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Abstract

Aim of the study: Cholestasis/cirrhosis could induce erythrocyte lysis. The incidence of various types of anemia in 
cirrhosis is approx. 75%. Several studies have mentioned the pivotal role of oxidative stress in this complication. 
Taurine (TAU) is the human body’s most abundant free amino acid. TAU is known as a robust cell membrane sta-
bilizer. Many studies have mentioned that TAU could counteract oxidative stress in various experimental models. 
The current study was intended to evaluate the effect of TAU on erythrocytes in cirrhotic rats.

Material and methods: Bile duct ligation (BDL) surgery was carried out on rats. Then, complete blood count 
(CBC), hemoglobin (Hgb), hematocrit (HTC), and erythrocytes’ G6PD, catalase (CAT), and superoxide dismutase 
(SOD) activity were measured. Moreover, biomarkers of oxidative stress were assessed, and the erythrocytes’ 
morphological changes were monitored in the cirrhotic mice exposed to TAU (0.25%, 0.5%, and 1% w : v in 
drinking water).

Results: Significant changes in the assessed erythrocyte parameters (G6PD activity, Hgb, HTC, and erythrocyte 
count) and red blood cells (RBC) morphological alterations were detected on day 42 after BDL surgery. Biomark-
ers of oxidative stress also did not change at the time points, except on post-BDL days 28 and 42. A significant 
decrease in blood parameters was evident at post-BDL day 42. All doses of TAU (0.25%, 0.5%, and 1% w : v in 
drinking water) significantly improved erythrocyte parameters and encountered oxidative stress in the erythro-
cytes of cirrhotic animals. 

Conclusions: These data indicate that TAU could be a safe agent to mitigate cirrhosis-induced erythrocyte dam-
age and anemia. Further investigations are necessary to prove this in clinical settings.
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Introduction

Cirrhosis is a multifaceted clinical complication that 
affects many organs other than the liver (e.g., brain,  
kidney, heart, lung, and reproductive organs) [1-10]. 
On the other hand, cirrhosis-induced erythrocyte death 
and anemia are well-characterized complications of this 
disease that are approximately observed in 75% of cirr- 
hotic patients [11-16]. The type of anemia, its etiology, 

and its prevalence are variable in cirrhotic patients  
(Table 1). Various forms of anemia, including normo-
cytic (prevalence ≈40-54%), microcytic (≈20-28%), and 
macrocytic (≈44%), have been identified in cirrhosis 
(Table 1) [17]. The pathological changes in erythrocytes 
have been documented in various experimental mod-
els and human cases of cholestasis/cirrhosis [11-14, 16]. 
Several investigations have revealed that oxidative stress 
markers are significantly high in the erythrocytes isolat-
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ed from cirrhotic patients [18]. Hence, oxidative stress 
and its consequences play a central role in cirrhosis-in-
duced erythrocyte damage [11]. Significant changes in 
the membrane fluidity, along with increased oxidatively 
damaged proteins, have been found in the erythrocytes 
of patients with primary biliary cirrhosis [11]. Changes 
in erythrocyte thiols and protein sulfhydryl are also 
proposed to play a significant role in the susceptibility 
of erythrocytes of cirrhotic patients to damage and he-
molysis [11]. Complications such as anemia might be 
improved upon liver transplantation as a gold-standard 
treatment for end-stage cirrhosis [16]. However, to our 
knowledge, this is the first report on the pharmacologi-
cal options for preventing/alleviating erythrocyte dam-
age in cholestatic/cirrhotic patients so far.

Taurine (TAU) is a cysteine-derived sulfur amino acid 
abundantly synthesized in the liver of several species, 
such as dogs and rats [19, 20]. Although TAU is the hu-
man body’s most abundant free amino acid, our liver’s ca-
pacity for TAU synthesis is negligible [21]. We obtain the 
majority of our body’s TAU from dietary resources [21]. 
TAU’s physiological and pharmacological properties have 
been widely investigated [20, 22-28]. For example, TAU 
has been found to be an osmoregulator, antioxidant, and 
regulator of mitochondrial function [20, 22, 26, 28-37].

