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Abstract The pulmonary circulation, at the unique

crossroads between the left and the right heart, is submitted

to large physiologic hemodynamic variations and possesses

numerous important metabolic functions mediated through

its vast endothelial surface. There are many pathologic

conditions that can directly or indirectly affect the pul-

monary vasculature and modify its physiology and func-

tions. Pulmonary hypertension, the end result of many of

these affections, is unfortunately diagnosed too late in the

disease process, meaning that there is a crying need for

earlier diagnosis and surrogate markers of disease pro-

gression and regression. By targeting endothelial, medial

and adventitial targets of the pulmonary vasculature, novel

molecular imaging agents could provide early detection of

physiologic and biologic perturbation in the pulmonary

circulation. This review provides the rationale for the

development of molecular imaging agents for the diagnosis

and follow-up of disorders of the pulmonary circulation

and discusses promising targets for SPECT and positron

emission tomographic imaging.
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Introduction

With the exception of labeled macroaggregates of albumin

(MAA), used almost exclusively for the diagnosis of pul-

monary embolism, there is currently no radionuclide agent

routinely employed to study the pulmonary circulation in

humans. Positioned at the unique crossroads between the

right and the left heart, the pulmonary circulation is sub-

mitted to large physiologic hemodynamic variations serv-

ing gas exchanges. Furthermore, the pulmonary vascular

endothelium represents a vast surface area responsible for

numerous important metabolic functions affecting systemic

functions. Many pathologic conditions directly or indi-

rectly affect the pulmonary circulation and modify

molecular pathways contained within the different layers of

the pulmonary vasculature: the endothelium, media and

adventitia. In this review, we discuss the opportunities and

challenges involved in developing molecular imaging

agents for detecting normal physiologic variations and

pathologic disorders affecting the pulmonary circulation.

Anatomy and physiology of the pulmonary circulation

The pulmonary circulation serves its primary function of

gas exchange through a very large capillary surface area.

By virtue of its great capacitance and low resistance, it is

able to accommodate sizeable physiologic variations of the

cardiac output with little variation in mean pulmonary

artery pressure. This unique capacity is in part due to the

postural perfusion gradient resulting from the gravity-

dependent interplay between the alveolar pressure and the
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pulmonary capillary pressure in different regions of the

lungs. Therefore gravity and other factors, to be detailed

later, result in uneven spatial distribution of pulmonary

perfusion.

With increases in pulmonary blood flow, such as during

exercise, lung vascular recruitment occurs in the less

dependent regions of the lungs leading to modification of

the spatial distribution of blood flow. In diseases causing a

progressive loss of pulmonary microcirculation, such as

pulmonary hypertension (PH), the impact of this loss on the

spatial distribution of pulmonary perfusion is currently

uncertain. Therefore, this parameter is not clinically uti-

lized to detect and monitor disease progression.

The first studies describing the heterogeneity of lung

perfusion led to the ‘‘zone model’’ of lung perfusion

developed by West et al. [1, 2]. This classical physiologic

model, still taught today, relies principally on the gravita-

tional gradient to describe four zones of perfusion, in the

upright posture, from the apex to the base of the lungs. This

model, resulting from the interplay between arteriolar,

venular and alveolar pressures, depicts increasing perfusion

from the apex to the base of the lungs except in zone 4,

where it was postulated that compression of extra-alveolar

vessels results in decreasing perfusion [3] (Fig. 1). Since

then, numerous studies have confirmed a gravitational lung

perfusion gradient in upright, supine and prone positions in

man as well as in quadrupeds [4–10]. Besides the effect of

gravity on perfusion pressure, the so called ‘‘slinky’’ effect

also contributes to greater perfusion in the most dependent

regions of the lungs as gravity causes tissue compression

and greater lung parenchymal density [5].

