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Genome-wide association studies (GWAS) explore the relationship between genome
variability and disease susceptibility with either population- or family-based data. Here, we
have evaluated the utility of combining population- and family-based statistical association
tests and have proposed a method for reducing the burden of multiple testing. Unrelated
singleton and parent-offspring trio cases and controls from the Genetics of Kidneys in
Diabetes (GoKinD) study were analyzed for genetic association with diabetic nephropathy
(DN) in type 1 diabetics (T1D). The Cochran-Armitage test for trend and the family-based
association test were employed using either unrelated cases and controls or trios,
respectively. In addition to combining single nucleotide polymorphism (SNP) p-values
across these tests via Fisher’s method, we employed a novel screening approach to
rank SNPs based on conditional power for more efficient testing. Using either the
population-based or family-based subset alone predictably limited resolution to detect DN
SNPs. For 384,197 SNPs passing quality control (QC), none achieved strict genome-wide
significance (1.4 × 10−7) using 1171 singletons (577/594 cases/controls) or 1738 pooled
singletons and offspring probands (841/897). Similarly, none of the 352,004 SNPs passing
QC in 567 family trios (264/303 case/control proband trios) reached genome-wide
significance. Testing the top 10 SNPs ranked using aggregated conditional power
resulted in two SNPs reaching genome-wide significance, rs11645147 on chromosome
16 (p = 1.74 × 10−4 < 0.05/10 = 0.005) and rs7866522 on chromosome 9 (p = 0.0033).
Efficient usage of mixed designs incorporating both unrelated and family-based data may
help to uncover associations otherwise difficult to detect in the presence of massive
multiple testing corrections. Capitalizing on the strengths of both types while using
screening approaches may be useful especially in light of large-scale, next-generation
sequencing and rare variant studies.

Keywords: genome-wide association, combined study design, family-based association analysis, case-control

study, diabetic nephropathies

INTRODUCTION
The successes and failures of genome-wide association studies
(GWAS) have made for both interesting scientific dialog and
the development of innovative statistical methodologies. While
debate continues around reasons for the so-called missing her-
itability of GWAS, the sheer number of replicable genetic asso-
ciations discovered using this approach is unarguable (Hindorff
et al., 2013). Next-generation sequencing has taken the baton (or
at least begun its own race) to continue the search for genetic
association with complex disease outcomes. Many unique analyt-
ical issues have arisen with sequencing data, but two paramount
themes of concern, in particular, persist regardless of the assay
technology—quality control (QC) and study design. Here, we
examine the latter in the context of the Genetics of Kidneys in
Diabetes (GoKinD) study, a GWAS comprising one subset of
unrelated subjects and another of mother-father-proband trios.

The relative merits of a genetic association study being
designed around either families or unrelated subjects, most often

cases and controls, has been addressed previously (Fardo et al.,
2012). Briefly, case-control studies are generally considered easier
to implement, less costly and more powerful than studies incor-
porating related subjects. Family-based studies on the other hand
are robust to the discovery of spurious association due to unre-
solved population substructure and also provide more textured
information such as improved haplotype resolution, Mendelian
error checking and the ability to test for imprinting effects. This
obviously oversimplifies the comparison of two very broad classes
of designs—in this work we are concerned with implications of
combining the two rather than simply choosing one or the other.

Many genetic association studies spawn from existing cohorts
that either had previously employed linkage analysis with pedi-
gree recruitment (Clerget-Darpoux and Elston, 2007) or had ini-
tially not explored genetic risk factors. Studies in these scenarios
can then quite naturally comprise both unrelated subjects and
families. Because this is not uncommon, there are many statistical
methodologies that have been developed to combine information
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from unrelated cases and controls with family pedigrees, and sev-
eral of these have been compared via simulation (Fardo et al.,
2011). Our focus here is not to again compare distinct method-
ologies across a simulation study but rather to compare simple,
easily implementable approaches in handling the unrelated and
family subsets from the GoKinD study.

