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Abstract: One of the axioms of structural health monitoring states that the severity of damage
assessment can only be done in a learning mode under the supervision of an expert. Therefore,
a numerical analysis was conducted to gain knowledge regarding the influence of the damage
size on the propagation of elastic waves in a honeycomb sandwich composite panel. Core-skin
debonding was considered as damage. For this purpose, a panel was modelled taking into account
the real geometry of the honeycomb core using the time-domain spectral element method and
two-dimensional elements. The presented model was compared with the homogenized model of the
honeycomb core and validated in the experimental investigation. The result of the parametric study
is a function of the influence of damage on the amplitude and energy of propagating waves.

Keywords: honeycomb sandwich structures; spectral element method; structural health monitoring;
guided waves

1. Introduction

Honeycomb Sandwich Composites (HSCs) are a type of multi-layered structure that
are composed of the mid-core with the geometry of honeycomb sandwiched between thin
skins. They are widely used in the aerospace, marine and automotive industries due to
the high strength-to-weight ratio, high energy absorption capability and effective acoustic
insulation. However, these complex structures are exposed to various types of damage
that are not found in metal alloy materials, e.g., hidden disbonds between the skin and the
core, delamination of the skin plates, or the core impact damage. They can occur either
during a manufacturing process, storage or in-service life. Therefore, advanced methods
are required for on-line damage detection.

The Guided Waves propagation method is a high-potential approach in SHM for
damage detection in HSCs [1–5]. GW are mechanical waves that propagate in a bounded
elastic medium, e.g., bars, beams, rods, plates and shells. An excitation and sensing of the
GW can be realised by the lightweight and inexpensive piezoelectric transducers (PZT) [6].
The compact PZT can be surface-bonded to the inspected structure or even embedded
between the composite plies so that the measurements can be conducted in situ.

Among numerous GW-based techniques developed for damage detection and locali-
sation, the most popular are pitch–catch [7,8], pulse–echo [9,10], phase array [11,12] and
time-reversal mirror [13,14]. For damage identification, some of them require a baseline to
be determined. Due to the costs and time-consumption, experimental investigation is an
inefficient approach to obtain references.

Lonkar et al. presented new model-assisted diagnostics for SHM [15]. The numerical
model was used to determine the exact velocity of the wave propagating in the stiffened
panel, which is essential for accurate damage identification. A combination of 3D scanning
laser vibrometry measurements and the numerical model to reconstruct or update baseline
signals for damage detection with guided waves was proposed by Aryan et al. [16].
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Recently, model-based approaches have been developed to estimate the probability
of detection for characterizing SHM techniques [17–20]. The most common numerical
modelling of the phenomenon of GW in HSCs found in the literature is a calculation of
the effective material properties of the honeycomb structure by the homogenisation pro-
cess [2,21–24]. However, this method is not able to adequately represent the phenomenon
of propagation of elastic waves in such material. A more accurate model will be achieved
if the real geometry of the hexagonal cell is retained.

Ruzzenne et al. presented a parametric study to evaluate the dynamic behaviour of the
honeycomb and cellular structures through the finite element model and the application of
the theory of periodic structures [25]. Recently, the simulations of the wave propagation in
HSCs have been conducted with commercially available finite element code [26–29].

However, the finite element method (FEM) modelling of GW is inefficient as it requires
a significant amount of memory and is time-consuming. The computational efficiency of
the FEM in case of GW modelling in HSCs can be improved by using the time-domain
spectral element method (SEM). The SEM was originally used for the numerical solution
of the fluid flow in a channel by Patera [30] but has also been successfully developed for
elastic wave propagation [31].

Kudela proposed a model of the GW in HSCs by the parallel implementation of the
SEM [32]. The wave excitation was realized by an external force applied at the point of
the panel. However, this model had a large number (1.5 million) of degrees-of-freedom
(DOFs), because cells of the core and skin plate were modelled by the three-dimensional
(3D) spectral elements; however, the simulation was limited to only one skin plate and a
small dimension of the HSC (179× 159 mm).

The above-mentioned drawbacks were motivation to propose a new model of the HSC.
In the present paper, the skin plates, adhesive layers and each wall of the hexagonal core
were modelled by two-dimensional (2D) spectral elements. However, 2D elements have
nodes only in a mid-plane; therefore, there is no direct linking between the two adjacent
structures. This connection was implemented by interface elements based on Lagrange
multipliers [33,34].

