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Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that have well-
conserved sequences. Emerging evidence has shown that circRNAs can be novel biomarkers 
or therapeutic targets for many diseases and play an important role in the development of 
various pathological conditions. Therefore, identifying potential disease-related circRNAs is 
helpful in improving the efficiency of finding therapeutic targets for diseases. Here, we propose 
a computational model (PreCDA) to predict potential circRNA–disease associations. First, 
we calculated the circRNA expression similarity based on circRNA expression profiles. The 
circRNA functional similarity is calculated based on cosine similarity, and the disease similarity 
is used as the dimension of each circRNA vector. The associations between circRNAs and 
diseases are defined based on the circRNA functional similarity and expression similarity. 
We constructed a disease-related circRNA association network and used a graph-based 
recommendation algorithm (PersonalRank) to sort candidate disease-related circRNAs. 
As a result, PreCDA has an average area under the receiver operating characteristic 
curve value of 78.15% in predicting candidate disease-related circRNAs. In addition, we 
discuss the factors that affect the performance of this method and find some unknown 
circRNAs related to diseases, with several common diseases used as case studies. These 
results show that PreCDA has good performance in predicting potential circRNA–disease  
associations and is helpful for the diagnosis and treatment of human diseases.

Keywords: circRNA, disease, circRNA expression similarity, circRNA functional similarity, PersonalRank

INTRODUCTION

Circular RNAs (circRNAs) are a type of RNA molecule that forms a covalently closed continuous 
loop from exon circularization (Motieghader et al., 2017; Xu, 2017). In recent years, advances in 
high-throughput sequencing technology have greatly facilitated the study of circRNAs (Jeck and 
Sharpless, 2014). When compared to other ncRNAs (Danan et al., 2012), circRNAs are highly 
stable. Circular RNAs have evolutionarily conserved sequence features across species, tissues, and 
developmental stages (Jens, 2013; Conn et al., 2015; Rybak-Wolf et al., 2015). Therefore, circRNAs 
have become hotspots in transcriptomics research.

Recent studies have shown that alterations in the expression of circRNAs play important roles in human 
disease and other biological processes (Xu, 2017; Zhao and Shen, 2017; Xia et al., 2018). For example, 
the best-known circRNA, CDR1as, as the inhibitor of miR-7, is a critical ncRNA known to be involved 
in cancer, neurodegenerative diseases, diabetes, and atherosclerosis (Li et  al., 2015; Xu et  al., 2018). 
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Researchers found that the circRNA ciRS-7 may be a promising 
target for neurodegenerative disorder (Lukiw, 2013) and myocardial 
infarction (Lin et al., 2018). The circRNA CircCCDC66 has been 
demonstrated to regulate colon cancer growth and metastasis as a 
miRNA sponge (Hsiao et al., 2017). The circRNA hsa_circ_0001895 
is involved in the expression of cancer-related proteins in gastric 
cancer (Shao et  al., 2017). The circRNA CircHIPK3 plays an 
important role in cell growth by sponging multiple miRNAs (Zheng 
et al., 2016). Moreover, circRNAs can be found in exosomes, cell-free 
saliva, and plasma (Li Y et al ., 2015). Circular RNAs are emerging 
as novel biomarkers or therapeutic targets for many diseases due to 
their conservation, cell type–specific expression, and tissue-specific 
expression, and they play roles in the development of various 
pathological conditions (Meng et al., 2017; Vo et al., 2018).