Several studies have also mentioned the positive 
effects of TAU on erythrocytes [38-43]. In this regard, 
TAU significantly suppressed oxidative stress and its as-
sociated complications, such as lipid peroxidation and 
protein carbonylation in erythrocytes exposed to toxic 
insults [39-43]. TAU also significantly enhanced the lev-
el of antioxidant enzymes such as catalase, superoxide 
dismutase, glutathione-S-transferase, and glutathione 
peroxidase in erythrocytes [39, 40, 42, 43]. Moreover, 
TAU could enhance the total antioxidant capacity and re-
duced glutathione (GSH) levels in erythrocytes [39, 40]. 
Our research team used very high doses of TAU to 

mitigate cholestasis/cirrhosis-associated complications  
(e.g., cholemic nephropathy, skeletal muscle waste, car-
diomyocytes injury, etc.) [44-50]. All these data reveal 
the potential protective properties of TAU in erythro-
cytes in various pathological conditions.

The current study aimed to evaluate the pathological 
changes in erythrocytes isolated from cholestatic/cirrhot-
ic animals and assess the potential therapeutic role of 
TAU administration against this pathological condition. 
The data obtained from this study could help develop 
novel strategies for managing cirrhosis-associated clinical 
complications such as erythrocyte hemolysis and anemia.

Material and methods

Chemicals

Meta-phosphoric acid, 2-mercaptoethanol, 2,7-di-
chlorofluorescein diacetate (DCF-DA), 2,4,6-Tris- 
(2-pyridyl)-s-triazine (TPTZ), ethylenediamine-tetra- 
acetic acid (EDTA), GSH, ferric chloride hexahydrate 
(FeCl3.6H2O), and 5,5-dit hiobis-2-nitrobenzoic acid 
(DTNB) were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). Sodium and potassium phosphates, sapo-
nin, trichloroacetic acid, sodium hydrogen phosphate 
dibasic, thiobarbituric acid, sodium chloride, sodium 
citrate, sodium hydrogen phosphate monobasic, n-bu-
tanol, methanol, and hydroxymethyl aminomethane 
hydrochloride (Tris-HCl) were obtained from Merck 
(Darmstadt, Germany). G6PD activity was determined 
using a commercial kit (Randox Laboratories, Antrim, 
United Kingdom). Commercially available Giemsa 
was purchased from ATR-MED (Tehran, Iran).

Animals

Mature male Sprague-Dawley (SD) rats (weighing 
250 ±30 g) were obtained from the laboratory animals 

Table 1. Etiopathogenesis and prevalence of anemia in cirrhosis

Type of anemia Etiology Prevalence (%) Reference(s)

Normocytic Anemia of chronic disease (e.g., cirrhosis) 40-54.1 [158, 159]

Microcytic Portal hypertensive gastropathy 20-80 [160]

Gastric antral vascular ectasia 4 [161]

Peptic ulcer 35-53 [158]

Hemolytic anemia in patients on interferon and ribavirin 9-13 [159]

Hemolytic anemia due to hypersplenism 24 [118]

Macrocytic anemia Folic acid (vit. B9) deficiency 44 [158]

Vit. B12 (cyanocobalamin) deficiency) 31.8 in PBC 
43 in NAFLD

[158]

This table is adapted from reference [17] (Creative Commons Attribution Non-Commercial; CC BY-NC 4.0). 
PBC – primary biliary cirrhosis, NAFLD – non-alcoholic liver disease
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breeding center of Shiraz University of Medical Sci-
ences, Shiraz, Iran. Animals were kept in a  standard 
environment (temperature 25 ±1°C, 12 : 12 light : dark 
cycle, and ≈43 ±3% relative humidity). This investiga-
tion was conducted in compliance with the ARRIVE 
guidelines. Rats had free access to water and a  stan-
dard laboratory animal diet (Behparvar, Tehran, Iran). 
The institutional ethics committee approved all ex-
perimental animal care and used procedures at Shiraz  
University of Medical Sciences, Shiraz, Iran (Regis-
tered ethical code: IR.SUMS.REC.1400.057).

