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Abstract
Background: Microarray experiments are becoming a powerful tool for clinical diagnosis, as they
have the potential to discover gene expression patterns that are characteristic for a particular
disease. To date, this problem has received most attention in the context of cancer research,
especially in tumor classification. Various feature selection methods and classifier design strategies
also have been generally used and compared. However, most published articles on tumor
classification have applied a certain technique to a certain dataset, and recently several researchers
compared these techniques based on several public datasets. But, it has been verified that
differently selected features reflect different aspects of the dataset and some selected features can
obtain better solutions on some certain problems. At the same time, faced with a large amount of
microarray data with little knowledge, it is difficult to find the intrinsic characteristics using
traditional methods. In this paper, we attempt to introduce a combinational feature selection
method in conjunction with ensemble neural networks to generally improve the accuracy and
robustness of sample classification.

Results: We validate our new method on several recent publicly available datasets both with
predictive accuracy of testing samples and through cross validation. Compared with the best
performance of other current methods, remarkably improved results can be obtained using our
new strategy on a wide range of different datasets.

Conclusions: Thus, we conclude that our methods can obtain more information in microarray
data to get more accurate classification and also can help to extract the latent marker genes of the
diseases for better diagnosis and treatment.

Background
With the successful completion of the Human Genome
Project (HGP), we are entering the post genomic era. Fac-
ing mass amounts of data, traditional biological experi-
ments and data analysis techniques encounter great
challenges. In this situation, cDNA microarrays and high-
density oligonucleotide chips are novel biotechnologies
as global (genome-wide or system-wide) experimental

approaches that are effectively used in systematical analy-
sis of large-scale genome data. In recent years, with its
ability to measure simultaneously the activities and inter-
actions of thousands of genes, microarray promises new
insights into the mechanisms of living systems and is
attracting more and more interest for solving scientific
problems and in industrial applications. Meanwhile,
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further biological and medical research also promoted the
development and application of microarray.

Typical issues addressed by microarray experiments
include two main aspects: finding co-regulated genes for
classification based on different cell-type [1], stage-spe-
cific [2,3], disease-related [4-6], or treatment-related [6-8]
patterns of gene expression and understanding gene regu-
latory networks by analyzing functional roles of genes in
cellular processes [9,10]. Here we focus on the former,
especially on tumor classification using gene expression
data, which is a hot topic in recent years and has received
general attention by many biological and medical
researchers [11-19]. A reliable and precise classification of
tumors based on gene expression data may lead to a more
complete understanding of molecular variations among
tumors, and hence, to better diagnosis and treatment
strategies.

Microarray experiments usually generate large datasets
with expression values for thousands of genes (2000~20
000) but not more than a few dozens samples (20~80).
Thus, very accurate classification of tissue samples in such
high-dimensional problems is difficult, but often crucial,
for successful diagnosis and treatment. Several compre-
hensively comparative and improved methods have been
proposed recently [20-22]. In this paper, we introduce a
combinational feature selection method using ensemble
neural networks to remarkably improve the accuracy and
robustness of sample classification. In recent years, several
researchers have used ensemble neural networks for
tumor classification based on gene expression data
[12,23]. Khan et al. [12] used neural networks to classify
4 subcategories of small round blue-cell tumors. By using
3750 networks generated by three fold cross-validation
1250 times and using the list of 96 most influential genes
as the inputs, they reported very excellent results based on
their dataset. Also O'Neill and Song [23] used neural net-
works to analyze lymphoma microarray data and can pre-
dict the long-term survival of individual patients with
100% accuracy based on the datasets published by Aliza-
deh et al [18]. Both of them are very good work in micro-
array data analysis using neural networks. In this paper
our motivation lies in that by combining various feature
selection mechanisms we can avail of more information
of samples for classification and by using ensemble neural
networks we can more effectively combine these features
and improve the stability and robustness of answers. So
the most important distinctions between our work and
these above two citations are that by using combinational
feature selection we can penetrate various different pro-
files of the samples and can avail of more information for
classification, and also these neural networks can work in
a parallel way unlike those two papers. In the same time,
unlike their work based on some certain dataset, we can

get improved, at least comparable results on a wide range
of different datasets. In the following section, we provide
detailed illustration and comparison of our new method.

