendix, Fig. S3). We argue that the
observed difference in PP between deterministic and probabi-
listic processed connectomes depends on the proportion of false
negative (FN) and false positive (FP) connections introduced by
the 2 different algorithms. Zalesky et al. (30) show that the
typical brain small-world topology is biased by the introduction of
FP connections 2 times more than by the introduction of FN
connections. In line with this finding, we attribute the difference
in PP of the 2 connectomes to the detrimental role of FP con-
nections, which are more likely introduced by probabilistic than
deterministic tractography. However, deterministic tractography
more likely overlooks some connections, introducing FN. This

highlights the importance of preserving SC specificity (FN versus
FP) versus SC sensitivity (FP versus FN) in the context of large-
scale models. Namely, to preserve the global topology, specific-
ity is more important as sensitivity in SC reconstruction. In the
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Fig. 1. FC reliability was evaluated by comparing functional connectivity
estimates between sessions. Representative scatterplots (Left) show the
correlations between sessions of the same mouse (intersession, Top) or be-
tween sessions of different mice (intersubject, Bottom). Quantification of
intersession and intersubject similarities in the whole dataset (Right)
revealed that intersession similarity is significantly higher than intersubject
similarity. Welch’s test ***P < 0.001. (B) Probabilistic and (C) deterministic
connections for the right barrel-related primary somatosensory cortex
(SSp-bfd, Top) and for the whole brain (Bottom) of an individual mouse. (D)
Tracer-based connections from SSp-bfd (Top) and group tracer-based SC
matrix (the Allen SC, Bottom). (E) Predictive power of simulations using
different types of tracer- and dMRI-based SCs. dMRI-based simulations were
performed using individual or group-averaged dMRI (AVG). Welch’s test,
Bonferroni corrected, **P < 0.01 ***P < 0.001. As in the following figures,
the boxes, in A and E, extend from the lower (0.25, Q1) to the upper (0.75,
Q3) quartile values of the data, with a line at the median. The Upperwhisker
of each box extends to the last datum less than Q3 + 1.5*(Q3 − Q1); the
Lower whisker extends to the first datum greater than Q1 − 1.5*(Q3 − Q1).
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following, we compared deterministic SC-based simulated and
empirical FCs.

Individual SC Is the Best Predictor of Individual FC. Next, we found
that individual SCs had a greater predictive power than the aver-
aged SC (PPIndividual−det = 0.415± 0.005, PPAVG−det = 0.377± 0.003,
P= 3e−9 for Welch’s test Bonferroni corrected, Cohen’s d =
0.86, 95% CI = [0.60, 1.12], PPIndividual−prob = 0.392± 0.005,
PPAVG−Prob = 0.349± 0.004, P= 2e−11 for theWelch’s test Bonferroni
corrected, Cohen’s d = 0.97, 95% CI = [0.71, 1.23], n = 120; Fig.
1E), showing the importance of individual SCs. Although the
Allen SC was obtained from hundreds of different mice, we
found that it had a greater PP than individual dMRI-based SCs
(PPIndividual−det = 0.415± 0.005, PPTracer = 0.488± 0.005, P= 4e−21
for the Welch’s test Bonferroni corrected, Cohen’s d = 1.39,
95% CI = [1.05, 1.72], n = 120; Fig. 1 D and E), suggesting that
the tracer-based connectome includes structural information that
is not present in dMRI, but which is central to explain the emer-
gence of the functional connectome, even at the individual level.
As the Allen SC was built from C57BL/6 mice, we verified the
generality of our results in this strain (SI Appendix, Fig. S4A).
Global signal regression, which improves structure–function rela-
tions and averaging recording sessions within each mouse (31),
which reduces noise, increased the PP but did not alter the results
(SI Appendix, Fig. S4 B and C). Finally, splitting the recording
sessions of each mouse and submitting the data to a test–retest
analysis revealed a close agreement between datasets (SI Appendix,
Fig. S4D). Thus, our conclusions are strain and preprocessing in-
dependent, and reproducible.