Bile duct ligation surgery

Animals were randomly allotted to control (sham- 
operated) and bile duct ligated (BDL) groups. In the 
BDL group, rats were anesthetized using a mixture of 
7 mg/kg of xylazine and 70 mg/kg of ketamine (i.p.). 
An incision (≈2 cm) was made through the linea alba, 
and the common bile duct was exposed and doubly  
ligated (silk suture; No. 04) [51-56]. The sham opera-
tion involved laparotomy without bile duct ligation [5, 
57-62]. Animals were allowed to recover under infrared 
light in separate cages with free access to food and wa-
ter [54, 63]. Rats were monitored at scheduled intervals 
to evaluate the pathogenic changes in blood parame-
ters (3, 7, 14, 28, and 42 days after the BDL surgery). 
It was found that the maximum pathological changes 
in blood parameters of BDL rats were achieved on day  
= 42 after the BDL operation. Therefore, in another round 
of experiments, the following treatments were studied  
(7 rats/group): BDL + taurine (0.25% w : v in drinking 
water for 42 consecutive days); BDL + taurine (0.5% w : v 
in drinking water for 42 consecutive days); and BDL  
+ taurine (1% w : v in drinking water for 42 consecutive 
days).

Erythrocytes’ isolation and plasma biochemical 
measurements

Blood samples (5 ml) were obtained from the ab-
dominal aorta, transported to EDTA-coated tubes 
(Guangzhou, China), and centrifuged (3000 g, 15 min, 
4°C). Aliquots (200 µl) of whole blood were also sep-
arated to determine G6-PD activity, blood parame-
ters, and complete blood count (CBC). Then, blood 
samples were centrifuged (12,000 g, 15 min, 4°C), 
and the plasma was isolated by aspiration and used 
for biochemical analysis [64, 65]. Afterward, the 
erythrocytes were washed with phosphate-buffered 
saline (PBS) three times (3000 g, 10 min, 4°C). Fi-
nally, erythrocytes were suspended in PBS (5% v : v  
cell suspension) [43]. Hemoglobin concentration 

was measured in all suspensions for standardiza-
tion of the obtained data. Commercial kits (Pars 
Azmun, Tehran, Iran) and a  Mindray BS-200 au-
toanalyzer (Guangzhou, China) were employed to 
assess plasma γ-glutamyl transpeptidase (γ-GT), 
total bilirubin, alkaline phosphatase (ALP), alanine  
aminotransferase (ALT), and aspartate amino-
transferase (AST) [64, 66]. Hematologic para- 
meters were determined using Sysmex XS-800i (laser- 
based photometry) [67]. The G6-PD activity in rat 
erythrocytes was spectrophotometrically analyzed by 
a commercial kit (Pars-Payvand Saba, Tehran, Iran).

Light microscope morphological analysis  
of erythrocytes

Erythrocyte samples (100 µl) were suspended in  
900 µl of PBS), and a smear was prepared. Then, samples 
were microscopically analyzed under a phase contrast 
microscope (Nikon Eclipse Ti-U inverted microscope; 
100× magnification). Microcystic hypochromic eryth-
rocytes and erythrocyte polychromasia were monitored.