Results
The general framework and implementation of our 
method
The flowchart of our method can be seen in Figure 1.
When we obtain the microarray raw data based on a cer-
tain classification problem, first we need to preprocess
them in order to be beneficial for further analysis. Broadly
defined, pre-processing includes the planning and design
of experiments, the acquisition and preprocessing of
images, data transformation, data inspection, and data fil-
tering. In this paper we avail of the publicly available data-
sets in http://sdmc.lit.org.sg/GEDatasets/Datasets, so we
simplify this step and only use all datasets exactly as we
found them in their transformed data.

Due to the characteristic of small sample numbers in
microarray data, in order to improve the accuracy, robust-
ness and generalization of issue classification, we apply
bootstrap mechanism to resample 100 iterations. During
each iteration, we input the resample training data into
three cooperative and competitive neural networks, and
then by averaging their decisions, the neural network set
can output their discrimination. From Figure 2, we can
clearly understand the architecture of these three neural
networks. After obtaining the transformed resampling
data, we extract and select features respectively based on
ranksum test, PCA, clustering and t test. Ranksum test
(also named Wilcoxon/Mann-Whitney test) is a nonpara-
metric test, which does not take values into account and
only calculates their scores purely based on rank informa-
tion. We chose the top-ranked 30 genes identified as dif-
ferentially expressed between the two types of tissues
according to the ranksum test with the highest confidence
(here using training data) as the first network input. At the
same time, we used PCA to extract the principle compo-
nents of all genes and used the top 15 principle compo-
nents as the features to input another neural network.
Also, we used Jaeger's "Masked out Clustering" ideas to
group all the genes into 50 clusters and then used a t test
to obtain the top 30 significant genes. Here we assume
that each cluster can belong to the same pathway, genes
which are co-expressed or are coming from the same chro-
mosome. In this way, we can prefilter the gene set and
drop genes that are very similar or highly correlated; that
is, we can select the more significant genes for our discrim-
ination as the third network input. More information
about feature selection can be found in the methods sec-
tion later. Based on these above three kinds of features we
selected as the input, we construct and train three neural
networks. Here we adopt simple one-hidden-layer feed-
forward networks, which have 10 hidden units and one
Page 2 of 12
(page number not for citation purposes)

http://sdmc.lit.org.sg/GEDatasets/Datasets


BMC Bioinformatics 2004, 5:136 http://www.biomedcentral.com/1471-2105/5/136
the whole flowchartFigure 1
The whole flow chart
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three cooperative and competitive neural networksFigure 2
Three cooperative and competitive neural networks
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output unit for binary classification problem. As for
multi-class problems, we can accordingly change the
number of output units. Because each of these three net-
works adopts different feature selection mechanism as
inputs, these inputs respectively reflect different aspects of
samples, that is, different feature space in discriminative
problems. We believe that this strategy of feature selection
for issue classification reflects more profiles of different
classes and will be able to obtain more accurate solution.
Actually each of three networks is just like an expert hold-
ing a different judgment mechanism. Through averaging
the confidences of three experts' answers, we can get the
answer of this expert system. In this way, we not only can
get the confidence of each expert, also we can judge the
weight of each type of features in the answer. Finally,
through competitive neural networks the robustness of
this problem will be improved greatly.

After completing the 100 iterations, we can get 100 indi-
vidual answers about the problem. In this situation, how
to combine these answers into one more precise result is
still a problem. Here, we simply use majority voting to
combine the result and then give the ultimate solution
about this classification problem. As noted above, here we
adopt the soft-voting mechanism, that is, we can combine
the confidence of each net. All the implementations of our
framework were written in Matlab, using the hardware
platform of a PC running 2.4 GHz.

Datasets illustration
In this section, simple illustrations of the datasets we used
in this paper for exploring the performance of our classifi-
cation are given. The datasets in our paper have been
downloaded from the following website: http://
sdmc.lit.org.sg/GEDatasets/Datasets. We adopted their
transformed data format for further research. All datasets
we used can be reduced to three categories: binary class
with testing samples, binary class without testing samples
and multiple class problem. Here we classify samples into
binary class with testing samples and without testing sam-
ples just according to the reference authors for each data-

set. One important reason is that in this way we can easily
compare our result with others based on the same training
and testing sets. These datasets are shown in Table 1.