Additionally, the signal was generated and recorded with piezoelectric transducers
(PZT). A non-matching interface between the transducers and the skin was used to avoid a
too complex mesh—likewise to the interfaces developed for the FEM [35,36]. To the best of
the authors’ knowledge, the present model has not been implemented yet for HSCs.

The parametric study conducted in the paper leads to the determination of a model-
assisted damage identification function (MADIF), which defines the influence of the size
of the composite defect on wave propagation. In this case, the defect is assumed to be a
disbond between the skin and the core.

2. The Time-Domain Spectral Element Method Formulation
2.1. The Spectral Element Method

The general concept of the SEM is based on the idea of the FEM. The similarity of
both methods lies in the fact that the modelled domain is divided into non-overlapping
finite elements, and external forces and arbitrary boundary conditions are imposed in the
particular nodes. The main difference between those methods is a choice of the shape
function N = N(ξ), which is interpolated by a Lagrange polynomial that passes through
the element nodes. The nodes are localized on the endpoint of an interval, ξ ∈ [−1, 1], and
the roots of the first derivative of Legendre polynomial P of degree p− 1:

(1− ξ2)P′p−1(ξ) = 0. (1)
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The approximation of an integral over the elements is achieved according to Gauss–
Lobatto–Legendre (GLL) rule at points coinciding with the element nodes, and the weights
w = w(ξ) calculated as:

w(ξ) =
2

p(p− 1)(Pp−1(ξ))2 . (2)

This approach guarantees a diagonal mass matrix. The shape functions and the
weights for 2D or 3D elements are obtained by the Kronecker product of vectors of individ-
ual axes, denoted by ⊗ as follows:

N(ξ, η) = N(ξ)⊗ N(η), N(ξ, η, ζ) = N(ξ)⊗ N(η)⊗ N(ζ),

w(ξ, η) = w(ξ)⊗ w(η), w(ξ, η, ζ) = w(ξ)⊗ w(η)⊗ w(ζ). (3)

2.2. 2D Spectral Modelling

According to the first-order shear deformation theory [37,38], the displacement field
is expressed as: 

ue(ξ, η)
ve(ξ, η)
we(ξ, η)

 =


ue

0(ξ, η) + zϕe
x(ξ, η)

ve
0(ξ, η) + zϕe

y(ξ, η)

we
0(ξ, η)

, (4)

where ue
0, ve

0 and we
0 are nodal displacements, ϕe

x, ϕe
y are the rotations of the normal to the

mid-plane with respect to the axes x and y, respectively.
ue

0(ξ, η)
ve

0(ξ, η)
we

0(ξ, η)
ϕe

x(ξ, η)
ϕe

y(ξ, η)

 = Ne(ξ, η)d̂
e
=

q

∑
n=1

p

∑
m=1

Ne
m(ξ)N

e
n(η)


ûe

0
v̂e

0
ŵe

0
ϕ̂e

x
ϕ̂e

y

. (5)

The nodal bending strain–displacement relations are given in the form:

εe
b = Be

bd̂
e
=



∂Ne

∂x 0 0 0 0
0 ∂Ne

∂y 0 0 0
∂Ne

∂y
∂Ne

∂x 0 0 0

0 0 0 − ∂Ne

∂x 0
0 0 0 0 − ∂Ne

∂y
0 0 0 − ∂Ne

∂y − ∂Ne

∂x




ûe

0
v̂e

0
ŵe

0
ϕ̂e

x
ϕ̂e

y

. (6)

The nodal shear strain–displacement relations are given in the form:

εe
s = Be

sd̂
e
=

[
0 0 ∂Ne

∂y −1 0

0 0 ∂Ne

∂y 0 −1

]
ûe

0
v̂e

0
ŵe

0
ϕe

x
ϕe

y

. (7)

2.3. 3D Model of the PZT Transducer

The displacement vector of the PZT transducer is composed of three translational
displacements and is defined as:

ue(ξ, η, ζ)
ve(ξ, η, ζ)
we(ξ, η, ζ)

 = Ne(ξ, η, ζ)d̂
e
=

r

∑
l=1

q

∑
n=1

p

∑
m=1

Ne
m(ξ)N

e
n(η)N

e
l (ζ)


ûe(ξm, ηn, ζl)
v̂e(ξm, ηn, ζl)
ŵe(ξm, ηn, ζl)