The GoKinD study aimed to identify genes associated with dia-
betic nephropathy (DN) in type 1 diabetics (T1D). T1D patient
probands were screened to identify cases with kidney disease
and controls with normal renal status despite long-term diabetes.
When possible, both parents of the proband were enrolled to form
family trios and DNA was collected for all T1D patients and par-
ticipating parents (Mueller et al., 2006). In the original GWAS,
Pezzolesi et al. (2009) combined all GoKinD cases and con-
trols (unrelated singletons and trio offspring) to test for genetic
association with DN. No single nucleotide polymorphism (SNP)
reached genome-wide significance but several loci were “sugges-
tive” (p < 1 ×10−5). This strategy of combining the offspring
from trios, or, more generally, a randomly selected non-founder
from a pedigree, with the unrelated cases and controls has been
common practice (Infante-Rivard et al., 2009).

Here, we propose a simple, intuitive, and straightforwardly
implementable strategy to combine association metrics from
unrelateds and families while providing a working solution to the
multiple testing problem when these types of data are available.
The main goal of this work, however, is two-fold: to thoroughly
examine the differences between first-pass approaches and those
using all available information; and to make the case for using and
developing methods for aggregation while suggesting a direction
for this methodological research. Due to the nature of the study
designs employed, the GoKinD study is an ideal dataset to present
these comparisons. In what follows, we further describe the moti-
vating GoKinD dataset and QC procedures employed, we outline
the various methodological approaches explored including our
initial suggestion of a combined screening and testing method,
and finally we thoroughly compare results from the GoKinD
study.

METHODS
THE GoKinD STUDY
Subjects
Detailed information regarding these data can be found in
Mueller et al. (2006). Briefly, the GoKinD study comprises
1869 T1D patients with and without kidney impairment who
were recruited through the George Washington University
Biostatistical Center (GWU) and the Joslin Diabetes Center, sec-
tion of Genetics and Epidemiology (JDC). Patients were 18–59
years old at the time of enrollment, received a T1D diagnosis
before age 31 and had diabetes duration of more than 10 years
in cases and more than 15 years in controls. DN cases were
defined as either persistent proteinuria or end stage renal dis-
ease requiring dialysis or renal transplant. Controls were defined
as having normal renal function and normal urine albumin.
Of the 1285 unrelated singletons (664/621 DN cases/controls)
and 584 mother-father-offspring trios (268/316 DN case/control
offspring) recruited and genotyped, 1270 unrelated singletons
(651/619 DN cases/controls) and 571 mother-father-offspring

trios (266/305 DN case/control offspring) were released for anal-
ysis through dbGaP (Mailman et al., 2007; Pluzhnikov et al.,
2010).

Quality control
We replicated the extensive and well-documented QC procedures
conducted in the original GoKinD GWAS which employed the
Affymetrix 5.0 500K SNP array (Pezzolesi et al., 2009). To main-
tain consistency, we repeated the entire QC pipeline with and
without the addition of trio offspring cases and controls using
the 469,094 SNPs provided by dbGaP. The former mirrors the
original study that incorporated family data which allowed for
additional Mendelian error QC filtering and the latter comprises
the QC for the population-based subset within the proposed
methodology and typical of case-control GWAS studies. Over
35,000 SNPs were removed due to the detection of 3 or more trios
exhibiting a Mendelian error (Supplemental Table 2). Principal
component analysis (PCA) was applied to both population-based
subsets to minimize spurious associations due to population sub-
structure by removing potential ethnic outliers (Price et al., 2006)
(Supplemental Figure 2). More details on QC can be found in the
Supplementary Materials.

STATISTICAL ANALYSIS
We first compared the approach of separating subjects into sub-
sets of unrelated population-based cases and controls (singletons)
and family-based subjects (trios), against adding the trio off-
spring into a pooled unrelated subset, to analyze using common
case-control statistics as in the initial analysis of Pezzolesi et al.
(2009). We then implemented a two-step approach combining
statistical tests across unrelated and family-based study designs
(Figure 1).

Population-based association
Genetic association using the subset of unrelateds was examined
using the Cochran-Armitage test for trend assuming an additive
genetic mode of inheritance. The trend test was adjusted for sex
and stratified by center using a Cochran-Mantel-Haenszel test as
in the original GoKinD GWAS. These tests were conducted with
and without the addition of offspring cases and controls in order
to replicate the original findings and to use within the proposed
framework, respectively (Figure 1; Singletons Only vs. Singletons
and Trios). All analyses were conducted using the freely-available
softwares PLINK (Purcell et al., 2007) and R (R Development
Core Team, 2010).