We use the three datasets below as the example of the first
category, for which performance of our classification can
be tested using the error ratio of testing samples.

ALL-AML leukemia
The training dataset consists of 38 bone marrow samples
(27 ALL and 11 AML), with 7129 probes from 6817
human genes. Also, 34 samples testing data is provided,
with 20 ALL and 14 AML.

More information and raw data can be found in Golub et
al. [11].

Lung cancer
The dataset can be reduced to the problem of classifica-
tion between malignant pleural mesothelioma (MPM)
and adenocarcinoma (ADCA) of the lung. The training set
contains 32 tissue samples, which consists of 16 MPM and
16 ADCA and the testing samples are constitutive of 15
MPM and 134 ADCA. Each sample is described by 12533
genes. More information about this dataset can be found
in Gordon et al. [17].

Prostate cancer
For the prostate cancer dataset, detailed explanation and
raw data is available in Singh et al. [5]. This dataset con-
sists of 102 training vs. 34 testing (Tumor versus Normal
classification) samples. The training set contains 52 pros-
tate tumor samples and 50 normal samples with around
12600 genes and the independent test sets consist of 25
tumor and 9 normal samples.

Another three recently popular datasets have been used as
the representative of the second category. Using these
kinds of datasets, we apply cross-validation to validate our
classification performance.

Table 1: Gene expression datasets used in this paper

Dataset Number of genes Training samples Testing samples References

ALL-AML Leukemia 7129 38 (27:11) 34 (20:14) Golub et al (1999)
Lung Cancer 12533 32 (16:16) 149 (15:134) Gordon et al (2002)

Prostate Cancer 12600 102 (52:50) 34 (25:9) Singh et al (2002)
DLBCL 4026 47 (24:23) 0 Alizadeh et al (2000)

Ovarian Cancer 15154 253 (91:162) 0 Petricoin et al (2002)
Colon Tumor 2000 62 (40:22) 0 Alon et al (1999)
MLL_Leukemia 12582 57 (20:17:20) 15 (4:3:8) Armstrong et al (2002)

All these datasets are downloaded from http://sdmc.lit.org.sg/GEDatasets/Datasets
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Types of diffuse large B-cell lymphoma
This dataset is used for discriminating distinct types of dif-
fuse large B-cell lymphoma (DLBCL) using gene expres-
sion data. There are 47 samples, 24 of them are from
"germinal canter B-like" group while the rest 23 are form
"activated B-like" group and each sample can be described
by 4026 genes. More detailed explanation can be found in
Alizadeh et al. [18].

Ovarian cancer
The goal of this significant experiment is to identify pro-
teomic patterns in serum that distinguish ovarian cancer
from non-cancer. The proteomic spectra were generated
by mass spectroscopy and the dataset provided here is 6-
19-02, which includes 91 controls (Normal) and 162
ovarian cancers with 15154 molecular mass / charge (M/
Z) identities. Here we use the transformed normalization
data in http://sdmc.lit.org.sg/GEDatasets/Datasets. More
information can be found in Petricoin et al. [6].

Colon tumor
The dataset Contains 62 samples collected from colon-
cancer patients. Among them, 40 tumor biopsies are from
tumors (labelled as "negative") and 22 normal (labelled
as "positive") biopsies are from healthy parts of the colons
of the same patients. Two thousand out of around 6500
genes were selected based on the confidence in the meas-
ured expression levels. Raw data and more information
can be found in Alon et al. [14].

Finally, we can generalize our method from binary class to
multi-class problems. In this paper, we evaluate the per-
formance using the dataset below.

MLL_leukemia
This dataset contains training data consisting of 57 leuke-
mia samples (20 ALL, 17 MLL and 20 AML) and testing
data consisting of 4 ALL, 3 MLL and 8 AML samples. We
adopted the transformed data from http://sdmc.lit.org.sg/
GEDatasets/Datasets. More information can be seen in
Armstrong et al. [15].