Importance of Long-Range Connections and Directionality. To iden-
tify the source of the systematic superior performance of the Allen
SC, we focused on the major limitations of dMRI: 1) difficulty in
resolving long axonal tracts, 2) lack of information on fiber di-
rectionality and synaptic transmission, and 3) imprecise estimation
of connection weights caused also by the impossibility to detect
synaptic connections. Although synaptic properties are not avail-
able with precision at present, other parameters can be estimated.
We tested the contribution of fiber length by filtering the Allen SC
to include only fibers present in the dMRI-based SC (Fig. 2A). We
characterized the role of fiber directionality by symmetrizing the
Allen SC (Fig. 2A), asymmetrizing the dMRI-based SC (Fig. 2B),
and quantifying the impact of each manipulation (Fig. 2C).
Since dMRI fiber reconstruction reliability is inversely pro-

portional to fiber length (16, 32, 33), dMRI SCs are sparser
than the Allen SC (Fig. 1 B–D and SI Appendix, Fig. S3A). To
test the influence of the missing fibers in predicting FC, we
built a filtered Allen SC (Fig. 2A), which includes only the
connections contained in at least 1 of the 19 deterministic
dMRI SCs. The filtered connectome contains 32% of the
connections of the original tracer connectome, which are those
captured by the dMRI-based deterministic processed con-
nectomes. The connections that remain after the filtering op-
eration are mainly those characterized by short-range length
(SI Appendix, Fig. S3B): the averaged path length of the con-
nections in the original and filtered tracer-based connectome is
5.40 ± 0.02 mm and 3.57 ± 0.03 mm, respectively. Fig. 2C shows
that the PP of the filtered Allen SC is lower than the original Allen
SC (PPTracerfiltered = 0.461± 0.005, PPTracer = 0.488± 0.005, P= 0.002
for the Welch’s test Bonferroni corrected, Cohen’s d = 0.49, 95%
CI = [0.23, 0.76], n = 120; Fig. 2C); however, it remains statistically
greater than the PP of individual SCs (PPIndividual−det = 0.415± 0.005,
P= 2e−10 for the Welch’s test Bonferroni corrected, Cohen’s d =
0.92, 95% CI = [0.62, 1.20], n = 120; Fig. 2C). Thus, although
connections overlooked by the dMRI method, which are mainly
long-range connections, are important to explain FC, other im-
portant structural features present in the Allen SC are necessary to

explain the discrepancy in PP between the tracer-based and dMRI-
based connectomes.
We next focused on fiber directionality, since imposing bi-

directional communication between regions connected with
unidirectional links in vivo may affect FC. We used an approach
based on surrogate SCs to test the role of directionality. Since
the Allen SC contains directionality between regions, we re-
moved this information by symmetrizing it (Fig. 2A). Fig. 2C
shows that symmetrizing the Allen SC reduces its PP significantly
(PPTracersym = 0.418± 0.004, PPTracer = 0.488± 0.005, P= 2e−20 for
the Welch’s test Bonferroni corrected, Cohen’s d = 1.36, 95% CI =
[1.02, 1.68], n = 120; Fig. 2C), making it comparable to the PP of
the dMRI-based SCs (P= 1.0 for the Welch’s test Bonferroni cor-
rected, Cohen’s d = 0.06, 95% CI = [−0.19, 0.32], n = 120). This
demonstrates that directionality is a key determinant of FC. It is
notable that symmetrizing the filtered Allen SC led to a more
modest reduction of the PP than the symmetrization of the original
Allen SC (PPTracersym = 0.418± 0.004, PPTracerfilteredsym = 0.446± 0.004,
P= 4e−5 for the Welch’s test Bonferroni corrected, Cohen’s d =
0.62, 95% CI = [0.36, 0.87], n = 120; Fig. 2C). We argue that the
PP difference can be explained by considering the amount of false
positive introduced in the surrogate connectomes by the trans-
formation: the filtering operation inserts FN connections, while
the symmetrization operation inserts both FN and FP connections
(34). It follows that the symmetrized and filtered connectome
contains less FP than just the symmetrized connectome. Thus, as
previously discussed for the tractography processing, introducing
FP connections, as produced by the symmetrization but not by the
filtering, is more detrimental than the introduction of FN con-
nections. To summarize when the tracer-based connectome is
manipulated in order to remove the information not detected by
dMRI, which is the inability to detect 1) the directionality of
brain connections and 2) some brain connections, especially the
long-range ones, we found that the removal of the directional-
ity information biases the predictive power of the connectome
more than the removal of the connections not detected by the
dMRI method.
We then took the complementary approach: enriching the