Incorporation of trio parents
Along with adding resolution for QC, the addition of par-
ents makes possible traditional family-based association testing
(FBAT). FBATs were calculated using the FBAT package (Laird
et al., 2000) assuming a DN prevalence within T1D of 30%
(Krolewski et al., 1996; Steinke, 2009). Using true prevalence as
an offset in the FBAT numerator is known to maximize power
for the test in population samples (Whittaker and Lewis, 1998;
Lunetta et al., 2000; Lange and Laird, 2002). Because ascertain-
ment was not conditioned on DN status in GoKinD, this estimate
should perform optimally.
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FIGURE 1 | Testing schematic for the GoKinD collection. Subjects with
type 1 diabetes with (affected) and without (unaffected) diabetic
nephropathy were studied for genetic association. Population- and
family-based subsets were either tested in a typical straight-forward
single-step strategy or in a two-step combination strategy with conditional
screening for power, association testing and subsequent combination of the
two. To distinguish between the data subsets used, 1′ s indicate unrelateds
and 2′ s are from the family samples. A denotes affected and U unaffected.
The analytic methods used are indicated above the corresponding arrows.

Fisher’s combined probability test
We adopted a simple procedure to combine test statistics across
study designs. Fisher’s method (Fisher, 1925), often used in meta
analyses, is a commonly used approach to aggregate indepen-
dent p-values. Here, our testing is done in two separate sub-
sets, family trios and case-control singletons, which maintains
the independence necessary to implement this test. There are
other methodologies to combine p-values, and all of our work
could be adapted straightforwardly to accommodate alternative
choices.

Dealing with multiple comparisons
For the trio subset, offspring genotypes are treated as missing and
then imputed assuming Mendelian transmissions from parental
genotypes in order to provide information for screening that is
completely independent of the actual family-based association
test. That is, offspring genotypes are not used in the screening
step so that they may be used in a completely independent testing
step. SNPs with favorable configurations (i.e., enough allelic vari-
ation and informative families) will be ranked highly by virtue
of providing more likelihood of finding an association that is
present. More formally, the Van Steen algorithm (Van Steen et al.,

2005) decomposes the joint data likelihood into two independent
pieces [i.e., P(Y,X,S) = P(X|Y,S)P(Y,S), where Y is the offspring
phenotype, X is the offspring genotype score (e.g., the count of
minor alleles) and S are the sufficient statistics for offspring geno-
types which are equal to the parental genotypes when available].
SNPs are screened based on information from P(Y,S), either from
obtaining significance rankings from regression of Y on E(X|S)
or from analytically calculating the conditional power for a SNP-
phenotype pair; we employed the latter approach throughout.
Note that E(X|S) is simply the expected offspring genotype score
given the parental genotypes. These analyses were conducted
using the freely-available PBAT software (Lange et al., 2004). The
SNP rankings produced in this step use information that is com-
pletely independent of the offspring genotypes so that FBAT test
statistics are orthogonal and do not require adjustment from the
screening step. Thus, the top 10 SNPs, for example, can be tested
with only a multiple testing adjustment for the 10 tests conducted.
Extensions to the top K approach have been developed and could
easily be employed (Ionita-Laza et al., 2007). The screening step
is susceptible to effects of population stratification, but the testing
step remains robust to spurious association.

C2BAT as proposed by McQueen et al. (http://rss.acs.unt.edu/
Rdoc/library/pbatR/html/c2bat.html) and described by Sharma
et al. (2012) was developed as the case-control analog to the Van
Steen screening approach. Information from each SNP is split in
order to screen for highly powered SNPs and then independently
test for association. Similar to conditioning on the sufficient
statistics for offspring genotypes, the random variables in the
family-based testing framework, the margins of the affection-by-
genotype contingency table are the appropriate sufficient statistics
for the corresponding cell counts, which are the random variables
in the population-based framework. Briefly, the C2BAT algorithm
splits subjects from the contingency table into a non-informative
table for screening and a testing table. These splits can be done
to preferentially over-select minor homozygotes for the testing
step. We employed the default selection of 75%, 50%, 25% minor
homozygotes, heterozygotes, and major homozygotes to the test-
ing table, respectively. The margins of the resulting testing table
are used to randomly impute (under the null) cell counts, which
are then combined with the non-informative table to rank SNPs.
The testing table is then used to perform an orthogonal test for
association for the highest ranking SNPs. We used the C2BAT ver-
sion implemented in the pbatR package (Hoffmann and Lange,
2013).