Reactive oxygen species in the erythrocytes

The formation of reactive oxygen species (ROS) in 
erythrocytes was assessed using 2,7-dichlorofluorescein 
diacetate (DCF-DA) as a fluorescent probe [63, 68-75]. 
For this purpose, 500 µl of the 5% v : v (in PBS) of eryth-
rocytes were suspended in 500 µl of 4°C Tris-HCl buffer 
(pH = 7.4, 40 mM). Then, 10 µl of DCF-DA (final con-
centration of 10 µM) was added and incubated in the 
dark (10 min, 37°C, shaking incubator) [65, 71, 76-83]. 
After incubation, the fluorescence intensity was mea-
sured at λexcit = 485 nm and λemiss = 525 nm using a fluo-
rimeter (FLUOstar Omega, Germany) [84-91].

Erythrocytes’ glutathione content

Reduced glutathione concentration was determined 
by a method previously described based on the 5,5’-di- 
thiobis-2-nitrobenzoic acid method [43, 71, 92-94]. 
Briefly, 0.5 ml aliquots of RBC suspension in PBS were 
treated with 1 ml of ice-cooled distilled water, and  
100 µl of trichloroacetic acid (20% w : v, 4°C). Samples 
were mixed well and centrifuged (16,000 g, 5 min, 4°C). 
Then, the supernatant was treated with 1 ml of Tris-HCl 
(pH = 8.9) and 100 µl of DTNB (20 mg/5 ml metha-
nol). Finally, the absorbance was measured (λ = 412 nm, 
EPOCH) [43, 71, 95-97]. The GSH concentration was 
expressed in µmol/mg hemoglobin (Hgb).
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Lipid peroxidation in isolated erythrocytes

Lipid peroxidation of erythrocyte membranes was 
assessed based on the thiobarbituric acid reactive 
substances (TBARS) assay method [71, 98-102]. For 
this purpose, aliquots (500 µl) of a 5% suspension of 
erythrocytes (in PBS) were treated with 250 µl of 20% 
trichloroacetic acid and 600 µl of 1% thiobarbituric 
acid. Samples were heated in a  100°C water bath for 
15 minutes and then cooled (5 min at 0°C) [103-110]. 
Tubes were centrifuged (16,000 g, 5 min), and the ab-
sorbance of the supernatant (at λ = 532 nm) was mea-
sured [55, 71, 98, 111]. The concentration of TBARS 
was expressed in nmol/mg Hgb.

Estimation of catalase and superoxide dismutase

The activity levels of catalase (CAT) and superox-
ide dismutase (SOD) were assessed by commercial kits 
(Nasdox, Navandsalamat, Urmia, Iran) based on their 

instructions. The final absorbance was expressed based 
on the unit of enzyme/mg Hgb.

Statistical analysis

Data are represented as mean ±SD. Data comparison 
was accomplished by the one-way analysis of variance 
(ANOVA) with Tukey’s multiple comparison test as  
the post hoc test. Values with p < 0.05 were considered  
as statistically significant.

Results

Plasma biochemical measurements indicated an 
increase in liver injury biomarkers and a dramatic in-
crease in plasma bilirubin and bile acids at different 
time intervals after BDL surgery (Fig. 1A). Liver tissue 
histopathological alterations also revealed significant 
collagen deposition and fibrosis in this organ (Fig. 1B). 
These data could confirm the appropriate induction of 
cholestasis/cirrhosis in the current BDL model. The 

B

Fig. 1. Plasma biochemical analysis (A) and liver tissue histopathological alterations (B; blue colored, green arrow) in bile duct ligated (BDL) rats. These data 
confirm the occurrence of cholestasis in the current model. Data are shown as mean ±SD (n = 7). Data sets with various alphabetical superscripts differ 
significantly (p < 0.05). Scale bars for histopathological images are = 100 µm
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maximum collagen deposition and liver fibrosis were 
achieved on day 42 after BDL induction (Fig. 1B).