Our results
First we primarily focus on the binary class problem.
Because most of problems can be reduced to binary class
problems, such as diseased vs. normal, survival vs. lethal,
two opposite subtypes of some diseases and so on. Finally
we generalize our classifier to multi-class application. In
this paper, we evaluate the performance of different clas-
sification methods using predictive accuracy, which can
be defined as:

Here, TN1,TN2,…,TNn respectively denote the correct
classification numbers of the samples belonging to a cor-
responding class; totalnum represents total sample
numbers.

The results of binary classification with testing samples
For the first category of the datasets, we evaluate the per-
formance of our classifiers using predictive accuracy of
testing samples compared with the best performance of
the current available methods. In this paper we use bag-
ging to resample just as Tan and Gilbert [24], and we also
compared our results to those using their bagged decision
trees. In Table 2, we described the recognition rate of our
methods compared with the best classifiers of our knowl-
edge for each certain dataset and bagged decision trees
proposed by Tan and Gilbert [24]. From this table, it is
clear that our results are remarkably better than others
based on these several datasets.

For the most popularly used AML-ALL leukemia dataset,
to our knowledge, the best classifiers of this dataset can be
found in [25-27], which can predict the results with
97.1% accuracy. However, we designed the classifiers
using our methods based on 38 training samples, 0 error
number of 34 testing samples can be obtained from our
classifier.

In the same way, we trained our ensemble of neural net-
works using 32 training sets of lung cancer and then pre-
dicted the 149 separate testing sets still with 0 error
number. And three (1:2) testing error numbers can be
reached using methods by Li et al. [28], which is the best
performance corresponding to this dataset of our
knowledge.

For the third prostate cancer dataset, after training the
classifier using 102 training sets, only one wrong classifi-
cation can happen using our ensemble neural networks to
predict the 34 separate testing samples. We did not find a
more accurate classification result except for the bagged
decision trees in [24] based on this dataset, so here we
think that is the best result. In this sense, a great

Accuracy
TN TN TNn

totalnum
= + + + ×1 2

100

Table 2: The predictive accuracy of testing samples

ALLAML 
Leukemia

Lung 
cancer

Prostate 
cancer

Bagged decision trees 91.18% 93.29% 73.53%
The best methods 97.06% 97.99% 73.53%
Our methods 100% 100% 97.06%
LOOCV on training samples 100% 100% 96.08%

* Note that the row of the best methods refer to the different 
method in different datasets
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improvement in predictive accuracy can be obtained by
using our method.

In order to further validate the effectiveness of predictive
accuracy, we also performed the leave-one-out cross-vali-
dation (LOOCV) respectively only on the above three
training samples. We also obtained the 100% accuracy
both on the AML-ALL leukemia dataset and the lung can-
cer dataset, which are the same results as using individual
testing samples. At the same time, 96.08% accuracy can be
got based on the prostate cancer dataset, which is a little
lower than using individual testing samples. For the pur-
pose of comparison, we also list these results in Table 2.
Thus, we conclude that our performance evaluation is
credible.

From the results of the above three testing datasets, we can
also see that many different classifiers obtain the best
results when they concern some certain dataset, but there
is still no general best strategy for tumor classification
problems based on a wide range of different datasets. Fur-
thermore, from Figure 3, it is clear that our method is
superior to the traditional bagging decision trees. Thus,
we conclude that by using our method a more general
accuracy improvement can be achieved for tumor
classification.

The results of binary classification without testing samples
Without separate testing samples, we cannot evaluate the
performance of our classifiers with the predictive accuracy
of testing samples in the same way as above. Many per-
formance evaluation methods have been proposed, of
which various cross validations are most popularly used,
such as 3-fold cross validation, 10-fold cross validation,
leave-one-out cross-validation (LOOCV), and others.
Here, we used the leave-one-out cross validation
(LOOCV) to evaluate the performance of ours based on
these available datasets. For further comparison with
recent published methods based on the same datasets, we
also perform 10-fold cross validation just as they used in
their research. In Table 3, we list the predictive accuracy of
our methods using 10-fold cross validation and LOOCV
respectively and the corresponding results of other meth-
ods based on the same dataset and the same evaluation
mechanism. These comparisons based on data in Table 3
are shown in Figure 4.