To combine the rankings between the trio and case-control
subsets, we averaged log-transformed rankings to come up with
an aggregate ranking. The top 10 SNPs were then assessed for
statistical significance at a lower multiple testing penalty (i.e.,
0.05/10 = 0.005).

Note that our selection approach results in rankings equiva-
lent to those from multiplying the rankings from both subsets.
Importantly, this method is subjectively chosen and can likely be
optimized in future research.

Methodological comparisons
Our primary methodology to combine information across
study designs employs p-value aggregation, so we compare our
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approach to METAL (Willer et al., 2010), an efficient meta-
analysis program that incorporates the disparate association
information via sample size weights and effect directionality into
an aggregate statistic. Briefly, each of the trio and singleton test
p-values is converted into a Z-score and then weighted by the
square root of the subset sample size to comprise a meta-analytic
Z-score. In addition to meta-analytic methodologies, we also
compared to an approach the aggregates data across the subsam-
ples rather than the p-values (Zhang et al., 2009). The method
proposed by Zhang et al. was chosen due to its implementa-
tion in the Genetic Association analysis Platform (GAP) and its
superior performance in a previous comparison between other
similar data aggregation methodologies (Fardo et al., 2011). The
proposed score test comprises components from each subsample
separately and is explained in detail in Zhang et al. (2009). Similar
to the FBAT approach, we employ a phenotypic offset equal to the
estimated prevalence of DN in T1D.

RESULTS
In the population-based analyses, no SNP achieved Bonferroni
adjusted genome-wide significance for association with DN in
T1D (0.05/384,197 = 1.3 × 10−7). Areas of suggestive associa-
tion noted in the pooled population-based analysis (Figure 2) are
diminished in the singletons alone analysis (Figure 3). In the sin-
gleton alone subset, only four SNPs exceeded a suggestive p-value
of 1 × 10−5.

In the family-based analysis, no SNP achieved genome-wide
significance using an FBAT statistic (Figure 4). Suggestive areas
of associations in chromosome 11p in the CARS gene (cysteinyl-
tRNA synthetase) were similar to results from Pezzolesi et al.
(2009). New areas of interest in chromosome 6p within the
major histocompatibility complexes (MHC) class II and III and
in chromosome 7p are noted (Supplemental Table 3). The 13q
chromosomal peak reported by Pezzolesi et al. (2009) was not
observed.

No SNPs achieved significance using Fisher’s combined prob-
ability method without the benefit of Van Steen-type screening

FIGURE 2 | Manhattan plot for population-based study with pooled

singletons and trio probands. Summary of genome-wide association
scan results in the GoKinD population-based singletons and trios combined.
The −log10P-values were calculated for SNP association with diabetic
nephropathy among subjects with type 1 diabetes using the
Cochran-Armitage test for trend for an additive genetic model adjusted for
sex and stratified by center ascertainment using Cochran-Mantel-Haenszel
method. The red horizontal line corresponds to genome-wide significance
(P-value = 0.05/357, 887 = 1.4 × 10−7). The blue horizontal line
corresponds to suggestive significance (P-value = 1 × 10−5).

approaches (Figure 5). The SNPs of suggestive significance in the
population-based singleton only and pooled singleton and trio
proband analysis were diminished by the addition of family-based
information, suggesting potential population structure correc-
tion. Compared to the family-based subset, associations remained
similar in other regions.

There were no genome-wide significant SNPs from either
METAL or GAP, although six and four SNPs reach the sugges-
tive significance level for METAL (Figure 6) and GAP (Figure 7),
respectively. Three of these variants were not identified using
other approaches. GAP analysis supports the chromosome
6p finding from the FBAT. This region harbors multiple
genome-wide significant SNPs when employing either FBAT or
GAP without the optimal phenotypic offset (not shown) and may
actually be testing for T1D associations rather than those from
DN within a TID population since, without the offset, the analysis
reduces to a traditional, affecteds-only TDT.