However, factors other than gravity also contribute to

the heterogeneity of lung perfusion, and the question of

whether gravity is the principal determinant of the spatial

distribution of lung perfusion has been the subject of much

heated debate [11–15]. There is indeed evidence of per-

fusion heterogeneity even in isogravitational planes. Hakim

et al. [4, 16] demonstrated a decreasing centro-peripheral

perfusion gradient in isogravitational planes of human and

canine lungs and hypothesized that this observation resul-

ted from varying regional vascular conductance at

branching points. Indeed, studies performed in micro-

gravity environments revealed that some lung perfusion

heterogeneity persisted [17]. A novel fractal model incor-

porating isogravitational heterogeneity was proposed by

Glenny et al. [18–20], who suggested that as the spatial

resolution of the instruments of measure is improved, iso-

gravitational perfusion heterogeneity is revealed [11]

(Fig. 1).

Although the relative importance of the determinants of

the spatial distribution of pulmonary perfusion is the sub-

ject of an ongoing debate, there is consensus on its ultimate

finality. The heterogeneity of lung perfusion confers great

capacitance on the pulmonary vasculature and the possi-

bility to increase (recruit) tissue perfusion for gas

exchanges in response to increasing cardiac output. Using

the multiple indicator-dilution technique in exercising

dogs, we demonstrated that the metabolically active pul-

monary vascular surface area increased almost linearly

with tripling of blood flow [21–23]. Furthermore, lung

vascular recruitment continues to occur even after full lung

tissue recruitment measured from the tracer-accessible

Fig. 1 Blood flow as a function of height up the lung in an upright

primate. Data are from 1,265 pieces of lung (2 cm3 in volume) and

were obtained using the microsphere method. Left data averaged

within horizontal planes to reproduce the spatial resolution available

at the time the gravitational model was conceptualized. Right same

data but at a resolution that permits the heterogeneity of perfusion to

be observed. At the lower spatial resolution, the data are remarkably

similar to those of the zone model described by Hughes and West [1–

3] and gravity appears to be a major determinant of perfusion

(r2 = 0.640). However, at the higher resolution, gravity can account

for at most 28 % of the variability in perfusion. Reproduced with

permission from the Journal of Applied Physiology: Glenny [11]
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extravascular lung water [21–23]. There is therefore a

pulmonary vascular ‘‘reserve’’ that can accommodate the

increase in cardiac output and expand the surface available

for gas exchanges and pulmonary metabolic functions.

Lung vascular recruitment in response to increasing blood

flow will accordingly modify the spatial distribution of

pulmonary perfusion with a reduction in the gravitational

gradient component [9, 10, 24]. Study of the spatial dis-

tribution of the metabolically active pulmonary circulation

at rest and with increasing pulmonary blood flow, such as

exercise, could therefore provide a unique insight into the

capacity of the lung to recruit vascular surface area. More

importantly, study of the spatial distribution of perfusion in

conditions associated with a loss of recruitable pulmonary

perfusion, such as PH, could provide a unique method for

detecting disease earlier than is currently possible.

The difficulty and importance of early detection

of pulmonary vascular disease

Pulmonary hypertension (PH) results from various clinical

conditions and is defined as a mean pulmonary artery

pressure C25 mmHg at rest. The pathophysiology-based

classification of PH comprises five groups [25] (Table 1).

Although not the most prevalent form, Group 1 PH is

attracting increasing attention, with novel selective phar-

macologic therapies having been developed and approved

in the past 10 years. Group 1 PH, often referred to as

pulmonary arterial hypertension (PAH), is a severe angio-

proliferative disease of the pulmonary microcirculation

which causes progressive obliteration of distal pulmonary

arteries measuring less than 500 lm. It may be idiopathic,

hereditary or linked to various disorders such as collagen

vascular diseases, portal hypertension, congenital heart

disease, HIV infection, drugs and toxins, schistosomiasis

and others [25].

Despite modern diagnostic modalities, more than

2 years will typically elapse between initial medical con-

tact and the diagnosis of group 1 PH [26–28]. At the time

of diagnosis, up to 75 % of subjects are already in NYHA

functional class III or IV [26]. Although specific PAH

therapies are available, the prognosis of this condition

remains exceedingly poor. In the REVEAL study registry,

the one-, three-, five- and seven-year survival rates from

time of diagnosis were 85, 68, 57 and 49 %, respectively,

in patients with all-cause PAH [29]. For patients with idi-

opathic PAH, heritable PAH or drug-induced PAH, the

three-year survival was 58.2 %. There is clearly an urgent

need for earlier detection of pulmonary vascular disease

[30, 31].