In the first data column of Table 3, we show our predictive
accuracy 97.87% and 95.74% by LOOCV and 10-fold
cross validation respectively. But unfortunately, we did
not find the corresponding result based on this dataset.
Cho et al. [25] artificially divide the dataset into 22 train-
ing samples and 25 test samples, and their best classifica-
tion result is 96%. For the purpose of comparison, we also
use the same strategy as Cho et al.'s [25] and in Figure 4

we can see that 98% predictive accuracy obtained by our
method is a little better than theirs. O'Neill and Song [23]
used neural network to get very good result based on the
lymphoma dataset. But here the dataset we used is based
on different subset and we can't compare our result with
theirs.

For the ovarian dataset we used, Liu et al. [21] reported
that 100% predictive accuracy can be obtained running
10-fold cross validation on all 253 samples under an all-
χ2 feature selection heuristic and support vector machine
(SVM). In our method, only 75 features in total were used,
and 99.21% and 98.82% accuracy was obtained respec-
tively by LOOCV and 10-fold cross validation. Thus, we
think that our method is comparable to theirs to some
extent.

For the colon tumor dataset, we found that 85.48% pre-
dictive accuracy is the best classification result obtained in
Dettling et al. [27], where they used various boosting algo-
rithms and adopted leave-one-out cross validation
(LOOCV). As shown on Figure 4, compared with our pre-
dictive accuracy by LOOCV, a significant accuracy
improvement was obtained by using our method. Our
result by using 10-fold cross validation also is shown in
Table 3.

From the results of the above three datasets, we can see
that our method is better, or at least comparable to current
other best methods. Also, we need to note that these
named best methods can get the best results based on cer-
tain datasets but may get worse results based on other
datasets (Here we omitted the concrete comparisons on
wide range datasets; correlated information can be found
in our references); however, general performance
improvement can be obtained using our method.

The result of multi-class problem
Finally, we generalize our method from binary class to
multi-class problems. After minor adjustments to the
corresponding parameters of our framework, we obtained
100% classification result of the above-mentioned multi-
class dataset – MLL_Leukemia dataset, that is, 4 ALL, 3
MLL, 8 AML of 15 test data can be predicted correctly.
Similarly, 100% accuracy also was obtained by Li et al.
[28]. In this way, we conclude that our method also is fit
to multi-class problems, and the classification result is
comparable to other methods.

Discussion
In this paper, we introduce a combinational feature selec-
tion and ensemble neural network method for the classi-
fication of gene expression data. On a wide range of
recently published datasets, our method performs better,
or is at least comparable to, the current best methods of
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Comparing predictive accuracy of 3 separate testing samples with other methodsFigure 3
Comparing predictive accuracy of 3 separate testing samples with other methods
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our knowledge. As a further test, we randomly selected
genes of the same amount as the feature instead of any of
the three individual selected features in our research and
then used the ensemble neural networks based on these
features for classification again. The apparently worse dis-
crimination power can be seen in this strategy. Moreover,
we also used the output of a unitary network based on all
the same features as the ultimate classification result and
the result was also worse than ours. Thus, we believe such
remarkable performance improvements of our method

are due to the fact that our combinational feature selec-
tion mechanism induced more useful information for dis-
crimination, and the ensemble neural network framework
improved the stability, robustness and generalization of
learning.

We performed simple majority voting mechanism to com-
bine the individual networks produced by bagging and
got a more accurate solution. The advantage of the ensem-
ble is to reduce the variance, or instability of the neural
network, and avoid the error surface of neural network
training being trapped into local minima. The ensemble
model tends to cancel the noise part as it varies among the
ensemble members, and it tends to retain the fitting to the
regularities of the data. In this paper, our ensemble neural
network model has 100 members; However, further
research is needed to determine how many members
working together can reach the best performance.

In this paper, we focused on classification problem, so we
didn't give a detailed analysis about how the importance
of each different gene we select and the interaction
between them influenced the diseases, which is a very
important issue for application and will be researched in
our future work.

Note that the only drawback of our approach is the prob-
lem of increasing computational complexity and the fact
that it consumes a little more time than others. However,
considering the lost caused by wrong prognosis or diagno-
sis of disease, we believe that the remarkable improve-
ment in corresponding accuracy deserve these costs.