Blood analysis (CBC) of BDL rats revealed a signif-
icant decrease in erythrocyte count on day 42 after the 
BDL operation (Fig. 2). Other factors, such as Hgb and 
hematocrit (HTC), followed the same pattern and signifi-

cantly decreased 42 days after BDL surgery (Fig. 2). Our 
model detected no significant changes in white blood cells 
(WBC) and platelet count at different intervals after BDL 
induction (Fig. 2). The effects of TAU on blood parame-
ters were evaluated in BDL animals (Fig. 3). It was found 
that TAU (0.25%, 0.5%, and 1% w : v in drinking water 
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Fig. 2. Complete blood count (CBC) and hematological alterations at different time points after bile duct ligated (BDL) surgery. A significant decrease in 
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Fig. 3. Role of taurine (TAU) on complete blood count (CBC, RBC) of bile duct ligated (BDL) animals (42 days after BDL surgery). Data are represented as mean 
±SD (n = 7). Data series with different alphabetical superscripts are significantly different (p < 0.05)
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for 42 consecutive days) significantly improved blood pa-
rameters in cirrhotic animals, including Hgb, HTC, and 
erythrocyte count. It should be mentioned that the effects 
of TAU on these parameters were not dose-dependent in 
the current model (Fig. 3).

The activity of the enzyme G6PD in erythrocytes was 
another parameter assessed in the BDL animals. It was 
found that G6PD activity was significantly suppressed  
42 days after the BDL operation. On the other hand, TAU 
(0.25%, 0.5%, and 1% w : v in drinking water for 42 con-
secutive days) significantly restored the G6PD activity in 

erythrocytes isolated from cirrhotic animals. No differ-
ence between various concentrations of TAU in improving 
G6PD activity was detected in the current study (Fig. 4).

Morphological assessment of erythrocytes revealed 
the presence of hypochromic and polychromasia eryth-
rocytes in the blood of BDL rats (42 days after BDL sur-
gery; Fig. 5). No significant morphological changes in 
the blood of BDL rats were detected on days 3, 7, and  
14 after the BDL operation (Fig. 5). It should be not-
ed that TAU did not change erythrocyte morphological 
changes in the current model (data not shown).

Fig. 4. Monitoring glucose-6-deficiency (G6PD) at different intervals after bile duct ligation (BDL) surgery. A significant decrease in G6PD deficiency was detected 
42 days after the BDL operation. It was found that taurine (TAU) significantly improved G6PD deficiency at both doses (0.25%, 0.5%, and 1% w : v). Data are 
shown as mean ±SD (n = 7). Data series with different alphabetical superscripts are significantly different (p < 0.05)
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Fig. 6. Oxidative stress markers were assessed in erythrocytes on days 28 (A) and 42 after bile duct ligated (BDL) surgery (B). It was found that taurine (TAU; 
0.5% and 1% w : v) significantly decreased biomarkers of oxidative stress in cirrhotic rats. In the current experiments, most oxidative stress markers were not 
significantly changed at 3, 7, and 14 days after cholestasis induction. Data are shown as mean ±SD (n = 7). Data series with different alphabetical superscripts 
are significantly different (p < 0.05)
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The assessment of biomarkers of oxidative stress at 
28 and 42 days after BDL revealed significant ROS for-
mation and lipid peroxidation in erythrocytes isolated 

from BDL rats. Moreover, the GSH level, CAT activity, 
and SOD activity of erythrocytes were significantly 
decreased in cirrhotic animals. It was found that TAU 

Acute blood loss No evidence of acute blood loss 

Fig. 7. Several options have been developed for managing anemia in cirrhosis in clinical settings. This figure is adapted from reference [17] (Creative Commons 
Attribution-NonCommercial; CC BY-NC 4.0); d – day, f – folic acid, b – bolus dose
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(0.25%, 0.5%, and 1%) significantly blunted markers of 
oxidative stress in erythrocytes of BDL rats. The effect 
of TAU on oxidative stress biomarkers was not dose-de-
pendent in the current study (Fig. 6). As mentioned in 
various parts of the results, the effects of various doses of 
TAU (0.25%, 0.5%, and 1% w : v) on blood parameters 
assessed in the cirrhotic rats was not dose-dependent. 
Hence, the lower doses of this amino acid could be used 
for further investigations because of economic issues as 
well as preventing any potential adverse effects.