dMRI-based SC with information on fiber directionality, i.e.,
asymmetrizing it. The results show that asymmetrizing the
dMRI SCs does not increase, but rather decreases the PP
(PPIndividual−det = 0.415± 0.005, PPIndividual−det−asym = 0.394± 0.005,
P= 0.02 for the Welch’s test Bonferroni corrected, Cohen’s d =
0.42, 95% CI = [0.16, 0.67], n = 120; PPIndividual−prob = 0.392± 0.005,
PPIndividual−prob−asym = 0.377± 0.005, P= 0.3 for the Welch’s test
Bonferroni corrected, Cohen’s d = 0.29, 95% CI = [0.04, 0.55], n =
120; Fig. 2 B and C). We argue that the asymmetrization of the
dMRI connectomes biased the PP because asymmetrizing a matrix
is an ill-posed problem, since there is no unique solution (more
details can be found inMaterials and Methods). In addition, there is
no 1:1 correspondence between the connection strengths obtained
with dMRI (axonal bundles) and Allen ones (axonal branches)
since axons tend to branch more or less profusely when reaching
their target zone, a feature that cannot be detected by dMRI.

Connection Strengths as Key Determinants of FC. The symmetric
filtered Allen SC and the deterministic dMRI SCs have a similar
structure: both matrices are symmetric and contain the same
number of elements. Since the PP of the symmetric filtered Allen
SC is still greater than the dMRI one, the difference can only
result from dissimilarities in the values of the matrices’ entries,
i.e., the connection strength values. Fig. 2D shows that there is a
significant relation between the normalized U statistics of the
Mann–Whitney U test calculated between the filtered symmetric
Allen SC and the individual dMRI SC and the PP of the latter
(r = 0.52, P = 0.02). Namely, the more the distribution of connection
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strengths of the deterministic dMRI is similar to that of the Allen
SC, the more reliable the predictions are.

Specific Refinement of Individual dMRI Connectomes. Since some
afferent and efferent connections of specific areas may not be
reliably reconstructed with dMRI, we examined whether refining
dMRI SCs with more precise patterns derived from the Allen SC
would improve the PP. For each deterministic dMRI SC, we
substituted the nonzero incoming and outgoing connections of a
specific region with the corresponding Allen SC projections, thus
building a hybrid connectome (Fig. 3A and SI Appendix, Fig. S5).