Although a large number of circRNAs have been discovered, 
the mechanisms of circRNAs in many diseases remain unclear (Xu 
et al., 2018). To enable research on circRNAs and diseases, several 
databases have been constructed, such as circRNADisease (Zhao 
et al., 2018), CircR2Disease (Fan et al., 2018), and Circ2Disease (Yao 
et al., 2018). They provide important data support for circRNA–
disease association analyses. Some methods have been proposed to 
provide the most promising disease-related biomarkers, including 
those involving lncRNAs (Chen et al., 2015; Gu et al., 2017; Cheng 
et al., 2018a; Cheng et al., 2019), miRNAs (Peng et  al., 2019b; 
Shao et al., 2018), genes (Cheng et al., 2016; Hu et al., 2019; Peng 
et al., 2019a), and drugs (Jiang et al., 2017; Zhang et al., 2017), 
for further experimental validation. These methods can decrease 
the time and cost of biological experiments. However, very few 
methods have been developed to predict potential circRNA–
disease associations (Lei et al., 2018), and both disease functional 
similarity and semantic similarity were not considered in these 
methods. Improved knowledge has suggested that exploring both 
the semantic and functional associations of diseases, which are two 
types of significant associations, is beneficial in measuring disease 
similarity (Cheng et al., 2014; Peng et al., 2018).

In this study, we proposed a computational model (PreCDA) 
for potential disease-related circRNA identification. In view of the 
limited number of circRNA–disease associations, we introduced 
disease similarity to solve possible sparse problems and built a 
disease-related circRNA similarity network. However, relying 
entirely on circRNA-related diseases greatly limits the utility 
of the method because many circRNAs still have very few or no 
associated diseases. To overcome this limitation, we calculated 
the circRNA expression similarity based on the existing data 
resources. Subsequently, we built a new disease-associated circRNA 
network by fusing circRNA functional associations and expression 
similarities. To assess the practicability and accuracy of this 
method, we designed a validation process with different datasets of 
circRNA–disease associations, as good computational models must 
perform well on different data sources. Finally, PreCDA proved 
successful in predicting potential disease-related circRNAs.

MATERIALS AND METHODS

Workflow
A flowchart of the PreCDA workflow is shown in Figure 1. We 
preprocessed circRNA and disease data because of the lack of 

uniform identification of circRNAs and diseases. We extracted 
the synonym vocabulary from the two circRNA databases, 
including circRNADisease (Zhao et al., 2018) and circBase 
(Glažar et al., 2014). Then, we unified different representations 
of the same circRNA in different databases. Additionally, the 
identification of the Human Disease Ontology (DO) (Kibbe 
et al., 2015) was used as the unified marker of diseases in the 
computational model. We measured the similarity between 
circRNAs in two ways, including the circRNA expression 
similarity and functional similarity. We extracted circRNA 
expression profiles from circBase (Glažar et al., 2014) and 
CIRCpedia (Dong et al., 2018). The circRNA expression 
similarity was calculated based on the Spearman correlation 
coefficient. The disease similarity was used as the dimension 
of each circRNA vector, and the circRNA functional similarity 
was calculated based on cosine similarity. A disease-related 
circRNA association network was built based on the circRNA 
expression similarity and functional similarity. Finally, we 
identified potential candidate disease-related circRNAs based 
on the PersonalRank algorithm (PR) (Haveliwala, 2002).

Data Preprocessing
circRNA Data
In this study, we used three circRNA databases for experiments 
and validations. The circRNADisease database is a manually 
curated database of experimentally supported circRNA and 
disease associations, which collected 330 circRNAs and 48 

FIGURE 1 | Flowchart of the PreCDA workflow.
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diseases in 354 associations. Each entry in the circRNADisease 
database includes detailed information on a circRNA–disease 
association, including the circRNA and disease name, the 
circRNA expression pattern, literature references, and other 
annotation information. CircR2Disease is a database for 
experimentally supported circRNA–disease associations and 
provides a platform for investigating the mechanism of disease-
related circRNAs. The present version of CircR2Disease 
collected 661 circRNAs and 100 diseases. Circ2Disease is 
a database that curates experimentally supported human 
circRNAs and provides comprehensive associations between 
circRNAs and human diseases. It contains 273 manually 
curated associations between 237 circRNAs and 54 human 
diseases from 120 studies. However, currently, the naming 
of circRNAs has not yet been unified (Xu et al., 2018), which 
leads to the underutilization of information from different 
public circRNA databases. Therefore, we designed and 
collected mappings among different circRNA names provided 
by different circRNA databases, including circRNADisease 
and circBase. circRNADisease contains circRNA synonyms, 
and circBase is a database that merged and unified datasets 
of circRNAs. We mapped circRNAs from the three circRNA 
databases to circBase referring to circRNA synonyms. Then, 
we used circRNA IDs from circBase as the unified IDs of 
circRNAs in this work.