Selection of the top 10 ranked SNPs from screening approaches
combined across the unrelated and trio subsets and testing with

FIGURE 3 | Manhattan plot for population-based study with case and

control singletons only. Summary of genome-wide association scan
results in the GoKinD cases and controls, singletons only. The
−log10P-values were calculated for SNP association with diabetic
nephropathy among subjects with type 1 diabetes using the
Cochran-Armitage test for trend for an additive genetic model adjusted for
sex and stratified by center ascertainment using Cochran-Mantel-Haenszel
method. The red horizontal line corresponds to genome-wide significance
(P-value = 0.05/384, 094 = 1.3 × 10−7). The blue horizontal line
corresponds to suggestive significance (P-value = 1 × 10−5).

FIGURE 4 | Manhattan plot for family-based study. Summary of
genome-wide association scan results in the GoKinD cases and controls
family-based trios and duo parent/offspring pairs. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes using the generalized FBAT method with an offset of
0.3 (the prevalence of diabetic nephropathy in type 1 diabetics). The red
horizontal line corresponds to genome-wide significance (P-value =
0.05/351,951 = 1.4 ×10−7). The blue horizontal line corresponds to
suggestive significance (P-value = 1 × 10−5).
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FIGURE 5 | Manhattan plot for Fisher’s combined probability of

population- and family-based studies. Summary of genome-wide
association scan results in the GoKinD collection of combined probability of
the population-based and family-based P-values. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes by combining each study P-values using Fisher’s
combined probability method. Power ranking was obtained using
conditional mean model for family-based data and data partitioning for
population-based cases and controls. Rankings were obtained for each
subset and then log transformed and summed. The top ten ranked SNPs
were tested; the two SNPs significant at 0.05/10 = 0.005 are indicated in
red, while the other eight are in green. The red horizontal line corresponds
to genome-wide significance (P-value = 0.05/374, 042 = 1.3 × 10−7). The
blue horizontal line corresponds to suggestive significance (P-value
= 1 × 10−5).

FIGURE 6 | Manhattan plot for METAL. Summary of genome-wide
association scan results in the GoKinD collection of the meta-analyzed
population-based and family-based P-values. The −log10P-values were
calculated for SNP association with diabetic nephropathy among subjects
with type 1 diabetes by combining each study P-value using the METAL
sample size method. The red horizontal line corresponds to genome-wide
significance (P-value = 0.05/385, 830 = 1.3 × 10−7). The blue horizontal
line corresponds to suggestive significance (P-value = 1 × 10−5).

Fisher’s test resulted in two SNPs achieving genome-wide sig-
nificance (p = 0.05/10 = 0.005; Table 1, Supplemental Table 3,
Figure 5). SNP rs7866522 on chromosome 9p (p-value = 0.0033)
is contained in the protein tyrosine phosphatase, receptor, D gene
(PTPRD). Members of the protein tyrosine phosphatase family
are known to be signaling molecules which regulate processes
such as cell growth, differentiation, mitotic cycle, and onco-
genic transformation (Wheeler et al., 2007). This region has
been in identified in type 2 diabetic risk genome-wide studies
(Tsai et al., 2010; Below et al., 2011; Chang et al., 2012) poten-
tially related to glucose homeostasis and insulin sensitivity (Ren
et al., 1998; Chagnon et al., 2006). SNP rs11645147 on chro-
mosome 16p (p-value = 0.00017) is located in proximity to the
glutamate receptor, ionotropic, N-methyl D-aspartate 2A gene
(GRIN2A).

FIGURE 7 | Manhattan plot for GAP. Summary of genome-wide
association scan results in the GoKinD collection of combined
population-based and family-based data. The −log10P-values were
calculated for SNP association with diabetic nephropathy using the method
of Zhang et al. (2009). The red horizontal line corresponds to genome-wide
significance (P-value = 0.05/386, 822 = 1.3 × 10−7). The blue horizontal
line corresponds to suggestive significance (P-value = 1 × 10−5).