When considering all mice, we found that substituting the
dorsal and ventral anterior cingulate areas (ACAd, ACAv) and the
right caudoputamen (CP) connectivity patterns with the Allen SC
projections significantly improved the PP of the connectome (left
ACAd, improvement = 0.047 ± 0.006, t = 7.23, P= 7e−6 for the t
test; left ACAv, improvement 0.032 ± 0.006, t = 4.96, P= 0.002 for
the t test; right ACAv, improvement = 0.028 ± 0.003, t = 7.58,
P= 1e−4 for the t test; right CP, improvement = 0.018 ± 0.003,
t = 6.42, P= 5e−6 for the t test; Fig. 3B), suggesting that both
regions are poorly resolved by dMRI in mice. Importantly, the
majority of substitutions decreased the PP (Fig. 3B).
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Fig. 2. Structural connectome (SC) surrogates generated from the tracer-based SC (Left) and representative connections of the SSp-bfd (Right). The original, filtered
and symmetrized SCs are shown in the Top, Middle, and Bottom rows, respectively. (B) Representative individual deterministic diffusionMRI (dMRI) SC (Left) and SSp-
bfd’s connections (Right) before (Top) and after (Bottom) a-symmetrization. (C) Comparison between the performances of different surrogate SC demonstrates the
effects of filtering and/or symmetrization of the Allen SC and a-symmetrization of the individual deterministic and probabilistic dMRI-based SCs. Welch’s test,
Bonferroni corrected, *P < 0.05, **P < 0.01, ***P < 0.001; n.s., nonsignificant. (D) The relations between predictive power (PP) of filtered and symmetrized tracer SC
and individual deterministic dMRI SCs are quantified through the normalized Mann–Whitney U statistic and demonstrate significant correlation. The greater U
values represent greater similarity between individual deterministic dMRI SCs and the Allen SC. Brain region terms are listed in the SI Appendix, Table S1.
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For each individual SC, we identified the region in which
replacement of its dMRI connections with the Allen ones
generates a new connectome, hybridbest, which has the best PP
improvement as compared to the other hybrid connectomes (SI
Appendix, Fig. S5). Fig. 3C shows that the PP achieved by

hybridbest is statistically indistinguishable from the one achieved by
the filtered Allen SC (P= 1.0 for the Welch’s test Bonferroni
corrected, Cohen’s d = 0.008, 95% CI = [−0.25, 0.25], n = 120).
In other words, it is sufficient to replace in the dMRI SC
the connections of 1 particular region with the corresponding
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Allen ones, to get a similar prediction, which is specific for
each mouse.

The Asymmetric Mouse Brain. Finally, we sought to estimate the
potential contribution of asymmetric transhemispheric connec-
tivity. Fig. 3D shows that there is a considerable improvement in
the PP of hybrid SCs when using connections from the right
hemisphere, as compared to those from the left one. The Allen
connections have been estimated using unilateral injection in the
right hemisphere (18). Since no tracer injections were done in
the left hemisphere, TVMB uses a mirror image of the right
hemisphere to build the left one (21). This suggests that the
tracer-based intrahemispheric connectivity predicts better right
intrahemispheric functional behavior than the left one, as dem-
onstrated in SI Appendix, Fig. S6A. Fig. 3E shows that there is a
significant relation between hemispheric lateralization in the
functional connectomes and the improvement in PP when the
right and left homotopic tracer area’s connections are introduced
in the dMRI SC (r= 0.14,P= 0.01). Namely, the more functional
connections are asymmetric, the more the PP decreases when
using the right hemisphere connections to build the left ones.
These results suggest that connectivity asymmetry impacts brain
dynamics and that it is region and mouse specific.

Hemispherical Lateralization of the Mouse Brain. Fig. 3E shows that
the region demonstrating the greatest lateralization in terms of
functional connectivity in individual mice is the supplemental
somatosensory area (SSs). Fig. 3B shows that when we introduce
the mirror image of the right SSs into the dMRI SC, the predictive
power is considerably decreased, which means that the mirror
image of the right SSs poorly represents the true left SSs. We thus
focused on the SSs area. If SC drives FC, we predicted that in-
troducing in the tracer-based connectome the detailed left SSs
connections, instead of using the mirror image of the right SSs
ones, would increase the PP of the connectome. We first per-
formed tracer injections in the left SSs and determined the pro-
jection pattern. As predicted, we found evidence of an asymmetric
distribution of fibers between the left and right SSs (Fig. 4A). To
test whether these structural differences were sufficient to explain
the functional ones, we introduced the connections of the left SSs
into the tracer connectome and obtained a statistically greater PP
as compared to the ones of purely mirrored connectomes built
from the injection experiments performed in the right SSs (Fig.
4B). Next, we introduced the left connections of the SSs into the
dMRI-based SCs (hybrid connectome), and, as predicted, we
found a greater PP as compared to using the mirror image of the
right connections of the SSs as shown in Fig. 4C (between the
14 experiments performed in the right SSs we consider the one
whose injection location is more similar to those used in the left
SSs injection experiment). Finally, since our previous results
demonstrate that the lateralization is animal dependent, we
sought to examine whether lateralized FC is supported by lat-
eralized SC and found that the improvement of the PP following
hybridization of left SSs dMRI connections is indeed pro-
portional to the degree of functional lateralization (Fig. 4D).
Together, these results show that the mouse brain is structurally
lateralized, and that this lateralization impacts whole brain dy-
namics at the individual subject level.