Conclusions
By aggregating various information and ensemble neural
networks, we reached a more accurate classification deci-
sion based on several datasets. We think that making full
use of all available information will more clearly elucidate
the latent mechanisms of many diseases. For example, we
can combine various imaging techniques, such as CT,
MRI, PET and others, which can detect the change of phe-
notype for the corresponding disease, with microarray
data for further research. In this way, we can recognize the
nature of various life phenomena both from macro and
micro viewpoints. Also, we can retrieve the information of
genes that are used in microarray, such as gene functions
and gene locations. In this way, we can make use of prior
knowledge combined with the microarray data for further
research.

Methods
Feature selection
Feature selection is one of the most important issues in
classification, which is a transformation process of obser-
vations in order to obtain the best pathway for getting to

Table 3: The predictive accuracy by LOOCV and 10-fold CV

DLBCL Ovarian 
cancer

Colon 
tumor

LOOCV Other methods — — 85.48%
Our method 97.87 % 99.21% 91.94%

10-fold CV Other methods — 100% —
Our method 95.74% 98.82% 90.32%

* Note that the two rows of other methods refer to the different best 
method in different datasets

Comparing predictive accuracy of 3 datasets without testing samples with other methodsFigure 4
Comparing predictive accuracy of 3 datasets without testing 
samples with other methods
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the optimal solution. At the same time, it can reduce the
complexity of the data to make it more comprehensible. It
is particularly relevant for microarray datasets with
thousands of features because it has been reported that
many diseases, especially tumors, have never been caused
by a single gene mutation but are the result of a series of
gene changes. Such genes are highly relevant to the
studied phenomena of diseases. On the other hand, the
expression levels of many other genes may be irrelevant to
the distinction between tissue classes. We can say that the
extraction and selection of features determine the ultimate
performance of classifiers. Both for cost and for biological
insight, making full use of the most informative genes and
finding small feature sets with high classification accuracy
are very essential. At the same time, highly informative
genes that are part of known biochemical pathways give
insights into the processes that underlie the differences
between classes, and those of unknown function suggest
new research directions.

Some classifiers, such as trees, perform automatic feature
selection and are relatively insensitive to the variable
selection scheme, but most classifiers need to perform fea-
ture selection first. So far, various feature selection
schemes have been used in microarray data analysis, such
as the most popular method of selecting the top-ranked
genes based on various different scores (Euclidean dis-
tance, correlation coefficient, mutual information, signal
to noise ratio) [9,11,22,25,29]. These feature selection
methods gain better results on certain datasets, and the
selective informative genes are the marker genes providing
more useful information for further diagnosis and
treatment. However, a problem with the above
approaches is that they tend to select more correlated fea-
tures so as not to provide more useful information for the
purpose of classification. Li et al. [28] conclude that some-
times low-ranked genes are found to be necessary for clas-
sifiers to achieve perfect accuracy. It is conceivable that
these useful low-ranked genes might have some relations
with some important biological pathways and might have
a vital influence on some diseases. Just selecting top-
ranked genes will inevitably lose essential information. In
order to compensate for this shortcoming, Jaeger et al.
[22] proposed an improved gene selection for classifica-
tion of microarrays. They demonstrated that the tradition-
ally selected genes based on top-ranked scores are usually
highly correlated, and they solved that problem through
retrieving groups of similar genes first and then applying
test-statistic to finally select genes of interest from these
groups. In this way, the selected genes can correspond
with some biological insights and might give out more
accurate prediction about disease. The difficulty of this
method lies in determining how many clusters and how
many genes might directly correspond to the pathway on
certain problems. Also, many researchers get the first sev-

eral principle components by using PCA or SVD as the
selected features, which captures most variation between
samples and to some extent can obtain better results
[12,30-33]. However, principle components cannot pro-
vide comprehensible rules to help elucidate the scheme of
the related disease because it can be due to noise as well
as true difference in expression and we do not know how
many genes to pick.