, (8)
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where ûe, v̂e and ŵe are displacements of the element nodes in ξ, η and ζ direction.
The nodal strain–displacement relations are given as [39]:

εe = Be
dd̂

e
=



∂Ne

∂x 0 0
0 ∂Ne

∂y 0

0 0 ∂Ne

∂z
0 ∂Ne

∂z
∂Ne

∂y
∂Ne

∂z 0 ∂Ne

∂x
∂Ne

∂y
∂Ne

∂x 0




ûe

v̂e

ŵe

. (9)

The electromechanical coupling is governed by the linear constitutive equation of
piezoelectric material according to [6,40], and this is defined as:[

σ
D

]
=

[
cE −eT

e εS

][
S
E

]
, (10)

where σ and S are the stress and strain components, respectively, cE is the stiffness coeffi-
cient matrix measured at zero electric field, e is the piezoelectric coupling tensor, εS is the
electric permittivity, and E and D are the electric field and electric displacement measured
at zero strain. The superscript T denotes a transpose matrix. The electric field is defined as:

Ee = −Be
φφ̂

e
=


∂Ne

∂ξ
∂Ne

∂η
∂Ne

∂ζ

φ̂
e. (11)

where φ̂
e is a nodal voltage of the transducer.

2.4. Displacements Coupling at the Substructures Interface

The present model of the sandwich panel consists of 2D and 3D elements. Moreover,
there are non-matching grids between two adjacent substructures. These involve connect-
ing them by imposing the compatibility of the displacements at the interface, see Figure 1.
This type of connection is implemented through the interface elements based on Lagrange
multipliers, which are interpreted as forces responsible for determining the appropriate
displacements of nodes. The coupling can be expressed as:


u
v
w


Γi

si1

−


u
v
w


Γi

si2

=


0
0
0

, (12)

where si1 and si2 are substructures connected by the interface Γi. For the whole structure,
the Equation (12) can be written in the matrix form:

Gd = 0, (13)

where G is the coupling matrix, which contains the equations to interpolate the substruc-
tures displacements at the interfaces, and d is a global displacement field for nS number of
substructures, composed as:

d =
{

d1, d2, . . . , dnS
}T . (14)
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Figure 1. Non-matching interface setup: (a) interface coupling and (b) degrees-of-freedom of the interface and the substructures.

The general formulation of the matrix G is presented in Algorithm A1 from Appendix B.
The main task of the algorithm is to calculate shape functions for each adjacent sub-
structures at the points Xp = (xk

p, yk
p), which are projections of the interface nodes onto

these substructures.
The shape function can be calculated after finding an owner element and local co-

ordinates of the points. The owner element is a spectral element in the domain of the
substructure sij, which contains the interface node, for example, interface node kΓ = 36
(see Figure 1a) is located in the element eI

3D and eI I I
2D for the substructures s11 and s12,

respectively. This can be found in two ways: using MATLAB’s built-in function inpolygon
or more the efficient procedure proposed by Silva et al. [41], which was used in the
current implementation.

The transformation from global to local coordinates was realised by the iterative method
presented in the work of Li et al. [42]. The computational effectiveness of Algorithm A1 can
be easily improved if certain precautions are taken. First, the mesh of the interface has to
be based on the mesh from one of the substructures si1, si2, which may be referred to as a
slave. Thus, the shape function takes only the values of one and zeros. Moreover, the code
can be implemented in vectorized form rather than using for-loops.

2.5. Elementary Governing Equations of Motion

The classical equations of motion Md̈ + Cḋ + Kd = F known from FEM are com-
plemented by piezoelectric and interface coupling. Thus, the governing equations are
defined as:

Mdd
̂̈d + Cdd

̂̇d + Kddd̂ + Kdφφ̂ = F−GTλ, (15)

Kφdd̂ + Kφφφ̂ = Q, (16)
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where Mdd, Cdd and Kdd are the structural mass, damping and stiffness matrices, respec-
tively; Kφd = Kdφ

T are piezoelectric coupling matrices; Kφφ is the dielectric permittivity
matrix, d̂ is the vector of unknown nodal displacements, φ̂ is the electric potential vector, F
is the nodal external force vector, Q is the nodal charge vector, λ is the Lagrange multiplier
vector, and G is the interface coupling matrix (˙) = ∂

∂t . The formulae of the matrices
are provided in Appendix A. The coupling is realised by imposing the traction forces as
represented by a vector of Lagrange multipliers.