Other groups of PH, such as PH due to left heart disease

(group 2) and PH due to lung parenchymal disease (group

3) are much more prevalent and confer a very poor prog-

nosis in affected subjects. Unfortunately, there are no

specific therapies currently approved for these groups of

PH and evidence-based guidelines for a diagnostic and

monitoring imaging approach are lacking.

The main reason for the delay in the diagnosis of PH

resides in the recruitable pulmonary vascular reserve: it is

estimated that more than 50 % of the pulmonary vascular

bed is obliterated before there is a detectable rise in mean

resting pulmonary artery pressure [30]. Indeed, normal

subjects can withstand a unilateral pneumonectomy with-

out significant hemodynamic PH in the remaining lung [32,

33]. Some advocate the measurement of pulmonary artery

pressure at exercise to allow earlier detection of PH.

Although pulmonary artery systolic pressure can be non-

Table 1 Classification of pulmonary hypertension

1.Pulmonary arterial hypertension

1.1.Idiopathic PAH

1.2.Heritable PAH

1.2.1.BMPR2 mutations

1.2.2.ALK-1, ENG, SMAD9, CAV1, KCNK3 mutations

1.2.3.Unknown

1.3.Drug and toxin induced

1.4.Associated with

1.4.1.Connective tissue disease

1.4.2.HIV infection

1.4.3.Portal hypertension

1.4.4.Congenital Heart Disease

1.4.5.Schistosomiasis

10 Pulmonary veno-occlusive disease and/or pulmonary capillary

hemangiomatosis

100 Persistent pulmonary hypertension of the newborn (PPHN)

2.Pulmonary hypertension due to left heart disease

2.1.Left ventricular systolic dysfunction

2.2.Left ventricular diastolic dysfunction

2.3.Valvular disease

2.4.Congenital/acquired left heart inflow/outflow tract obstruction

and congenital cardiomyopathies

3.Pulmonary hypertension due to lung diseases and/or hypoxia

3.1.Chronic obstructive pulmonary disease

3.2.Interstitial lung disease

3.3.Other pulmonary diseases with mixed restrictive and

obstructive pattern

3.4.Sleep-disordered breathing

3.5.Alveolar hypoventilation disorders

3.6.Chronic exposure to high altitude

3.7.Developmental lung diseases

4.Chronic thromboembolic pulmonary hypertension (CTEPH)

5.Pulmonary hypertension with unclear multifactorial mechanisms

Classification from the proceedings of the 5th World Symposium on

PH [100]
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invasively measured during exercise with echocardiogra-

phy, the approach is currently debated due to the lack of a

specific upper-bound estimate and is not recommended as a

screening test for PH [34, 35]. Because of the recruitable

vascular reserve, the pressure rise in PH is a late event.

Thus, there is a need for methods allowing earlier direct

assessment the status of the pulmonary circulation. As

novel pharmacologic agents continue to be developed,

earlier diagnosis and therapy may have greater benefits on

morbidity and mortality. Evaluation of the spatial distri-

bution of pulmonary perfusion at rest and during exercise

may provide an earlier and sensitive insight into the status

of the pulmonary circulation. Modification of the spatial

distribution of lung perfusion may be detectable well

before a significant rise in resting pulmonary artery

pressure.

Molecular imaging agents targeting the pulmonary cir-

culation therefore hold promise as sensitive early indicators

of pulmonary vascular disease and of its progression or

regression. Currently, the diagnosis of PH (Table 1)

requires an invasive right heart catheterization and there is

no consensus on what non-invasive clinical parameter is

the best surrogate marker of severity and prognosis.

Metabolic functions of the pulmonary vascular

endothelium

The pulmonary circulation has numerous important meta-

bolic functions exerted through its specialized capillary

endothelial cells [36]: it produces, activates, modifies and

degrades circulating mediators affecting not only the

underlying smooth muscle cells but also the systemic cir-

culation and organs. Endothelial functions of potential

interest for molecular imaging are depicted in Fig. 2.