Disease Data
Human Disease Ontology represents common and rare human 
disease concepts captured across biomedical resources. Each 
node in DO represents one disease term and is organized in a 
directed acyclic graph with the relationship of “is_a”. MEDIC 
(Davis et al., 2012) integrates OMIM (Online Mendelian 
Inheritance in Man) terms (Amberger et al., 2015), synonyms 
and identifiers with MeSH terms (Lipscomb, 2000), synonyms, 
definitions, identifiers, and hierarchical relationships.

We extracted disease terms and synonyms from MEDIC 
to annotate DO by the same external references in DO and 
MEDIC, as shown in Figure 2. If a disease term was recorded 
in both DO and MEDIC, the term and its synonyms in MEDIC 
were used to annotate DO. With this approach, a given 
disease name can be matched to DO to a great extent by string 
matching, considering that the naming rules for diseases in 
different disease-related circRNA databases are different. The 
diseases described by different names are considered to be the 
same disease that has a unique id in DO if these disease names 
can match the disease term or its extended synonyms in DO.

circRNA Expression Similarity
Considering that comprehensive circRNA expression data are 
still unavailable, we extracted circRNA expression profiles from 
circBase and CIRCpedia, including the expression profiles of 
92488 circRNAs in 78 human cell types or tissues. We used 
the Spearman correlation coefficient between the expression 
profiles of each circRNA as the circRNA expression similarity, 
as shown in Formula 1.

 
ρ = −

−( )
∑1

6

1

2

2

d

n n

i

 (1)

where di is the difference between the two ranks of the expression 
scores in the ith human cell type or tissue, and n is the number 
of the human cell types or tissues from circBase or CIRCpedia. 
Matrix CB and Matrix CP are, respectively, denoted as the circRNA 
expression similarity matrix of circBase and CIRCpedia, where 
CB(i,j) and CP(i,j) are the expression similarities between circRNA 
c(i) and c(j). Then, to obtain reliable performance for circRNA 
expression data, we defined the expression similarity between 
circRNA c(i) and c(j) as shown in Formula 2 if circRNA c(i)  
and c(j) are included in both circBase and CIRCpedia.

 
ExSim i j
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
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≥ τ

0 otherwise
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To reduce the impact of data noise, we set a threshold τ to filter 
out those weak similarities between circRNAs. The threshold τ is 
set to 0.7 based on our experiments.

circRNA Functional Similarity
We extracted circRNA–disease associations from these above 
circRNA databases and defined a relational matrix of circRNAs and 
diseases. For each circRNA, all diseases in the matrix can be used to 
make a vector in a multidimensional space. Because of the limited 
number of available disease–circRNA pairs, there is a data sparsity 
problem in the matrix. Therefore, we calculated the circRNA-
related disease similarity and filled this matrix with predicted 

FIGURE 2 | Flowchart of establishing mappings between circRNAs and 
disease ontology terms.
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association scores based on disease–circRNA associations and the 
disease similarity. Here, we use FNSemSim (Wang et al., 2017) to 
calculate disease similarity. This method, which combines disease 
functional similarity and semantic similarity, has good performance 
for calculating similarities between diseases. The workflow of 
calculating circRNA functional similarity is shown in Figure 3.