2.6. Parallel Implementation of the Internal Force Vector Calculation

The presented HSC model occupies much more operating memory than the homoge-
nized one; thus, in order to achieve the solution in a reasonable time, the computation is
performed using a multicore graphics processing unit (GPU). The most time-consuming
operation in the Equation (15) is calculation of the internal force vector as: Fint = Kddd̂. It
should be noted that the stiffness matrix Kdd occupies a large amount of memory. Instead
of allocating matrix Kdd, Kudela proposed a parallelized computation of the internal force
vector [32].

The calculation is performed in three steps. First, the strain vectors are determined by
multiplying the vectors of local node displacements and a sparse matrix containing local
shape function derivatives. Then, the local internal force vector is obtained by multiplying
the strain vectors by an appropriate material coefficient and a matrix of local shape function
derivatives. Finally, the transformation of the local internal forces into the global forces
is performed.

2.7. Transformation of the Core Elements

All core elements are rotated relative to both skins, and thus it is necessary to transform
the degrees of freedom from the local coordinate system of the core to the global coordinate
system. For this purpose, an additional sixth DOF is incorporated, i.e., rotation with respect
to the z-axis:

d̂
e
g =

{
ûe v̂e ŵe ϕ̂e

x ϕ̂e
y ϕ̂e

z

}T

g
. (17)

First, the displacement vector is transformed from the global to local coordinate system
by the direction cosines as follows:

d̂
e
l =


ûe

v̂e

ŵe

ϕ̂e
x

ϕ̂e
y


l

=

[
Ve

1, Ve
2, Ve

3, 0 0
0 0 0 Ve

1, Ve
2

]T



ûe

v̂e

ŵe

ϕ̂e
x

ϕ̂e
y

ϕ̂e
z


g

, (18)

where Ve
1,Ve

2 and Ve
3 are direction cosines of the core element. Then, internal forces are

calculated according to guideline from Section 2.6 and transformed to a global coordi-
nated system:

{Fint}e
g =

[
Ve

1, Ve
2, Ve

3, 0 0
0 0 0 Ve

1, Ve
2

]
F1

int
F2

int
F3

int
F4

int
F5

int



e

l

. (19)

Additionally, a part of the mass matrix accounted for rotary inertia has to be trans-
formed, and, in contrast to the internal forces vector, this has to be done only once in
pre-processing as follows:
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Jg =

 (J11)g (J12)g (J13)g
(J22)g (J23)g

Sym. (J33)g

 =
[

V1, V2, V3
]T Jl

[
V1, V2, V3

]
. (20)

As the matrix becomes non-diagonal after transformation, some approximation is
necessary. Off-diagonal terms in the matrix given in Equation (20) are neglected following
the analysis performed in [43].

2.8. A Solution of the Equation of Motion

Assuming b and f represent order lists of the electrode nodes and free nodes of the
PZT, respectively, the electrical potential vector is rewritten:

φ̂ =
{

φ̂(b) φ̂(f)
}T . (21)

Then, Equation (16) is expressed as:[
Kφd(b, :)
Kφd(f, :)

]{
d̂
}
+

[
Kφφ(b, b) Kφφ(b, f)
Kφφ(f, b) Kφφ(f, f)

]{
φ̂(b)
φ̂(f)

}
=

{
Q
0

}
, (22)

where the notation K(r, c) uses vectors r and c to extract rows and columns from the matrix
K, respectively, and (:) means all rows or columns of K. The electrical potential of the free
nodes can be extracted from Equation (22):

φ̂(f) = −K−1
φφ (f, f)

[
Kφd(f, :)d̂ + Kφφ(f, b)φ̂(b)

]
. (23)

Substituting Equations (21) and (23) into Equation (15), the equation of motion can be
rearranged into the form:

Mdd
̂̈d + Cdd

̂̇d + (Kdd −Ks)d̂ = F + Kaφ̂(b)−GTλ, (24)

where Ka = Kdφ(:, f )K−1
φφ ( f , f )Kφφ(f, b)−Kdφ(:, b), Ks = Kdφ(:, f)K−1

φφ (f, f)Kφd(f, :). The

unknown displacement vector d̂t is found using a central difference algorithm [39]. Thus,
Equation (24) is rewritten as:(