Endothelial dysfunction is an early event in pulmonary

vascular disease and many endothelial functions are

potential targets for molecular imaging. Prototypical tar-

gets include the angiotensin-converting enzyme (ACE),

serotonin (5-HT) and norepinephrine (NE) transporters,

endothelin production and clearance, and finally the pro-

duction of the endothelium-derived relaxing factor nitric

oxide (NO). ACE is an ectoenzyme located at the luminal

surface of the pulmonary vascular endothelium, responsi-

ble for converting angiotensin I into angiotensin II, a potent

systemic vasoconstrictor. The pulmonary circulation is the

major site of ACE activity and radiolabeled ACE substrates

have been used to measure lung capillary recruitment with

increasing pulmonary blood flow [22, 37]. By contrast,

serotonin and NE are removed from circulation by the

lungs [38]. Lung uptake of 14C-serotonin and 3H-NE have

been used to demonstrate lung vascular recruitment and the

increase in metabolically active pulmonary vascular

surface with exercise [21, 23]. The pulmonary vascular

endothelium is an important site of production and clear-

ance of circulating endothelin 1 (ET-1), a potent vaso-

constrictor and proliferator implicated in the

pathophysiology of PH. Production of both endothelial

prostacycline (PGI2) and NO is reduced in PAH and related

to increased vascular tone and an increased proliferative

profile of the endothelium and vascular smooth muscle

cells.

It is generally recognized that endothelial dysfunction is

an early initiating event in the development of group I PH

and contributes to the abnormal pulmonary vascular reac-

tivity and remodeling of all PH groups. Endothelial meta-

bolic functions are therefore putative molecular imaging

targets for monitoring disorders affecting the pulmonary

circulation. Furthermore, increased endothelial cell apop-

tosis associated with quasi-clonal proliferation of activated

apoptotic-resistant endothelial cells is a hallmark of PAH,

which is characterized by activation of these respective

biologic pathways [39].

Molecular imaging of the pulmonary vasculature

Many molecular imaging agents have demonstrated lung

uptake and potential utility in the diagnosis of pulmonary

vascular disease. Table 2 lists some of these agents and

their molecular targets. However, very few have been

tested in human subjects. This is by no means an exhaus-

tive list as agents developed for other purposes may also

allow pulmonary vascular imaging, even though they were

not specifically evaluated for this purpose. We here review

and discuss in greater detail some agents of interest that

have more specifically been tested as agents for the eval-

uation of PH.

Endothelium

Various molecular tracers targeting the pulmonary vascular

endothelium have been tested in pre-clinical studies

although few have been evaluated in humans. Here we

discuss four endothelial metabolic functions that have been

explored in some detail for their potential clinical rele-

vance: the adrenomedullin (AM) receptor, the endothelin-B

receptor (ETB), ACE and the NE transporter.

Human AM, a member of the calcitonin gene-related

peptide family, is a 52-amino-acid multifunctional regula-

tory peptide expressed in a wide range of tissues but mainly

in the adrenal medulla, ventricle, kidneys and lungs [40–

42]. Its specific heterodimeric receptor is composed of the

calcitonin-like receptor and the receptor activity-modifying

protein 2 or 3 [43]. The AM receptor is abundantly

expressed in human alveolar capillaries and mostly

418 Clin Transl Imaging (2014) 2:415–426
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distributed at the luminal surface of the vascular endothe-

lium [44–47]. Accordingly, the lungs contain specific AM-

binding sites at a density higher than any other organ

studied [47]. We have previously established that the lungs

are a primary site for plasma AM clearance and therefore

modulate its circulating levels [48]. In fact, the AM receptor

acts as a clearance receptor in the pulmonary vascular bed

[49]. On the basis of this evidence, we hypothesized that

radiolabeled AM derivatives could be used as non-invasive

imaging tracers to evaluate the integrity of the pulmonary

circulation. Through rational design and structure–activity

relationship studies we developed various AM derivatives

[50] able to maintain binding affinity with the specific

receptor without significant biologic effects at the lung scan

dose, while enabling the addition of a chelating moiety for a

suitable radioisotope [51]. These derivatives allowed good

quality lung imaging enabling the detection of large pul-

monary perfusion defects mimicking pulmonary embolism

[52], but also microcirculatory pulmonary occlusion in the

monocrotaline model of PAH [53] (Fig. 3). A lead com-

pound possessing the desired properties was selected [51]