We sought to replicate the two genome-wide significant SNPs
using the Family Investigation of Nephropathy and Diabetes
(FIND) study (Knowler et al., 2005; Iyengar et al., 2007; Igo et al.,
2011). The FIND study recruited diabetic subjects with and with-
out nephropathy. Most FIND participants with GWAS have type
2 diabetes (between 90 and 95%), and the majority of nephropa-
thy controls used in this sub-study are relatives of index cases.
To be consistent with the GoKinD population, we examined only
European American subjects. Rs11645147 conferred a p-value of
0.004 assuming a dominant mode of inheritance; rs7866522 failed
to reach significance. While FIND shares the nephrotic phenotype
with GoKinD, it includes primarily type 2 diabetics as opposed to
type 1, making comparisons inexact. In addition, the dominant
mode of inheritance was the only one for which rs11545147 gar-
nered nominal significance, although it still reached significance
after adjusting for testing multiple modes of inheritance.

DISCUSSION
The primary finding of this study is that analysis of GoKinD
collection by any of a strict population-based design, a family-
based design or the combined approach without any screen-
ing, did not detect genome-wide significant SNPs. Simply
combining family-based association results with those from
population-based data actually suppressed areas of suggestive
genome-wide significance compared to the original GoKinD
GWAS, possibly by correcting for previously unrecognized pop-
ulation substructure; however, the definitive reason for this is
unknown. Conversely, the incorporation of family-based infor-
mation also uncovered new areas of possible interest. Two SNPs
reached significance in our combined data analysis by the novel
two-step approach using Van Steen screening with the family-
based trios and C2BAT data partitioning in the unrelated case-
control data, which ranks markers by conditional power and then
selects the top 10 overall ranked markers.

Suggestive findings using only population-based association
tests with all unrelated cases and controls, when pooled with
trio probands as in the Pezzolesi study, were not replicated by
either the family-based or combined analyses. This finding could
suggest the presence of unresolved population structure despite
using PCA to select a homogenous population, and that earlier
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Table 1 | Top ten SNPs by population- and family-based screening aggregation.

Power SNP CHR BP Minor Fisher’s METAL GAP FBAT Singletons only Pooled cases/

rank Allele Freq. p-value p-value p-value p-value p-value controls p-value

1 rs11645147 16 9802457 0.377 1.74E-04 3.28E-07 3.09E-06 1.16E-03 5.71E-05 7.93E-04

2 rs7866522 9 8812704 0.284 3.28E-03 3.02E-03 5.61E-03 3.95E-01 1.10E-04 1.26E-01

3 rs847986 7 12454877 0.089 4.98E-02 6.81E-03 5.53E-03 2.71E-01 1.14E-03 3.52E-02

4 rs980519 4 72180823 0.065 8.42E-01 1.27E-01 5.90E-02 8.63E-01 1.23E-01 2.47E-03

5 rs11673097 19 57119434 0.293 3.25E-02 3.80E-04 1.50E-03 8.38E-01 2.77E-05 2.85E-03

6 rs4707991 6 73493822 0.332 6.78E-01 1.00E-01 1.28E-01 8.81E-01 7.15E-02 1.13E-03

7 rs17689531 4 72022775 0.120 8.81E-01 9.33E-01 9.15E-01 9.23E-01 9.59E-01 9.26E-02

8 rs1901712 4 72147303 0.065 9.25E-01 9.37E-02 3.70E-02 6.38E-01 1.08E-01 2.01E-03

9 rs17470789 5 144584265 0.125 5.88E-02 2.72E-01 1.78E-01 1.86E-02 8.41E-01 5.92E-01

10 rs8179278 1 234379913 0.091 5.01E-02 5.19E-05 5.25E-05 8.67E-01 2.18E-05 2.66E-03