To calculate the association between one circRNA and any 
disease, the similarities between this disease and all diseases 
that are directly related to this circRNA are calculated by 
FNSemSim. C is defined as the set of disease-related circRNAs, 
and D represents the set of circRNA-related diseases. DisSet(c) 
is defined as the set of diseases directly related to circRNA c. The 
association score between disease dis and circRNA c is defined 
as follows:

 
Score c Max FNSemSim i i

dis dis dis dis D
, ,     ( ) = ( )( ) ∈

1

iisSet dis DisSet

dis DisSet

c c

c

( ) ∉ ( )
∈ ( )







,    

 
(3)

where DisSet(c) ⊆D, 1≤i ≤ |DisSet(c)|; |DisSet(c)| is denoted as the 
number of diseases in DisSet(c). If this disease belongs to DisSet(c), 
the score is 1; otherwise, the score is defined as the maximum of 
similarities between this disease and all the diseases  related to 

circRNA c. Therefore, circRNA c can be depicted by a vector that 
is composed of circRNA-related diseases in a multidimensional 
space. We can calculate the functional similarity between any two 
circRNAs based on cosine similarity. The functional similarity 
between circRNA c(m) and c(n) is defined as follows:
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where |D| represents the size of the circRNA-related disease 
set D, and disi is the ith disease in the circRNA-related disease set D.

Prediction of Candidate Disease-Related 
circRNAs
We take circRNA functional similarity and expression similarity 
as weights to construct a circRNA association network. In this 
network, the weight between circRNA c(i) and c(j) is defined as 
shown in Formula 5. If ExSim(i,j) is greater than 0, the weight 
between circRNA c(i) and c(j) is the average value of their 

FIGURE 3 | Flowchart of calculating circRNA functional similarity.
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functional similarity and expression similarity; otherwise, the 
weight is defined as the functional similarity between them.

 
CircWeight i j
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To predict candidate disease-related circRNAs, the associations 
between diseases and circRNAs are also considered in this network. 
The weight between circRNA c and disease dis is defined as shown 
in Formula 6. If the disease is directly related to circRNA c, the 
weight between them is 1; otherwise, the weight is 0.

 

CircDisWeight i
c

, j     
if dis DisSet

otherw
( ) =

∈ ( )1
0 iise





  

(6)

In this network composed of circRNAs and diseases, we 
identify novel candidate disease-related circRNAs based on the 
PR. PersonalRank algorithm, as a recommendation algorithm 
based on random walking, can reveal more information 
between a target node and all the others in a specific network. 
PersonalRank algorithm is defined as follows:

 

PR i d r d
j

j
i

j i

( ) = −( ) +
( )
( )∈ ( )

∑1
in

PR

out
 (7)

where PR(i) represents the possibility value that node i is 
accessed; d is the transfer probability; out(j) represents the out-
degree of node j; in(i) is the in-degree of node i; and ri is defined 
as follows:
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≠
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1
0
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where t represents the target node. According to previous 
studies (Kang et al., 2014; Cheng et al., 2018b), d is set to 0.85. The 
target node t in the network randomly moves to adjacent nodes 
with the probabilities of the edges between these nodes. After 
enough iterations, the probabilities from the target node to all the 
other nodes will become stable. Eventually, the algorithm outputs 
the relevance degrees between all the nodes and this target node.

RESULTS

circRNAs and Diseases
We calculated similarities between 323 circRNAs from circBase 
and CIRCpedia based on circRNA expression profiles. Then, we 
obtained 11,281 circRNA pairs based on the preset threshold. 
Additionally, we found 507 relationships between 58 diseases 
and 445 circRNAs by mapping DO terms to the diseases in 
CircR2Disease. We matched 26 diseases based on DO terms 
and extracted 293 relationships between 277 circRNAs and 
these diseases from circRNADisease. In Circ2Disease, 218 
relationships between 37 diseases and 199 circRNAs were 
found. Based on DO terms and the unification of circRNA 
naming, we analyzed the three circRNA databases and found the 
same circRNAs and diseases among these databases, as shown 
in Figure 4. This provided the test data for the performance 
evaluation of PreCDA.