and called PulmoBind. In pre-clinical studies, 99mTc-Pul-

moBind displays all the qualities desired of a molecular

imaging agent in nuclear medicine: sizeable first pass and

prolonged uptake by the lungs and quick plasma clearance

with elimination by both the liver and kidneys [51]. A

human phase I study of PulmoBind in normal human sub-

jects was recently completed (Clinicaltrials.gov

NCT01539889) [54]. We demonstrated that PulmoBind is

safe while providing superior quality lung imaging com-

pared to 99mTc-MAA. A phase II study of safety and proof

of concept in subjects with PAH is in the planning phase.

We hypothesize that quantitative total lung uptake and

kinetic parameters after PulmoBind injection will be of

value in the evaluation of all the PH groups (Table 1).

Furthermore, evaluation of the spatial distribution of Pul-

moBind uptake may provide a unique insight into modifi-

cations of the metabolically active pulmonary vascular

surface area in both physiology and pathology.

Endothelin-1 (ET-1) is a potent vasoconstrictor and

proliferator peptide produced by the vascular endothelium.

The ET system is activated in and contributes to all groups

of PH. ET exerts its biologic effects mainly by acting on

two receptor sub-types: ETA and ETB [55, 56]. While ETA

is expressed only on smooth muscle cells, ETB is expressed

both on smooth muscle cells and on the endothelium [57].

The endothelial ETB is densely expressed in the pulmonary

circulation that acts as a clearance site for circulating ET-1

[58]. Using the indicator-dilution technique in man,

approximately 47 % of circulating ET-1 is cleared by the

Fig. 2 Biologic functions of the endothelial and muscular layers of the

pulmonary vasculature. Various mediators are produced, transformed or

inactivated by the pulmonary vascular endothelial cells. Specific receptors

and transporters are expressed by endothelial and vascular smooth muscle

cells. Nitric oxide (NO); endothelium-derived hyperpolarizing factor

(EDHF); prostacyclin (PGI2); angiotensin-converting enzyme (ACE);

acetylcholine (Ach); angiotensin I (AI); angiotensin II (AII); angiotensin 1

receptor (AT1); bradykinin (Bk); cyclo-oxygenase (COX); endothelin-

converting enzyme (ECE); endothelin A and B receptors (ETA, ETB);

endothelin-1 (ET-1); L-arginine (L-Arg); prostaglandin H2 (PGH2);

reactive oxygen species (ROS); serotoninergic receptor (S1); thrombox-

ane receptor (TH); thrombin (Thr); thromboxane A2 (TXA2); serotonin

(5-HT); opioid receptor (OR); calcitonin receptor-like receptor-receptor

activity modifying protein (CRLR-RAMP); adrenomedullin (AM);

neurokinin receptor (NK-1); substance P (SP); vasoactive intestinal

peptide receptor (VPAC); vasoactive intestinal peptide (VIP); aminopep-

tidase P (AP-P); norepinephrine transporter (NET); norepinephrine (NE);

serotonin transporter (5-HTT) (color figure online)
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lungs during a single circulatory transit time [59, 60].

Furthermore, clearance seemed to be differently affected

by the various PH groups: it was reduced in group 2 PH but

surprisingly preserved in some subjects with group 1 PH

and chronic thromboembolic PH (group 4) [61]. Pulmonary

clearance of ET-1 was reduced in patients with systolic

heart failure (group 2 PH) in relation to the severity of PH

[62]. In vivo imaging of the pulmonary endothelial ETB

receptor was performed by Davenport using 18F-ET-1 and

the radiolabeled selective ETB antagonist 18F-BQ-3020

[63, 64]. In animal studies, using a micro-PET, these

tracers were rapidly and substantially taken up by the

pulmonary circulation, resulting in good lung imaging. The

specific role of the endothelial ETB was confirmed by the

inhibition of lung uptake after the administration of another

selective ETB antagonist. Unfortunately no further explo-

rations with these tracers have been performed in pul-

monary vascular disorders or in human subjects.