Discussion

The cirrhosis-induced hematological complication 
is a severe clinical problem [11-16]. On the other hand, 
oxidative stress and its associated complications could 
play a  significant role in this situation [11]. Several 
case reports of cholestasis/cirrhosis-induced anemia 
have been published [112-114]. Hypochromic mi-
crocytic anemia seems to be humans’ most prevalent 
phenotype of cholestasis/cirrhosis-induced anemia 
[112]. In the current study, we detected microcytic 
hypochromic RBCs in the BDL rats 42 days after the 
BDL operation (Fig. 5). This finding is in line with oth-
er studies that indicate microcytic anemia as a preva-
lent type of morphological change of RBCs in cirrhosis 
[112]. On the other hand, detecting a significant num-
ber of polychromasia erythrocytes was another inter-
esting finding that was detected 28 and 42 days after 
BDL induction (Fig. 5). Polychromasia occurs when 
RBCs are prematurely released from the bone mar-
row to the blood stream [115]. We did not find any 
relevant study on the etiology of polychromasia in the 
BDL animal model of cirrhosis. Nevertheless, it has 
been reported that polychromasia is frequently detect-
ed in patients with chronic hepatitis or hepatocellular 
carcinoma [115]. The mechanism(s) of releasing such 
erythrocytes in the current model is ambiguous and 
warrants further studies. Low hemoglobin levels (e.g., 
6 g/dl) have also been reported in cholestatic patients 
with anemia [112]. As mentioned, oxidative stress and 
its associated complications play an essential role in 
erythrocyte damage in cirrhosis. Therefore, it is im-
portant to find safe and clinically applicable agents for 
preventing erythrocyte disruption. The data obtained 
from this study revealed that TAU, as a safe amino acid 
with exciting features such as membrane stabilization, 
antioxidant action, and osmoregulatory properties, 
significantly protected erythrocytes in cirrhotic rats.

Cirrhosis-induced erythrocyte damage and lysis 
are widely investigated. Several mechanisms have been 
proposed to be involved in this complication. In this re-
gard, oxidative stress and its associated complications in 

erythrocytes have received much attention [116-118]. 
Erythrocytes continuously transport a high concentra-
tion of oxygen over their lifespan. Therefore, it is well 
known that these cells are susceptible to exogenous and 
endogenous reactive species and oxidative stress [119]. 
However, different effective antioxidant systems have 
been developed during the evolution of these cells to 
counteract oxidative stress in erythrocytes [120, 121]. 
This system is mainly involved in the presence of an 
enzyme known as glucose-6-phosphate dehydroge-
nase (G6PD) (Fig. 7) [122, 123]. This enzyme reduces 
oxidized NADP+ to its reduced form (NADPH). 
The enzyme glutathione reductase uses NADPH to 
convert oxidized glutathione (GSSG) to its reduced 
form (Fig. 7). GSH and its associated enzymes are vital 
for counteracting oxidative stress in erythrocytes  
[124, 125]. GSH is widely used in erythrocytes to detox-
ify reactive species directly or as a substrate for GSH- 
dependent antioxidant enzymes (Fig. 7) [124, 125]. 
Many experimental models also mentioned decreased 
erythrocyte antioxidant levels (CAT, SOD, glutathione 
peroxidase [GPx]) [121, 126]. It is well known that 
SOD is the most crucial antioxidant in erythrocytes 
[127]. Superoxide anion (O2

•-) is the most dangerous 
reactive species that damages erythrocytes and causes 
deformability [127].