We separately calculated the similarities between 445 circRNAs 
from CircR2Disease, 277 circRNAs from circRNADisease and 
199 circRNAs from Circ2Disease. Three circRNA association 
networks were built that in turn contained 96,580 associations 

FIGURE 4 | Data distribution in the three databases.
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between 440 circRNAs associated with 56 diseases; 38,226 
associations between 277 circRNAs associated with 26 diseases; 
and 18,915 associations between 195 circRNAs associated with 
36 diseases. The detailed statistics of the circRNAs and diseases 
are shown in Table 1.

Performance
We designed a test scheme to assess the performance of 
PreCDA. First, we selected two circRNA–disease databases, 
one to build the circRNA association network and the other to 
provide test data. Then, we extracted the same diseases from 
the circRNA association network and the reference database. 
For a given disease, if any circRNA related to this disease in 
the reference database exists in the network, but the association 
between the circRNA and the disease does not, the circRNA can 
be used as a test case for the disease to assess the performance 
of this circRNA association network. The test scheme is shown 
in Figure 5.

In this article, we used three circRNA–disease databases, 
including CircR2Disease, circRNADisease, and Circ2Disease. 
For example, both circRNA hsa_circ_0000284 and liver 
cancer (DOID: 3571) were recorded in Circ2Disease and 
CircR2Disease. The circRNA hsa_circ_0000284 was related 
to liver cancer (DOID: 3571) in Circ2Disease but not in 
CircR2Disease. Therefore, we built a circRNA association 
network based on CircR2Disease and calculated the relevance 
degrees between liver cancer and all circRNAs unrelated 
to the disease. We calculated the area under the receiver 
operating characteristic curve (AUC) according to the ranking 
of the circRNA hsa_circ_0000284 among these circRNAs 
to measure the prediction results. To validate the reliability 
of the computational model, we conducted nine validation 
experiments based on this scheme involving 18 diseases. We 
built three circRNA association networks based on the three 
different circRNA–disease databases. The three data sources 
were also used as the reference data. Additionally, we merged 
the known circRNA–disease associations in the three databases 
as an additional control data source.

PreCDA had an average AUC value of 78.15% in predicting 
candidate disease-related circRNAs. Furthermore, it had an 
outstanding performance on some diseases. For example, 
diabetes mellitus (DOID: 9351) in the network from 
Circ2Disease had an AUC of 98.48% based on the control data 
from circRNADisease and an AUC of 93.04% based on the 
control data from CircR2Disease. Based on the control data 
from Circ2Disease, the AUC of osteoarthritis (DOID: 8398) 
was 97.44% in the network from CircR2Disease and 98% 

in the network from circRNADisease. In the network from 
Circ2Disease, the AUC of stomach cancer (DOID: 10534) 
was 56.41% based on the control data from circRNADisease; 
it had an AUC of 73.88% in CircR2Disease. This shows that 
the networks from the different data sources have different 
results for a disease based on the same control database. 
However, the AUCs in the other validation experiments 
achieved more than 65%. Even so, the performance of 
PreCDA is excellent in predicting candidate disease-related 
circRNAs. The performance of PreCDA based on the 
different databases and the different control data sources is  
shown in Figure 6.

Case Study
To further evaluate the performance of PreCDA in predicting 
potential disease-related circRNAs, we conducted some case 
studies, including prostate cancer (DOID: 10283), liver cancer 
(DOID: 3571), breast carcinoma (DOID: 3459), Alzheimer 
disease, and pancreatic cancer (DOID: 1793). We integrated the 
known associations between circRNAs and diseases in the three 
databases and prioritized candidate disease-related circRNAs 
based on PreCDA.

In the ranking of candidate circRNAs related to liver cancer 
(DOID: 3571), hsa_circ_0001727 (Qiu et al., 2018) ranked 
4th, hsa_circ_0001946 (Yu et al., 2016) ranked 7th, and hsa_
circ_0001141 (Guo et al., 2017) ranked 19th. They ranked in the 

TABLE 1 | Information on the three circRNA association networks.