Discussion
Our results provide direct evidence of causality between SC and
FC, in the sense that individual structural connectomes predict
their functional counterparts better than the dMRI-based aver-
aged connectomes. The causal link is established by joining indi-
vidual structural connectomes with mechanistic models to create
dynamic virtual brain models, capable of generating neural source
signals and their corresponding functional brain imaging signals.
The emergent spatiotemporal dynamics of the virtual brain model
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Fig. 4. (A) Relation between fiber projections of the left and right SSs. (B)
The height of the bars represents the predictive power of tracer-based
connectomes built using just 1 injection experiment per area. This pro-
cedure differs from the general tracer building procedure used in this work
since generally the connections of each region are calculated as the average
of the results of all injection experiments performed in that region. The
height of the orange bar is the predictive power of the tracer-based
connectome whose left SSs connection are reconstructed from the tracer
injection experiment in the left SSs. The green bars are the predictive power
of the tracer-based connectomes whose left SSs connections are built as the
mirror image of the connections measured from each of the 14 experiments
performed in the right SSs area. The statistical difference between the bars is
assessed through the Welch’s test, Bonferroni corrected, **P < 0.01; n.s.,
nonsignificant. (C ) Comparison between the predictive power of hybrid
connectomes built as a dMRI-based connectome with left SSs tracer con-
nections reconstructed from the tracer injection experiment in the left SSs or
as the mirror image of right tracer connections retrieved from the right SSs
experiment whose injection coordinates are closer to those of the left SSs
injection experiment. (D) The differences in PP between true left and mirror
right SSs hybrid SCs are correlated with the lateralization of experimental FC.
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is constrained by the structural connectome, but it has been un-
clear so far if interindividual structural variability causes sufficient
influence on the functional level and if these functional variations
can be reliably captured by the metric of FC. As both biological
systems and their mechanistic models show sensitivity to noise and
display nonstationary dynamics and multiscale behavior, the causal
relation of SC and FC may have been lost in the complexity of the
measured brain imaging signals. We have here demonstrated that
this is not the case. Previous studies utilized the Allen Mouse
Connectivity Atlas to study structure–function relations at the
group level using voltage-sensitive dyes (35) and FC (6, 22, 36). In
addition, a recent work in rats (37) used TVB to simulate FC
based on SC and found a strong correlation at the group level. A
similar finding has been reported in humans (38). Here we com-
pared structure–function relations in individual mouse brains and
we used the detailed Allen connectome as a gold standard to
identify regions and connections that play a preeminent role in the
emergence of individual brain dynamics. We showed that, similar
to humans (6), intramice FCs are more stable than intermice FCs
(Fig. 1A). We propose that the emergence of individual features in
the functional data are, at least partially, driven by the individual’s
structural connectivity with stable features encoded in the con-
nectome (Fig. 1E). In addition to connectome specificity, other
structural data features may drive functional intersubject vari-
ability, including foremost regional variance such as synaptic
receptor type and density (39), but also methodological varia-
tions such as parcellation differences (3). Notwithstanding, we
cannot exclude that the variations in hemodynamic response
functions (HRFs) across animals and brain location affect SC–
FC relations, as it has been shown to contribute to individual
variability in human FC estimation (40). In this study we aimed at
reducing this variability by scanning awake mice, reducing the
confounding effects of anesthesia, and allowing collection of data
over multiple sessions per mouse (41, 42). Moreover, we used
spin-echo echo planar imaging (EPI), which is more sensitive to
microvasculature relative to gradient-echo EPI, especially at high
magnetic fields (43), further reducing the variability of HRF (40).
Finally, HRF variability can increase the number of false posi-
tives in FC in empirical data, but it cannot explain differences
in predictive power of simulated data obtained from different
structural connectomes.
Virtualizing different structural connectomes, we found that