Aggregated SNP rankings based on conditional power for family-based and population-based studies were calculated. The top ten ranked SNPs were selected per

convention to minimize the need for multiple comparison correction (0.05/10 = 0.005). Fisher’s combined p-values for diabetic nephropathy trait association were

obtained using the corresponding association method used for power analysis from FBAT and C2BAT. METAL and Genetic Association analysis Platform (GAP)

aggregated p-values were also obtained but are subjected to genome-wide multiple comparison correction (0.05 /384,197 = 1.3 × 10−7). Genome-wide family-

based association testing (FBAT) included trio probands and parents. Cochran-Armitage test for trend for an additive genetic model adjusted for sex and stratified

by center ascertainment using Cochran-Mantel-Haenszel method were obtained using unrelated cases and controls only (singletons only) and by combining cases

and controls from unrelated subjects and trio probands (pooled cases and controls).

suggestive SNPs were likely false positive associations. It also
could be a result of a decrease in power from using family-based
tests. This balance of increased robustness against problems of
population stratification and a decrease in power are common
factors when considering family-based tests.

Compared to analyzing either of the unrelated case-control or
trio datasets alone, the additional sample size via the combined
Fisher’s method increases study power, and this may explain
the new areas of suggestive significance. The lack of findings of
genome-wide significant SNPs may reflect that there are truly
no associations between DN and genotyped markers among the
GoKinD dataset or that the study reflects the difficulties encoun-
tered with the multiple testing problem inherent to GWAS.

Applying screening methods due to Van Steen et al. (2005) and
McQueen et al. (http://rss.acs.unt.edu/Rdoc/library/pbatR/html/
c2bat.html), statistically independent assessments of each SNP’s
power to detect an association allows for more efficient genome-
wide testing. Here we aggregated the independently obtained
marker rankings using parental information in the family-based
data and data partitioning in the population-based data. By lim-
iting testing to the conventionally-used top 10 highest ranked
markers (Herbert et al., 2006), two SNPs reached genome-wide
significance. While this result is appealing, without extensive sim-
ulation to establish operating characteristics of the suggested
approach in other settings, caution must be taken to not over
interpret. It does suggest, at the least, that future methodologi-
cal work in this regard is warranted. We plan to investigate the
performance of this approach in other scenarios and examine
implications of varying the choice of the number of SNPs to carry
to the testing stage as well as the function for rank aggregation.

With the growing availability of GWAS and now sequenc-
ing data, association studies have increasingly reported positive
results. Multiple-hypothesis testing, low power, study design vari-
ability, phenotypic definition, and population structure continue

to pose investigational difficulties (Laird and Lange, 2006).
Family-based and population-based case control designs each
have unique strengths and weaknesses, but when used in a
complementary fashion as proposed, they may overcome these
challenges.
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Figure S1 | Q-Q Plots for association within controls and cases. When

controls and cases from each center of ascertainment are combined by

affection status, an over dispersion of the Cochran-Armitage test statistic

for trend is noted. The deviation from expected, confirmed by an elevated

genomic control inflation factor (λGC > 1.05), suggests underlying

confounding and stratification by center ascertainment between the Joslin

Diabetes Center and the George Washington University Biostatistical

Center.

Figure S2 | Mendelian errors per GoKinD family trio. In the GoKinD

family-based study, 551 trios (two parents and one offspring) were

assessed for Mendelian errors of transmission. Number of Mendel SNP

errors per family was log10 transformed. A single outlier family was

determined by a greater than 5% Mendel error rate (>20,000 errors,

indicated by the red arrow). Mendelian errors reflect poor quality SNP

genotype calling, poor DNA sample quality or inconsistent familial

relationship.

Figure S3 | Projection of principal components of population-based

GoKinD subjects onto HapMap populations. A pruned set of SNPs

(85,051) from the population-based cases and controls were projected

onto a similar set of SNPs from the original three International HapMap

populations [GoKinD subjects in blue, (A)]. Using Z -scores based on

median absolute deviation, a homogenous population was selected for

association analysis [selected GoKinD population shown in blue and

outliers in red, (B)]. HapMap populations: CEU (Eastern and Western

European) samples are shown in green, YRI (Yoruba in Ibadan, Nigeria) are

in black, and JPT + CHB (Japanese in Tokyo, Japan and Hans Chinese in

Beijing) are shown in violet.
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APPENDIX
RECRUITMENT
Of the 1879 T1D subjects initially recruited, 10 failed geno-
typing on an Affymetrix 5.0 (500 K) SNP array conducted
by the GAIN genotyping laboratory at the Broad Institute
(Cambridge, MA) and the Central Biochemistry Laboratory at
the University of Minnesota. Of the remaining 1869 subjects,
21 were excluded from the data release due to sample duplica-
tion detected by identifying cryptic relatedness and eight were
removed due to assay plate failure via genotype calling interfer-
ence (https://www.niddkrepository.org/GOKIND) (Pluzhnikov
et al., 2010). Of the 1840 remaining, none were detected as cryp-
tically related using identity-by-descent proportion estimation
(π̂ < 0.1621).