Angiotensin-converting enzyme (ACE) is an ectoen-

zyme located at the luminal surface of the pulmonary

vascular endothelium and it is responsible for the hydro-

lysis of angiotensin I into the potent vasoconstrictor/pro-

liferator angiotensin II (Ang-II). The lungs are the main

site of circulating Ang-II production. Various ACE sub-

strates and antagonists have been developed and labeled to

study pulmonary ACE activity in vivo. Using the indicator-

dilution approach, ACE substrates have been validated as

tools for studying the metabolically active pulmonary

vascular surface area in animals [22, 37] and in humans

[65]. Pulmonary endothelial ACE activity is reduced by

acute vascular lung injury and in subjects with PH [66, 67].

ACE inhibitors are among the most widely prescribed

cardiovascular drugs and molecular lung imaging has been

performed in humans using 18F-fluorocaptopril and 18F-

lisinopril. Lung ACE imaging was performed in human

subjects with 18F-fluorocaptopril and a three-compartment

model was used to estimate total ACE binding [68]. The

authors found marked reduction of ACE binding in subjects

with PAH and could image and quantify the pharmacologic

efficacy of ACE antagonists.

Table 2 Molecular PET and SPECT radioligands used to image the pulmonary vasculature

Target Radioligand

Opioid receptor 3H-fentanyl [101], 11C-MeJDTic [102]

Adrenomedullin receptor 99mTc-AM-L [53], 99mTc-PulmoBind [51]

Beta-adrenoreceptor 3H-propranolol [103], 14C-propranolol [104, 105]

Serotonin receptor 11C-GSK215083 [106]

Dopamine receptor 11C-NNC 112 [107]

Endothelin ET(B) receptor 18F-BQ3020 [64]

Neurokinin NK-1 receptor 18F-SPA-RQ [108]

Vasoactive intestinal peptide receptor 123I -VIP [109, 110]

Glucagon-like peptide-1 receptor [Lys(40)(Ahx-DOTA-(68)Ga)NH(2)]-exendin-4 [111, 112]

Norepinephrine transporter 123I-MIBG [70–72, 113–115]

Serotonin transporter 123I-ADAM [116, 117], 11C-DASB [118], 14C-serotonin [103],
123I-FP-CIT [119, 120]
123I-iodoamphetamine [121], 123I-HIPDM [122]

Glucose transporter 18F-FDG [79–81]

MMPs, gelatinase 99mTc-DTPA-CLP [123], 99mTc-CTT [124]

Aminopeptidase P 125I-833c [125], 99mTc-mAPP [126]

Externalized phosphatidylserine 99mTc-annexin V [76–78]

Angiotensin-converting enzyme 3H-BPAP [65, 66], 11C-zofenoprilat [127], 18F-fluorocaptopril [68],
99mTc-lisinopril [128]

11 C-MeJDTic = 11C–N-methylated derivative of JDTic ((3R)-7-hydroxy-N-[(2S)-1-[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethylpiperidin-1-

yl]-3-methylbutan-2-yl]-1,2,3,4-tetrahydroisoquinoline-3-carboxamide); 11C-NNC 112 = 11C((?)-8-chloro-5-(7-benzofuranyl)-7-hydroxy-3-

methyl-2,3,4,5-tetrahydro-1H-3-benzazepine); 18F-BQ3020 = 18F-([Ala11,15]Ac-ET-1(6–21)); 18F-SPA-RQ = 18F-[2-fluoromethoxy-5-(5-tri-

fluoromethyl-tetrazol-1-yl)-benzyl]-[(2S,3S)-2-phenyl-piperidin-3-yl)amine]; 123I-MIBG = 123I-metaiodobenzyl guanidine; 123I-ADAM = 123I-

2-((2-((dimethylamino)methyl) phenyl)thio)-5-iodophenylamine; 11C-DASB = 11C-3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl) ben-

zonitrile; 123I-FP-CIT: 123I-N-x-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) nortropane; 123I-iodoamphetamine = 123I-N-isopropyl

p-iodoamphetamine; 123I-HIPDM = 123I-N,N,N0-trimethyl-N-(2-hydroxy-3-methyl-5 iodobenzyl)-1, 3 propanediamine; 18F-FDG: 18F-fluoro-2-

deoxy-2-D-glucose; 99mTc-DTPA-CLP = 99mTc-DTPA-Cys-Leu-Pro-Gly-His-Trp-Gly-Phe-Pro-Ser-Cys; 99mTc-CTT = 99mTc-Cys-Thr-Thr-