group tracer-based connectomes predict empirical FC better than
individual dMRI-based connectomes, and while we argue that this
difference can be explained by better measurements of long-range
connections, fiber directionality and connection weights, we can-
not rule out that it is caused, at least partly, by the compromised
diffusion tensor imaging (DTI) data quality of in vivo measure-
ments. As compared to ex vivo studies (44), we designed our DTI
sequences with relatively low numbers of gradient directions, an-
isotropic voxels, and relatively low resolution. Together with motion-
related noise, these factors reduce the quality of tractography (45)
and may contribute to the lower performance of dMRI-based SC
in predicting empirical FC. Nevertheless, the DTI sequence was
designed this way to allow in vivo measurement in mice which is
comparable to human data which will support future mechanistic
investigations of SC–FC relations. The dMRI–connectome re-
construction could be improved by using more sophisticated ana-
tomical constraints in the tractography pipeline (e.g., anatomically
constrained tractography [ACT] method, ref. 46) in addition to the
basic segmentation in regions of interest.
The detrimental role of FP connections in the connectome

topology has been previously explored by refs. 30 and 34, ana-
lyzing, respectively, the effect of FP as introduced by probabilistic
tractography and overlooking the connections directionality. In
line with these findings, we showed that the introduction of FP
connections biases the connectome predictions. We found the
dMRI-based connectomes processed with the deterministic trac-

tography have a statistically greater PP than those processed with
probabilistic algorithms. Since the observed difference in PP is not
directly related to the difference in connections density (SI Ap-
pendix, Fig. S3), we argue that the difference in PP is driven by the
different characteristics of the connections overlooked by both
types of tractography processing: more FP and less FN in the case
of probabilistic processed connectivity, and conversely, in the case
of deterministic processed connectivity. This highlights that brain
dynamics predictions are more accurate if connectome specificity
is preserved, even at the cost of sensitivity, as it is the case of
deterministically processed connectomes.
When processing the tracer-based data, the probabilistic

computational model used to construct the original Allen con-
nectome (18) may introduce several false negative connections,
resulting in a low connection density reconstruction (35 to 73%),
while others reported a 97% density (19, 20). Here, we have
used the Allen connectome builder interface, which implements
a deterministic approach to reconstruct whole brain connectivity
(21), leading to a 98% density of connections. Still, as shown in
Fig. 2B, the introduction of FN connections (filtered tracer-
based connectome) does not dramatically influence the PP of
the connectome.
The main drawback of the Allen connectome is that it has

been obtained from hundreds of different mice, thus blurring
individual variability. We found that replacing most individual
dMRI connections with Allen connections reduces the PP.
However, in some regions such as the anterior cingulate and
the caudoputamen, group-level Allen connections outperform
individual dMRI connections. This finding can be explained by
the fact that connections from the anterior cingulate are dif-
ficult to resolve, as this area is located in the midline brain
region, where the cortex folds, resulting in an abrupt change in
fiber directionality. Moreover, the axons make sharp turns
around the corpus callosum while the extraction algorithm
assumes a systematic continuation of the vector direction. The
connections of the striatum are often short and, due to its
multipolar organization, without a clear gradient orientation
limiting fiber reconstruction. These considerations apply to
mouse strain used here. They cannot be translated as such to
other species. But the conceptual framework we introduce
shows how to take into account detailed connectivity patterns
(if available) to improve the analysis of the SC–FC relation-
ship. In humans, the release of full connectomes obtained
postmortem at ultrahigh resolutions (47) constitutes an im-
portant step in this direction. Detailed connectivity patterns
from nonhuman primates may also be used to build a high
resolution “human” SC (48, 49).
Although the Allen connectome was obtained from C57BL/6