Database circRNA association network

circRNA Disease Association

CircR2Disease 440 56 96,580
circRNADisease 277 26 38,226
Circ2Disease 195 36 18,915

FIGURE 5 | The validation scheme of the computational model. For 
comparison with database B, test data are extracted from database A 
according to the test scheme. PreCDA outputs the ranks of candidate 
circRNAs with the circRNA–disease associations from database A as the 
input. The performance of PreCDA is assessed based on the test data.
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top 3% and were associated with liver cancer. For prostate cancer 
(DOID: 10283), hsa_circ_0001946 (Zhang et al., 2018) and hsa_
circ_0001649 (Yi et al., 2016) ranked 3rd and 5th in the ranking, 
respectively. They were documented to be related to prostate 
cancer. For pancreatic cancer (DOID: 1793), CircRNA_100782 
(Chen et al., 2017), which ranked 1st in the ranking, was 

validated to regulate pancreatic carcinoma proliferation through 
the IL6-STAT3 pathway. We found that some candidate circRNAs 
related to these diseases were included by Circ2Traits (Ghosal 
et al., 2013), which is a comprehensive database for circRNAs 
potentially associated with disease and traits. For example, 
hsa_circ_0000118, which ranked 1st in the ranking of candidate 

FIGURE 6 | The performance in predicting circRNA-associated diseases. (A) Seven diseases were tested based on CircR2Disease with reference to 
circRNADisease, Circ2Disease, and all circRNA–disease associations from the three data sources. (B) Fifteen diseases were tested based on circRNADisease 
with reference to CircR2Disease, Circ2Disease, and all circRNA–disease associations from the three data sources. (C) Fourteen diseases were tested based on 
Circ2Disease with reference to CircR2Disease, circRNADisease, and all circRNA–disease associations from the three data sources.
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circRNAs associated with prostate cancer, was documented to be 
potentially related to this disease in Circ2Traits. The prediction 
results of the case studies are presented in Table 2.

DISCUSSION

Although functional associations between circRNAs are 
measured based on circRNA expression profiles, there are many 
weak connections among them. To reduce the impact of data 
noise, we set a threshold to filter out those weak connections 
between circRNAs. Based on the above validation strategy and 
different thresholds, we conducted nine groups of experiments 
in which these three databases were used as a reference to each 
other and to test the performance of PreCDA. As shown in 

Figure 7, the average AUC of PreCDA varied with the change in 
the threshold, and the computational model worked best when 
the threshold was set to 0.7.

We calculated circRNA similarities by only cosine similarity 
and built a circRNA association network. Additionally, we merged 
the known circRNA–disease associations in these three databases 

TABLE 2 | The prediction results of predicting candidate circRNAs for five diseases.

Disease 
name

DOID circRNA Rank Evidence

Prostate 
cancer

10283 hsa_circ_0000118 1 Circ2Traits
hsa_circ_0001946 3 Zhang et al., 2018
hsa_circ_0001649 5 Yi et al., 2016
hsa_circ_0001070 7 Circ2Traits
hsa_circ_0001512 16 Circ2Traits
hsa_circ_0000437 18 Circ2Traits
hsa_circ_0001727 45 Circ2Traits
hsa_circ_0000130 52 Circ2Traits

Breast 
carcinoma

3459 hsa_circ_0001070 7 Circ2Traits
hsa_circ_0001727 19 Circ2Traits
hsa_circ_0001333 35 Circ2Traits
hsa_circ_0000190 54 Circ2Traits

Liver cancer 3571 hsa_circ_0001727 4 Qiu et al., 2018
hsa_circ_0001946 7 Yu et al., 2016
hsa_circ_0001141 19 Guo et al., 2017

Pancreatic 
cancer

1793 hsa_circ_0000284 1 Chen et al., 2017
hsa_circ_0002702 5 Circ2Traits
hsa_circ_0001667 29 Circ2Traits

Alzheimer 
disease

10652 hsa_circ_0000284 8 Circ2Traits
hsa_circ_0001141 28 Circ2Traits
hsa_circ_0000096 32 Circ2Traits

FIGURE 7 | The impact of different thresholds on the performance of PreCDA.