GoKinD samples were recruited under two separate ascertain-
ment protocols at JDC and GWU. Using Q-Q plots, over disper-
sion of the Cochran-Armitage test statistic for trend for JDC vs.
GWU, among controls and cases, separately were demonstrated
(Supplemental Figure 1). To test if the observed overall inflation
factor (λGC) (Devlin and Roeder, 1999) for cases (λGC = 1.097)
and controls (λGC = 1.115) were truly significant for stratifi-
cation, centers were permutated by affection status. For 1000
permutations in cases and controls, no λGC were more extreme
(p-value < 10−3); hence further association testing was stratified
by center.

SINGLETONS
Of the 1270 population-based singletons remaining, four were
removed for sex mismatch and one for high individual genotype
missingness (>0.10), which left 1265 (650 cases and 615 controls)
(Supplemental Table 1).

TRIOS
Of the 571 family-based trios, 551 included genotyping for both
parents (full trios) while 20 included only a single founder.
Three subjects and their parents were excluded for sex mis-
match. Families were evaluated for Mendelian error rates to
assess validity of relatedness and the degree of genotyping error:
one was excluded with a Mendelian error rate greater than
5% (Supplemental Figure 2). This subject was added to the

singletons but was excluded due to high individual genotype
missingness, which confirms the original Mendelian error find-
ing. A total of 567 parent(s)/offspring were included (264 case
and 303 control offspring) (Supplemental Table 1).

SNP QUALITY CONTROL
For autosomal chromosomes, both population- and family-based
SNPs were filtered for an overall minor allele frequency (MAF)
<0.01, Hardy-Weinberg equilibrium probability = 1 × 10−5,
duplicate SNPs, and sequential missingness by MAF; 95% overall
minimum completeness, 97% for MAF between 5–10%, and 99%
for infrequent SNPs with MAF between 1 and 5% (Burton et al.,
2007; Ziegler et al., 2008; Pezzolesi et al., 2009). For population-
based C2BAT power analysis, an overall MAF <0.05 screening was
used per computational software restriction. In addition, family-
based SNPs were filtered for a Mendelian error rate of 3 per SNP
based on a subset of full trios excluding families with > 10,000
errors per family. A final 384,197 and 338,970 singleton SNPs
(PLINK and C2BAT analysis, respectively) and 352,004 trio SNPs
were analyzed (Supplemental Table 2).

POPULATION STRUCTURE
To select a homogenous population in the singleton cases and
controls, PCA was performed by projection of a pruned subset
of SNPs (85,051) onto the three original HapMap popula-
tions [Utah residents with ancestry from northern and western
Europe (CEU), Yoruba in Ibadan, Nigeria (YRI), Japanese in
Tokyo, Japan and Hans Chinese in Beijing, China (JPT_CHB),
http://pngu.mgh.harvard.edu/∼purcell/plink/res.shtml#hapmap,
Phase 2, release 23] (Gibbs et al., 2003) using EIGENSOFT
(Patterson et al., 2006; Price et al., 2006) and EIGENSOFTplus
(Weale, 2009, 2010) software. Singleton genotypes were pruned
with PLINK’s (Purcell et al., 2007) in-depth pairwise option (500
SNP sliding window, 5 SNP step), with additional removal of long
range linkage disequilibrium areas (Supplemental Figure 3A).
Outliers were determined using visual assessment and calculated
Z-scores based on median absolute deviation, i.e., median (|X—
median (X) |). Ninety-four subjects were excluded at a Z-score of
9.1 for a final singleton sample of 1171 (576 cases, 597 controls)
(Supplemental Figure 3B).
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