1
∆t2 Mdd +

1
2∆t Cdd

)
d̂t+∆t = Ft + Kaφ̂t(b)− (Kdd −Ks)d̂t+

+ 2
∆t2 Mddd̂t −

(
1

∆t2 Mdd − 1
2∆t Cdd

)
d̂t−∆t −GTλt,

(25)

where ∆t is the time increment.
Imposing the constrain Equation (13), the vector of Lagrange multipliers λt can be

extracted from Equation (25):

λt =
(

GL−1
+ GT

)−1
GL−1

+

[
Ft + Kaφ̂t(b) +

(
2

∆t2 Mdd −Kdd + Ks

)
d̂t − L−d̂t−∆t

]
, (26)

where L± = 1
∆t2 Mdd ± 1

2∆t Cdd.

3. Experimental Validation

The presented model was validated with results from two experimental studies. The
first one was performed for determination of the full wavefield of the propagating waves
by the scanning laser Doppler vibrometer (SLDV, Polytec PSV–400). The second study
was performed for wave acquisition by the PZT sensor. The schematic of the experimental
setup is shown in Figure 2. The sample of interest was a not-regular hexagonal aluminium
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honeycomb bonded to one CFRP plate using the epoxy adhesive (Loctite EA3479B) as
shown in Figure 3a).The subject of the parametric study was the effect of the disbond size
on the propagating GW.

Figure 2. Experimental setup for the (1) SDLV measurement—dashed line and (2) PZT wave
acquisition—solid line.

Figure 3. Sample configuration: (a) top view of the sample, (b) honeycomb sandwich substructures
and (c) details of the honeycomb cell.

After a reference measurement was made on an intact sample, several measurements
were taken for the subsequent damage introduced on the same specimen. The circular area
of the core was detached from the adhesive at the centre of the plate using a sharp hooked
tool. For this purpose, the bottom skin was omitted so that damage could be introduced.
The damage size was controlled by its diameter ΦD = [10, 30, 50, 70, 90, 110, 130] mm.
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The generation and reception of elastic waves were achieved with a pair of PZT
transducers mounted on the skin top surface with the cyanoacrylate glue. The coordinates
of the actuator were (x1, y1) = (−100, 0) mm, and for the sensor, (x2, y2) = (100, 0) mm.
The dimensions of the sample components were as follows:

• CFRP skin: L×W = 500× 500 mm, H = 1.5 mm.
• Aluminium core: g = 14.5 mm, w = 0.1 mm, h1 = 11 mm, h2 = 5 mm, l1 = 10.4 mm,

l2 = 6 mm.
• Epoxy adhesive: L×W = 500× 500 mm, H = 0.3 mm.
• NCE51 PZT: ΦPZT = 10 mm, h = 0.5 mm.
• Cyanoacrylate glue: ΦCG = 10 mm, h = 0.05 mm.

The Nc = 5 cycle Hann windowed signal at carrier frequencies fc = [75, 100, 125, 150] kHz
was generated using an arbitrary waveform generator (National Instruments, PXI 5413).
The signal was amplified 40 times and supplied to the piezo actuator (Noliac, NCE51).
Each measurement was conducted in the room temperature and averaged 20 times in order
to improve the signal to noise ratio.

4. Numerical Simulations
4.1. Simulation Parameters

All structures used to create the sample were modelled in the simulation with the
following elements: 2D for the core, epoxy adhesive and cyanoacrylate glue and 3D for
the CFRP plate and PZT transducers. During the creation of the mesh, special attention
was taken to reduce the number of non-zero values in the matrix G. While the inversion
of the matrix

[
GL−1

+ GT
]

is necessary to calculate the vector of Lagrange multipliers in
Equation (26) and L+ is a diagonal matrix, the sparsity of the matrix G has a significant
effect on the computation cost.

One spectral element was intended for each wall of the honeycomb core, while the
meshes of the skin plates and the adhesive layers were divided by three rhombus elements
per area under the core cell. In this way, the interface nodes coincide with the nodes lying
on the hexagon edges (thick line on Figure 4b). The mesh of the cyanoacrylate glue was
generated using external software GMSH [44] (see Figure 4c) and joined to the plate by
non-matching interface elements.

Figure 4. The mesh with the node distribution, (a) spectral element used for modeling the wall of the
core, (b) excerpt of the skin plate and (c) cyanoacrylate glue mesh generated in GMSH.