FIGURE 8 | The performance of different computational models.

TABLE 3 | Performance differences of predicting circRNA–disease pairs based on different data sources.

References database Disease DOID AUC circRNA

CircR2Disease circRNADisease Circ2Disease
Colorectal cancer 9256 71.86% 82.17% hsa_circ_0001649

hsa_circ_0000284
hsa_circ_0014717
hsa_circ_0001141

Malignant glioma 3070 57.1% 76.1% hsa_circ_0000284
hsa_circ_0001649
hsa_circ_0001445

Lung benign neoplasm 3683 51.4% 53.18% hsa_circ_0001821
circUBAP2

Diabetes mellitus 9351 71.85% 93.04% hsa_circ_0000284
Coronary artery disease 3393 54.21% 57.78% hsa_circ_0000615

CircR2Disease Circ2Disease
circRNADisease Diabetes mellitus 9351 73.73% 98.48% hsa_circ_0054633

Malignant glioma 3070 80.6% 75.77% hsa_circ_0001946
hsa_circ_0004214

CircR2Disease circRNADisease
Circ2Disease Osteoarthritis 8398 97.44% 98% hsa_circ_0000026

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


circRNA-Disease Association PredictionWang et al.

9 September 2019 | Volume 10 | Article 832Frontiers in Genetics | www.frontiersin.org

as an additional control data source. Based on the validation 
strategy mentioned above, we used these three databases to 
test the performance of the network. As shown in Figure 8, the 
average AUC was 77.22%, the minimum AUC was 69.26%, and the 
maximum AUC was 88.85%. In comparison, PreCDA has a more 
stable performance, with an average AUC of 78.15%. Its minimum 
and maximum AUCs are 71.83% and 95.72%, respectively.

We found that the performance of predicting potential 
disease–circRNA pairs in the disease-related circRNA 
association network was impacted by different data sources. 
The result of predicting the associations between the 
same diseases and circRNAs was different based on the 
different data sources that were used to build networks. For 
example, referring to CircR2Disease, some of the data to 
be tested in the networks built based on circRNADisease 
and Circ2Disease were the same. However, the AUC values 
of predicting the associations between them were different. 
As shown in Table 3, we predicted the associations between 
colorectal cancer (DOID: 9256) and four circRNAs, including 
hsa_circ_0001649, hsa_circ_0000284, hsa_circ_0014717, 
and hsa_circ_0001141. The AUC value for the network of 
circRNADisease was 71.86%. The performance of identifying 
the associations between colorectal cancer and these four 
circRNAs based on Circ2Disease was improved, and its AUC 
achieved 82.17%.

CONCLUSIONS

Circular RNA plays an important role in the development 
of various pathological conditions. Research on circRNA is 
invaluable in explaining the underlying pathogenesis. Therefore, 
we proposed a computational model to identify candidate 
disease-related circRNAs. First, we calculated the circRNA 
expression similarity with the circRNA expression profiles. 
Then, the disease similarity was used as dimensions of circRNA 
vectors, and the circRNA functional similarity was calculated 
based on cosine similarity. We defined the associations between 
circRNAs and diseases based on the circRNA expression 
similarity and functional similarity. A disease-related circRNA 
association network was built, and potential candidate disease-
related circRNAs were ranked by the PR.

We evaluated the performance of PreCDA with the help of data 
differences among these three databases, including CircR2 Disease, 
circRNADisease, and Circ2Disease. The results showed that the 
average AUC of PreCDA was 78.15%, and it had good performance 
in predicting potential disease-related circRNA signatures. We  
discussed the selection of the threshold and the impact of different 
data sources on the performance of PreCDA. Then, we used 
several common diseases as case studies and found some unknown 
circRNAs that could be related to these diseases based on PreCDA. 
The findings of this study could be further applied in analyzing 
diseases in a system biology perspective (Cheng and Hu, 2018) and 
helpful for researchers to improve disease diagnostics and treatments.
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