His-Trp-Gly-Phe-Thr-Leu-Cys; 125I-833c = 125I- radiolabeled aminopeptidase P-specific recombinant antibody; 99mTc-mAPP = 99mTc-radio-

labeled monoclonal antibody to aminopeptidase; 3H-BPAP = 3H-benzoyl-phenylalanyl-alanyl-proline; 11C-zofenoprilat = 11C-(4S)-1-[(S)-3-

Mercapto-2-methylpropanoyl]-4-phenylthio-L-proline. AM-L = linear form of human adrenomedullin
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The lungs extract circulating NE by a specific trans-

porter located in the vascular endothelium and this biologic

function has been exploited for molecular imaging of the

pulmonary vasculature. This energy-dependent process was

imaged using 123I-metaiodobenzylguanidine (MIBG) scin-

tigraphy, studying the lung uptake and wash-out of the

radioimaging agent [69]. Studies have shown diminished

lung extraction of 123I-MIBG in patients with chronic

obstructive pulmonary disease, pulmonary fibrosis, vascu-

litis, and after radiotherapy and high altitude hypoxia [70–

74]. Despite its potential, this agent is not currently used

for diagnosis of lung vascular disorders. The lung imaging

technique with 123I-MIBG has never been standardized and

the biology of the tracer remains uncertain as lung neuronal

uptake, in addition to endothelial uptake, likely contributes

to the kinetics of this tracer [69].

Apoptosis and proliferation

The pathophysiology of PH is complex and incompletely

understood. It comprises early endothelial injury (dys-

function) with inflammation and dysregulation of growth

factors [75]. This translates into endothelial apoptosis fol-

lowed by proliferation of apoptosis-resistant endothelial

cells and of vascular smooth muscle cells, leading to the

angioproliferative phenotype pathognomonic of group 1

PH (PAH) with the formation of plexiform lesions. Even-

tually, all types of PH will display pulmonary artery

smooth muscle cell proliferation and fibroblast prolifera-

tion with possible obliteration of the vascular lumen.

Annexin V is a ubiquitous protein that binds to phos-

phatidylserine expressed on the surface of apoptotic cells

but also on ‘‘stressed’’ or injured cells [76]. Radiolabeled

annexin V has been used as a cancer imaging agent but also

has potential for a variety of pulmonary pathologies

involving apoptosis and inflammation [76], including PH.

In the monocrotaline model of PAH, 99mTc-annexin V

imaging showed clear increases in pulmonary apoptosis,

which regressed with effective therapy [77]. In a murine

model of acute lung transplant rejection, 99mTc-annexin V

lung uptake was increased in relation to the severity of

histological rejection [78].