Just as we alleged above, in such a high-dimension space,
finding accurate and significant features (genes) is very
essential for classification, for cost savings and for biolog-
ical insights. However, it has been verified that differently
selected features reflect different aspects of the dataset and
some selected features can obtain better solutions on cer-
tain problems. This is because one feature selection mech-
anism corresponds to one different artificial hypothesis,
but which hypothesis is most near to the true hypothesis
on a special problem is unknown to us. Here, we propose
combining the above mentioned several feature selection
methods to reflect different profiles of samples in order to
obtain more useful information for classification and to
produce a good approximation to true hypothesis by aver-
aging the different hypotheses. In this paper, we select fea-
tures using wilcxon's ranksum test [34] to get the top-
ranked genes, use PCA [31] to obtain the principle com-
ponents as the feature, and use Jaeger's clustering method
to group the whole genes into different clusters, and then
select the top-ranked genes by t-test [34] scores from these
groups. After picking these features from gene expression
data, how to make full use of these features for further
accurate classification is still a problem. Detailed illustra-
tion of our strategy is given below.

Ensemble neural networks
An Artificial Neural Network (ANN) is an information-
processing paradigm that is modeled on biological nerv-
ous system, which is composed of a large number of
highly interconnected processing elements (neurons)
working in unison to solve specific problems. In fact, since
the basic model was proposed, various improved algo-
rithms and theories have already been successfully
applied in many fields. Because neural networks are best
at identifying patterns or trends in a large amount of data
with little theory, they are well suited for prediction or
forecasting needs. That's just the case for microarray data.
However, instability and little intrinsic knowledge of neu-
ral networks are obstacles to its further generalized
application in some specific problems. Here we ensemble
multiple networks in an attempt to solve this problem to
some extent.

Since multi-net systems were introduced by Sharkey in
1996 [35], the combination of a number of neural net-
works has been widely applied in many fields. Because
Page 10 of 12
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combining the outputs of several neural networks into an
aggregate output often gives improved accuracy over any
individual output, the objective of this kind of ensemble
module is to solve problems that are difficult for a single
neural network, and is to combine the individual outputs
to achieve better generalization. Remarkable advantages
of the ensemble compared with a unitary network have
been demonstrated previously [36,37], one advantage of
which is that it can to some extent ease the obstacles men-
tioned above and can improve the stability of neural net-
work decisions.

Generally speaking, in neural networks ensemble, two
problems need to be resolved: how to generate the indi-
vidual network and how to combine them together. Using
bootstrap or boosting resample mechanism to obtain the
individual network is the most popular method to solve
the first problem. Bootstrap is the most popular resample
mechanisam of sampling with replacement, therefore
some observations are duplicated and some are omitted.
Boosting means to boost a "weak" learning algorithm into
a "strong" learning algorithm. Their differences are that
using bootstrap can resample uniformly and can get the
individual network immediately, but boosting weights
every sample in each iteration and must generate the indi-
viduals in sequence. Several recent published papers
claimed that adaboost-the basic boosting algorithm is not
fit to microarray data analysis [20,26], and some
improved boosting have been made to increase the accu-
racy to some extent [26,27]. With no exception, they per-
form boosting in conjunction with decision trees. Here,
we perform our resample mechanism using bagging, that
is, bootstrap aggregating, which has been shown to work
well in the presence of noise [24]. Due to the noisy fact of
microarray data, here we use bagging to resample. As a fur-
ther validation, we also used adaboost instead of bagging
to resample in order to construct the individual network
and the result is worse than bagging networks. As to the
second problem, many ensemble mechanisms have been
researched in recent years; for example, improvements in
performance can result from training the individual net-
works to be decorrelated with each other [38] with respect
to their errors. In this paper, we only adopt the majority
voting, the basic ensemble method, to obtain the ultimate
output result. Note that here we use the soft-voting mech-
anism, that is, the confidence of each net output is applied
as voting value, rather than unit or zero.

Considering the complexity and noise of microarray data,
it's very difficult to get a perfect solution using a unitary
neural network based on some certain selected features. At
the same time, accurately extracting and selecting the
most informative genes is also very difficult using individ-
ual available methods. Thus, in this paper we attempt to
combine multiple modes of information available from

gene expression data using neural networks ensemble to
get a better solution. We presented a cooperative and com-
petitive neural network system that each of nets has the
same architecture and topology, and each can respectively
learn to classify a set of patterns based on partial informa-
tion of the patterns and then by combining their
classification results we can get a more precise result. The
detailed framework of combing various features and neu-
ral networks ensemble and its implementation methods
are discussed below.
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