The PZT mesh coincides with the glue mesh. The convergence of the solution requires
time increment to be less than a critical value, above which the displacements go to
infinity. The critical value of time increment depends on the mesh size and the wave mode
velocity. In the present model, convergence was achieved for 3 × 10−9 s. Additionally, the
following number of nodes in the elements were used: the core 6× 5, epoxy adhesive and
cyanoacrylate glue 6× 6, the plate 6× 6× 4 and PZT transducers 6× 6× 3.

As the cells in the damaged area become distorted during core separation Figure 5a,
the damage was modelled by removing the core elements in the disbond area as shown
in Figure 5b.
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Figure 5. The damaged area in the: (a) experimental sample and (b) numerical mesh.

The material properties used in the simulations are gathered in Appendix C.

4.2. Homogenized Model

For this paper, comparative studies were conducted between the current model and
the homogenized one. In the simplified model, the values of the material constants of the
panel core were calculated according to the method presented by Malek and Gibson [45].
The effective mechanical properties for an aluminium core are gathered in Table A2, while
the properties for other structures, i.e., the skin, the epoxy adhesive, the cyanoacrylate glue,
and the sensors remained unchanged. The core element has 6× 6× 4 nodes, and the mesh
coincides with the plate mesh. The models of the other structures remain unchanged.

5. The Severity of Damage Estimation

The severity of damage was estimated based on the function determined with the
numerical simulation. A simple flowchart given in Figure 6 represents a process for the
sample assessment. When the structure model is developed, several computer simulations
for various damage sizes must be conducted to determine the MADIF.

The MADIF indicates the damage size according to measured damage index I normal-
ized by the value obtained for the pristine sample Ire f . In the paper, two types of damage
index I are considered: the energy Ieng and the maximum value of the half-width of the
first package arrived in the sensor Iamp, and these are defined as:

Ieng(ΦD) =
T

∑
t=0

(
Ψg(t, ΦD)

)2, Ire f
eng =

T

∑
t=0

(
Ψg(t, 0)

)2, (27)

Iamp(ΦD) = max
(
Ψg(t, ΦD)

)
, Ire f

amp = max
(
Ψg(t, 0)

)
, (28)

where T is a period of the signal. Ψg(t, ΦD) is for the damaged case scenario, whereas
Ψg(t, 0) is for the pristine sample and it is realized in the same way by windowing the
full-length signals of the sensor Ψ(t) with a flattened Gaussian window g(t) as follows:

Ψg(t) = Ψ(t)g(t) = Ψ(t)exp

(
−
(

t− t0

0.6005612wg

)12
)

, (29)
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where t0 is the centre and wg = 0.5Nc/ fc is a half-width of the window. Windowing the
signals ensures obtaining the signals without any reflections from the boundaries. The
determination of Ψg is pictured in Figure 7a.

Figure 6. A flowchart representing the process for damage size estimation.

Figure 7. (a) The sensor signal Ψ(t) windowed by a flattened Gaussian window g(t) and (b) the
damage size estimation from the MADIF.

In the time domain, an equivalent numerical signal to the signal registered by the PZT
acquisition instrument is calculated as an average value of the electrical potential of the
electrode surface

Ψn(t) =

∫
Γe

φdΓ

Γe
, (30)

where n = 1 and n = 2 correspond to the homogenized and presented model, respectively.
The MADIF is achieved by approximating the inverse of the computed damage index

that best matches the experimental one. Finally, the damage size ΦD is obtained from the
MADIF curve for measuring the normalized value of I/Ire f as it is presented in Figure 7b.

6. Results
6.1. Comparison of the Models

The snapshots for the pristine and the damaged sample are shown in Figures 8 and 9,
respectively. One can observe the wave reflections in the core cells for experimental
measurements and the present model. Additional, the front of the incident wave is distorted
for the measurements of 125 and 150 kHz. The wavefront distortion in the present model
is observed in the full range of frequency.
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Figure 8. The top surface out of plane particle velocity snapshots in time 100 µs for (a) the experi-
mental results obtained by using SLDV, (b) the present model and (c) the homogenized model in the
pristine sample.

Such effects are not noticeable in the simplified model because the wave propagates
smoothly through the structure. The wavefront improvement in the experiment and
the present model is noticeable in the undamaged region and marked by the red curves
in Figure 9. This is the effect of a lack of reflection with the core.