mice, brain dynamics of hybrid F1 mice could be predicted by the
Allen connectome, suggesting that the structural organization of
the mouse brain was not impacted by outbreeding. Findings from
hybrid mice are considered more generalizable to other strains
(50), thus suggesting that the pattern observed here is not strain
specific. Nonetheless, since the genetic background affects the
behavioral phenotype (51), it will be important to systematically
assess these findings in mouse strains where this aspect is
directly manipulated.
The Allen SC includes directionality and long-range connec-

tions, which are not well (or at all) resolved by dMRI. How-
ever, the removal of the connections not resolved by dMRI-based
connectomes, mostly those characterized by long-range length, is
not sufficient to explain the discrepancy between the tracer-based
and dMRI-based predictive power. In addition, we showed that
removing the directionality information from the tracer-based
connectome, that it is symmetrizing the connectome, thus in-
troducing FP and FN connections, worsens the predictive power
more than the filtering operation, that consist in introducing
just FN connections (34). This shows the key role of connections
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directionality in predicting brain dynamics; and it confirms our
results on tractography algorithm processing: FP connections
biases the predictive power ability of the connectome more than
FN. Finally, analyzing the connection strength differences between
the dMRI and tracer-based connectome, we have shown that
connection strengths are the main determinant of these dynamics,
and consequently of individuality (Fig. 2D).
An unexpected result was the important role played by the

transhemispheric asymmetry of connections. This finding is con-
sistent with calcium imaging studies reporting such asymmetry in
rodents (52). By comparing injections between left and right
hemispheres, we confirmed our prediction that the approximation
of left area connections as compared to right area connections,
necessary in the tracer-based connectome reconstruction, signifi-
cantly affect the predictive power of the connectome. Moreover,
we showed that the bias introduced by this approximation is
proportional to the degree of the individual animal’s functional
lateralization.
We quantified PP using the linkwise Pearson correlation

across experimental and simulated FC. This choice of metrics
has limitations linked to the stability of the functional data
features during the time window considered. Other choices
would have been possible, as for example comparing specific
features of the FC (e.g., functional hubs, graph theoretical
characteristics, subnetwork structures, etc.) or evaluating the
dynamical evolution of the functional links, e.g., FCD or
functional meta connectivity (FMC) (Materials and Methods).
Our definition of the PP, broadly accepted in literature (12–14,
37, 53–56), responds to the need to quantify the ability of a
model to reproduce the functional brain behavior globally, and
not its specific features. However, overlooking the informative
content encoded in the dynamics of the FC is a limitation of our
study. FMC is 1 means of quantifying the FCD globally via its
dynamics of the functional links, but has proven to be too vari-
able across resting state sessions within the same animal (SI
Appendix, Fig. S2). This variability limits the possibility to com-
pare simulated and experimental FMC and to use it as a PP
metric. Although we are omitting FCD features from the PP
evaluation, these features are integral to the simulations (SI
Appendix, Fig. S2).
Another limitation of our work is the assumption of region

invariance, that is we use the same model, as well as the same
parameters, to describe the activity of all of the brain regions,
both cortical and subcortical ones. The only symmetry break-
ing between the virtual brain areas is their integration in the
network, i.e., their anatomical connections. It follows that in
this approximation the connectome acquires a central role.
This centrality allows us to trace back all of the prediction
differences obtained in the virtual mice to the connectome
used, as it is our aim. However, we do acknowledge the need to
introduce regional specificity and variance into the brain
models. Future evolutions of large scale brain models should
include such specificities.
Progress in connectomics enabled the development of large-

scale brain models to study brain function in health and disease
(12, 57). Although individual whole brain modeling has a po-
tentially high translational value for the benefit of patients
(15, 58, 59), the entire approach relies on the extent to which
individual differences in structural connectomes determine the
emergent network dynamics and consequent neuroimaging
signals. Although SC does not provide enough information to
predict an epileptogenic zone in humans (60), our work shows
that using more precise information (e.g., obtained from tracer
injections in nonhuman primates) to consider directionality,
synaptic weights and poorly resolved dMRI connections, will
increase the predictive power. As for clinical applications, the
value of a generalized model is measured by its utility in indi-
viduals (15, 57); our results bear a significant promise in this