Another critical issue regarding erythrocytes is 
their membrane disintegrability [128, 129]. Several 
mechanisms have been proposed in experimental 
models and human cases of this disease. For example, 
Verkleij et al. found that the fusion of abnormal plas-
ma lipoproteins could lead to abnormal and enlarged 
RBCs in cholestatic patients [129]. In another study, 
Okano et al. found that lecithin and fatty acid compo-
sition of erythrocyte membrane are changed in biliary 
obstruction [128]. All these events could destabilize 
the erythrocyte membrane, leading to its deformities 
and rupture (Fig. 7). An exciting feature of TAU is its 
effect on cell membranes. It is well known that TAU 
is a  membrane stabilizer [130]. The membrane sta-
bilizing action of TAU on erythrocytes could render 
their membrane more resistant to reactive species such 
as ROS and lipid peroxidation byproducts [131-133]. 
Gossai et al. also found that TAU significantly stabi-
lized the erythrocyte membrane and enhanced cellu-
lar antioxidant capacity [134]. Excitingly, Gossai et al. 
also found that TAU effectively prevents Hgb and lac-
tate dehydrogenase (LDH) release from erythrocytes 
[134]. They administered TAU (300 mg/kg) to diabetic 
rats. The formation of ROS, oxidized glutathione, and 
malondialdehyde was significantly decreased in the 
erythrocytes of TAU-treated mice [134]. Moreover, 
levels of catalase, glutathione peroxidase, and superox-
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ide dismutase were considerably higher in the RBC of 
diabetic erythrocytes [134]. In another study by Gossai 
et al., the turnover of GSSG to GSH in erythrocytes 
reduced oxidative stress [134].

An important mechanism proposed for eryth-
rocyte death and anemia in cholestasis/cirrhosis is 
proposed by Lang et al. [135]. They investigated the 
pathogenic effect of bilirubin on erythrocytes. In the 
current investigation, we found that the level of plas-
ma bilirubin was very high in BDL rats (> 10 mg/dl) 
(Fig. 1). Lang et al. found that mechanistically biliru-
bin caused a severe influx of Ca2+ to erythrocytes, ac-
cumulation of sphingomyelinase activation, formation 
of ceramide, and translocation of phosphatidyl serine 
to the erythrocyte surface [136]. They concluded that 
all these events could lead to erythrocyte death and 
anemia in cholestasis/cirrhosis. Interestingly, the pro-
tective effects of TAU against Ca2+ effects on many cells 
is an essential feature of this amino acid [136]. Hence 
this characteristic of TAU could play an essential role 
in its protective effect on erythrocytes of cirrhotic ani-
mals in the current study.

As mentioned, RBCs are continuously exposed to 
exogenous and endogenous oxidants with different 
etiologies [137]. Oxidative stress could cause a  de-
crease in the erythrocyte’s life span, hemolysis, and, 
finally, erythrocyte death. In this regard, a plethora of 
investigations have studied the effects of antioxidant 
molecules against this complication. Several studies 
have mentioned the protective properties of antioxi-
dant molecules such as β-carotene, polyphenols (e.g., 
resveratrol and quercetin), methionine, α-lipoic acid, 
N-acetylcysteine, melatonin, dithiothreitol (DTT), and 
homocysteine on erythrocytes damage with different 
etiologies [138-144]. Based on these data, using these 
molecules could significantly protect erythrocytes in 
various pathological conditions. Several options have 
been developed for managing anemia in cirrhosis in 
clinical settings (Fig. 7) [17]. Based on the study by 
Singh et al. [17], complementary treatment strategies 
could play a role in alleviating cirrhosis-induced ane-
mia. First, removing the background diseases such 
as hepatitis or alcoholism might be very helpful [17]. 
Second, dietary advice (e.g., administration of elemen-
tal iron and other micronutrients) could help alleviate 
cirrhosis-induced anemia (Fig. 7). On the other hand, 
several studies have revealed the exciting effects of 
TAU on erythrocytes [38-43]. TAU is not considered 
a  classic radical scavenger or a  regulator of cellular 
antioxidant defense mechanisms [145-147]. Actually, 
TAU acts as a  regulator of cellular ROS generation 
[145, 146, 148]. There is a plethora of evidence indicat-
ing the role of TAU in regulating mitochondria-medi-