6.2. Model-Assisted Damage Identification Function

Ieng and Iamp were determined for experimental measurements and numerical calcula-
tions in the function of damage size and the carrier frequencies. The indices with the curve
fitted by the polynomial interpolation of order three are shown in Figures 10 and 11. It can
be seen that both indices increase with the damage size in all cases. This is the effect of the
leaky GW phenomenon [26].

Waves propagating through the plate lose energy in contact with the core. While
GW propagates in the damaged area, such an effect does not occur, and thus the signal
amplitude arriving at the sensor is higher. The present model is in good agreement with
the experimental results for the tested frequencies fc = [75, 100, 125, 150] kHz.
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Figure 9. The top surface out of plane particle velocity snapshots in time 100 µs for (a) the experi-
mental results obtained by using SLDV, (b) the present model and (c) the homogenized model in the
sample with 90 mm damage.

The homogenized model is in good agreement with the experiment for the lowest
frequency, and the differences increase for higher frequencies. This issue may be related
to the fact that the a shorter wavelength wave can lose more energy due to reflections at
the edge of the damage of a homogenized model compared with a wave reflecting off the
core cells.

To qualify the index as the MADIF, it must meet the condition of matching the nu-
merical results with the experiment. The matching condition is that the value of the mean
absolute error (MEA) must be less than an assumed threshold. The MEA is defined as:

MAE fc =
∑ΦD=0

∣∣∣{In(ΦD)} fc − {Ie(ΦD)} fc
∣∣∣

d
× 100, (31)

where the superscripts n and e correspond to the numerical models and experimental
measurements, respectively; and d is the number of damage cases. The threshold is the
smallest to the most extensive damage ratio expressed as a percentage, i.e., threshold =
Φmin

D /Φmax
D × 100.
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Figure 10. Relative change of the energy of the half of the first package in the function of damage size.

Figure 11. Relative change of the maximum amplitude of the first package in the function of damage size.
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It can be seen from Figure 12 that the following indices satisfy the MAE condition:
honeycomb index Ieng for frequencies fc = [100, 125] and Iamp for fc = [75, 100, 125, 150] kHz,
but none from the homogenized model satisfy the MADIF selection criterion. In the case
under consideration, the best fitting index turns out to be honeycomb Iamp in 125 kHz;
therefore, it was chosen for the MADIF, which is shown in Figure 13.

Figure 12. The mean absolute error of the indices.

Figure 13. The model-assisted damage identification function (MADIF).

7. Conclusions

This paper presents preliminary research on the possibility of using a model-assisted
approach to identify the severity of damage in a composite structure using GW propagation.
For this purpose, the HSC model was implemented with the actual geometry of the
honeycomb core. In contrast to full-structure homogenization, which is the most common
HSC model found in the literature, the interactions of the propagating wave with the
core cell walls were visible in the current model. The MADIF determined by the present
model was in better agreement with the experimental measurements compared with the
homogenized one.

In future works, our model will be used for parametric investigation to determine
the MADIF in varied environmental conditions. The extended model will be usable in
developing SHM scenarios.
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Appendix A

The formulae of matrices for 3D elements are:

Me
dd =

∫
Ve

NTρNdVe, (A1)

Ke
dd =

∫
Ve

Be
d

TcBe
ddVe, (A2)

where c is the stiffness tensor, ρ is the mass density, and Ve is the element volume.
In the case of the 2D elements, the matrices are defined as:

Me
dd =

[
Me 0
0 Je

]
=
∫

Ωe
NTρ


h 0 0 0 0

h 0 0 0
h 0 0

h3

12 0
Sym. h3

12

NdΩe, (A3)

Ke
dd =

∫
Ωe

Be
b

T
[

A B
B D

]
Be

bdΩe +
∫

Ωe
Be

s
TÂBe

sdΩe, (A4)

where h = ht + hb is the element thickness, while ht(b) is the distance between mid-plane
and top (bottom) surface of the element, and Ωe is the element area:

A = cij (ht − hb), i, j = 1, 2, 6
B = 1/2 cij (h2

t − h2
b), i, j = 1, 2, 6

D = 1/3 cij (h3
t − h3

b), i, j = 1, 2, 6
Â = 5/4 cij

[
ht − hb − 4/3

(
h3

t − h3
b
)
/h2], i, j = 4, 5.