domain as they demonstrate and quantify the predictive ca-
pacity of SC and FC variability.
In conclusion, we identified key individual structural fea-

tures (fiber directionality, connection strength and patterns, and
interhemispherical asymmetry), which are relevant to predict the
emergence of the functional patterns during a resting state in
mice. Our results strongly suggest the existence of a causal re-
lation between the structural and the functional connectome.
Although the detailed structural results presented here are
species specific, our conceptual framework is species invariant
and can now be exploited in humans for individual diagnosis and
clinical decision making.

Materials and Methods
Additional details on materials and methods are provided in SI Appendix. All
procedures were conducted in accordance with the ethical guidelines of the
National Institutes of Health and were approved by the Institutional Animal
Care and Use Committees (IACUC) at Technion and Allen Institute for Brain
Science. Mice were group housed to prevent stress (61).

Structural and Functional Experimental Data. Nineteen male hybrid non-
anesthesized mice were scanned using a 9.4 Tesla MRI to obtain structural
information and resting state functional data, 6.31 ± 0.82 (mean ± SD)
sessions of 15.7 ± 4.4 min length (mean ± SD) per mice. The structural data
have been processed using using MRtrx3 software (29). To obtain the tract
streamlines, we integrated the field of orientation probability density using
both deterministic (SD_Stream, ref. 29) and probabilistic (iFOD2, ref. 28) al-
gorithms in order to obtain, respectively, deterministic and probabilistic
processed dMRI-based connectome.

The tracer-based connectome was built through the Allen Connectivity
Builder pipeline (21), implemented in The Virtual Brain software (9). The
pipeline allowed the manipulation of the anterograde tracer experiments
performed at the Allen Institute (18) to reconstruct a tracer-based mouse
connectome and related brain volume.

Surrogate Connectomes. In order to test different hypotheses about what
could be the connectivity properties that give rise to the observed dis-
crepancies in the simulated dynamics, we built different kinds of surrogate
connectomes: a dMRI-based averaged connectome (averaging the 19 dMRI
based connectomes), a filtered tracer-based connectome (filtering out the
connections not detected in the dMRI connectomes), a symmetrized tracer-
based connectome, asymmetrized dMRI-based connectomes, and hybrid
connectomes (dMRI-based connectomes whose connections of 1 area are
replaced with the tracer-based connections of that area).

Simulate Resting State Dynamics. We simulate resting state dynamics using the
connectome-based model approach as implemented in The Virtual Brain
software (9, 62). In particular, we used the reducedWongWang model (13, 23)
in the bistable configuration in order to reproduce the dynamical switching of
the functional connections (14). We transformed the simulated synaptic activity
in BOLD signal using the Balloon-Windekessel method (56, 57).

Analysis. The emergence of the functional organization in the experimental
and simulated brains was analyzed through the static FC, the FCD, and
the FMC.

We quantified the PP of a given connectome c as the Pearson correlation
between the simulated FC, obtained using that connectome c, and the FC
arranged during resting state experimental recordings.

In order to assess the significance of the difference in PP of differently
derived connectomes we used the P value calculated through the Welch’s
test; we corrected the P values for multiple comparisons using the Bonferroni
correction. We measure the effect size using the Cohen’s d and we calcu-
lated the 95% CIs using the estimation stats framework as described in ref.
63 and available at https://www.estimationstats.com/.

Data Sharing. We used The Virtual Brain (https://www.thevirtualbrain.org/
tvb/zwei), an open access platform, for the simulations. It includes all pipe-
lines for importing empirical data (e.g., structural data from the Allen In-
stitute) and all analyses/display routines. All imaging raw data and the
relevant codes used in this study are available in BIDS format on OpenNeuro,
https://openneuro.org/datasets/ds002307.
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