ated ROS formation [145, 146]. However, this mecha-
nism is irrelevant to cells devoid of mitochondria (e.g., 
erythrocytes). Hence, another mechanism should be 
involved in the protective properties of TAU in eryth-
rocytes. Interestingly, it has been proposed that TAU 
could have a  regulatory effect on mitochondrial de-
fense mechanisms or even the expression of the action 
of oxidants on mitochondrial-encoded proteins [149]. 
Then, the direct regulatory properties of TAU and its 
effects on cellular antioxidant mechanisms could play 
a pivotal role in its protective properties in biological 
systems.

Interestingly, the effect of TAU on erythrocytes’ 
G6PD enzyme activity has also been reported in pre-
vious studies [150, 151]. It was found that TAU sig-
nificantly prevents suppression of the G6PD enzyme 
activity in erythrocytes exposed to toxic levels of cad-
mium, hydrogen peroxide, phenylhydrazine, and lead. 
In some studies it has been found that TAU could 
significantly increase the ratio of GSH/GSSG, which 
could directly increase the direct radical scavenging 
activity of GSH or indirectly enhance the activity of 
GSH-dependent enzyme systems (Fig. 7). Moreover, 
isolated erythrocytes have been challenged with H2O2 
as a potent antioxidant [150, 151].The researchers also 
detected that TAU significantly prevented erythrocyte 
ATP breakdown, promoted GSH levels, and enhanced 
the pentode phosphate pathway [150, 151]. In the cur-
rent investigation, we found that the oxidative stress 
markers were significantly elevated in cirrhotic rats. 
Another exciting finding of our study was the positive 
effects of TAU on the G6PD enzyme activity in eryth-
rocytes of cirrhotic animals (Figs. 4 and 8). The higher 
activity of G6PD boosts erythrocytes’ antioxidant sys-
tem and prevents cell death (Figs. 7 and 8). We also 
found that TAU significantly improved the antioxidant 
activity of erythrocytes isolated from cirrhotic animals 
(Fig. 6).

Another critical issue in erythrocyte storage and, 
finally, transfusion to recipients is the oxidation of the 
erythrocyte membrane. The oxidation of fatty acids 
ultimately compromises the stability of the erythro-
cytes’ membrane and eventually impairs their activity 
[152-154]. Interestingly, TAU is an excellent mem-
brane stabilizer [130, 149, 155-157]. It has repeated-
ly been mentioned that TAU protects biomembrane 
lipids from oxidation and consequently prevents cell 
damage [130, 149, 155-157]. Huxtable et al. mentioned 
that inhibiting lipid peroxidation, stabilization of bio-
logical membranes, TAU antioxidant properties, and 
maintaining intracellular ions’ homeostasis play a cru-
cial role in preserving cellular integrity and preventing 
their damage [23]. In the current study, we found that 
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TAU treatment significantly mitigated hemolysis and 
lipid peroxidation in erythrocytes of cirrhotic animals 
(Fig. 6). Hence, this exciting feature of TAU could ef-
fectively prevent erythrocyte damage and hemolysis 
and play a  crucial role in its protective properties in 
cirrhosis.

Treatments for cholestasis/cirrhosis-induced eryth-
rocyte damage and anemia are symptomatic, and there 
are no specific pharmacological interventions to pre-
vent or treat this complication. Hence, the data from 
this study might pave the way for finding novel and 
clinically applicable therapeutic options for prevent-
ing cholestasis/cirrhosis-induced erythrocyte damage 
and anemia (Fig. 8). Further studies are warranted to 
explain the precise mechanisms of TAU’s protective 
properties against erythrocyte damage and its appli-
cation in clinical settings in cirrhotic patients, blood 
transfusion, and/or blood diseases with susceptible 
erythrocytes.
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