(A5)

The dielectric conductivity matrix Ke
φφ and piezoelectric coupling matrix Ke

uφ are defined:

Ke
dφ =

∫
Ve

Be
d

TeTBe
φdVe, (A6)

Ke
φφ = −

∫
Ve

Be
φ

TεST
Be

φdVe. (A7)
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Appendix B

Algorithm A1: Matrix G formulation
Result: coupling matrix G
create empty nI × nS cell array: G = cell(nI, nS);
for i = 1 to nI do

find two common structures of interface Γi: si = (si1, si2);
for j = 1 to 2 do

create nΓi × nsij null matrix G
sij
i ,

for k = 1 to nΓi
do

find ownerElement
sij
k in the structure sij containing interface node k

with global coordinates vector: Xp = (xk
p, yk

p);
assign vector Xe = (xe, ye) of coordinates of all nodes in

ownerElement
sij
k ;

assign initial coordinates Xκ = (xk
κ , yk

κ) to the nearest node in
ownerElement

sij
k to node k;

transform global coordinates Xκ to a local coordinate system
ξκ = ξ(Xκ); ηκ = η(Xκ);

while
∣∣Xp − Xκ

∣∣ > tol do
ξκ+1 = ξκ + (J−1

κ )11. ∗ (xk
p − xk

κ) + (J−1
κ )12. ∗ (yk

p − yk
κ);

ηκ+1 = ηκ + (J−1
κ )21. ∗ (xk

p − xk
κ) + (J−1

κ )22. ∗ (yk
p − yk

κ);
Xκ = N(ξκ+1, ηκ+1)Xe;

end
ξk

p ≈ ξκ+1, ηk
p ≈ ηκ+1;

G
sij
i (k, nXe) = N(ξk

p, ηk
p);

end
if elements of sij are 3D then

G{i, sij} =

 G
sij
i 0 0

0 G
sij
i 0

0 0 G
sij
i

;

else if elements of sij are 2D then

G{i, sij} =

 G
sij
i 0 0

hij
2 G

sij
i 0

0 G
sij
i 0 0

hij
2 G

sij
i

0 0 G
sij
i 0 0

;

end
end

end

where nI and nS are the numbers of the interfaces and the structures, respectively; nΓi

and nsij are the numbers of nodes of the interface i and the structure sij, respectively, ηk
p

and ξk
p are local coordinates of Xp, respectively; Jκ are Jacobians evaluated at (ξκ+1, ηκ+1);

N(ξκ+1, ηκ+1) is the shape function evaluated at (ξκ+1, ηκ+1); nXe is the vector of global
order numbers of all nodes in the Elements

sij
k ; hij is the thickness of the structure sij; and tol

is a termination criterion for iterations.

Appendix C

The mechanical properties of the materials used in the simulations are gathered
in Table A1, and effective elastic properties for a single layer of unidirectional CRFP are
presented in Table A2.
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Table A1. The mechanical properties of the materials.

Material (E11) (E33) (ν12) (ρ)
[GPa] [GPa] [–] [kg/m3]

Carbon 275.6 27.6 0.2 1900
Epoxy 3.43 3.43 0.35 1250

Aluminium 71 71 0.33 2770
Epoxy adhesive 6 6 0.34 1200

Cyanoacrylate glue 3 3 0.34 1200

Table A2. The effective mechanical properties.

Material (E11) (E22) (E33) (G12) (G23) (ν12) (ν23) (ρ)
[GPa] [GPa] [GPa] [GPa] [GPa] [–] [–] [kg/m3]

CFRP 137 8.7 8.7 3.61 3.19 0.28 0.37 1569single layer

aluminium
40.0 × 10−6 40.0 × 10−6 663.2 × 10−3 24.0 × 10−6 148.0 × 10−3 0.998 0.02 × 10−3 25.36honeycomb

The mechanical and piezoelectric properties of the PZT transducers are:

cE =



134 88.9 90.9 0 0 0
88.9 134 90.9 0 0 0
90.9 90.9 121 0 0 0

0 0 0 20.5 0 0
0 0 0 0 20.5 0
0 0 0 0 0 22.4

[GPa]

e =

 0 0 0 0 13.7 0
0 0 0 13.7 0 0
−6.06 −6.06 17.2 0 0 0

[C m−2
]

εS
r =

 906 0 0
0 906 0
0 0 823

[−]

ρ = 7850 [kg m−3]
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