The metabolic glycolytic shift of proliferating cells can

be detected using 18F-fluorodeoxy-glucose positron emis-

sion tomography (18F-FDG PET), a technique that is

widely used in oncology. The paradigm of quasi-clonal

proliferation of endothelial cells and vascular smooth

muscle cell proliferation associated with PAH was tested in

animal models and in human studies. In the murine mon-

ocrotaline model as well as in the hypoxia-Sugen model of

PAH there is increased pulmonary 18F-FDG PET uptake,

which occurs early and correlates with disease severity

[79]. Furthermore, it is associated with increased expres-

sion of the GLUT1 transporter in both endothelial cells and

pulmonary vascular smooth muscle cells. Lack of upreg-

ulation of the glucose transporter in inflammatory cells

would suggest, at least in these models, that 18F-FDG PET

can be used to monitor the vascular proliferative compo-

nent of PAH [79]. In human PAH, two small studies

revealed a mean increase of lung parenchymal 18F-FDG

PET activity [80, 81]. The 18F-FDG PET activity was,

however, heterogeneously distributed within the lungs and

showed wide variability between subjects, with some

patients having normal uptake. Although the within-lung

heterogeneity would seem to be consistent with the known

heterogeneity of histological pathology in PAH [75], the

between-subject variability raises the concern that the 18F-

FDG tracer may not gain access to some diseased areas due

to blockade of pulmonary vessels, a problem inherent to a

disease causing a reduction in perfusion. Indeed, and

Fig. 3 Molecular imaging of pulmonary arterial hypertension using

an adrenomedullin receptor ligand. Images obtained 30 min after an

i.v. injection of 99mTc-PulmoBind in a vehicle-treated Sprague–

Dawley rat and b monocrotaline-treated rat (pulmonary arterial

hypertension model). c Static evaluations of the presence of the

radiotracer in lungs 30 and 60 min after injection. *p \ 0.05 for

vehicle-treated rats (white bars) versus monocrotaline-treated rats

(black bars). This research was originally published in the Journal of

Nuclear Medicine: Letourneau et al., PulmoBind an adrenomedullin-

based molecular lung imaging tool, 2013; vol. 54, 1789–1796. � by

the Society of Nuclear Medicine and Molecular Imaging, Inc. [51]
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contrary to cancer in which proliferating tumors are gen-

erally highly vascularized, PH causes a reduction in per-

fusion that is proportional to the disease severity. Another

limitation of 18F-FDG PET is its lack of specificity for the

lung vasculature. Indeed, other lung conditions such as

pulmonary fibrosis and diseases causing parenchymal lung

damage are associated with increased 18F-FDG PET

activity in regions of fibrosis [82].

Agents used to measure pulmonary perfusion

Both particulate and non-particulate agents have been used

to measure pulmonary perfusion. Although some are not

molecular imaging agents per se, they are nevertheless here

reviewed briefly.

Non-particulate agents that cross the alveolar blood-

gas barrier may be used to measure pulmonary perfu-

sion. Initially, radiolabeled carbon dioxide (C15O2) was

used by inhalation in combination with detection sys-

tems using external scintigraphic probes. This allowed

approximate measurement of regional pulmonary per-

fusion [1, 2, 83]. 133Xenon, previously used to quantify

cerebral perfusion, has also been evaluated for pul-

monary applications after first being dissolved in phys-

iologic saline for intravenous injection [84, 85]. The

introduction of planar detection systems (Anger Cam-

era) has enabled the creation of images showing the

distribution of pulmonary perfusion.

The method most frequently used for the measurement

of pulmonary perfusion involves the injection of radiola-

beled particles that lodge in the pulmonary vasculature

through microembolization [86]. Depending on their size,

these particles lodge in the smallest vessels they can

reach. The MAA constitute the prototype of those sub-

stances [87–89]. These radiopharmaceuticals were found

to be well suited to new technological developments in

detection systems. Indeed, the addition of a tomographic

camera (SPECT) has allowed the creation of three-

dimensional images. The longer time required to obtain

these images from the SPECT camera precluded the use

of non-particulate radiopharmaceuticals. Therefore, MAA

were used after labeling with 99mtechnetium or
113mIndium [90, 91]. Many studies have been conducted

using this tracer and the 99mTc-MAA are still widely used

in clinical applications. Some groups have also used
81mkrypton [92]. However, this radioisotope, with a very

short half-life (13 s), required continuous infusion in order

to create scintigraphic images. Although more accurate,

the SPECT technique does not allow absolute quantitative

analysis.

The introduction of the positron emission tomographic

camera (PET scanner) as an absolute measuring system has

driven the development and use of new

radiopharmaceuticals. This camera includes an efficient

attenuation correction system and is able to provide

quantitative data on the biodistribution of radiotracers

injected into patients. These tracers must be positron

emitters. Of these, some, such as 13N2, have been used to

measure pulmonary perfusion. 13N2 is not very soluble and

when dissolved in saline, and after intravenous injection, it

rapidly diffuses into the alveolar space during the lung’s

first-pass transit [93–96]. The tracer travels preferentially

into the active alveoli, i.e. alveoli perfused by functional

pulmonary capillaries. Thus, the tracer uptake in the lungs

is a real marker of pulmonary perfusion. Oxygen-15

(H2
15O) has also been used [97–99]. Again, this very short-

life radiotracer must be injected according to a constant

infusion model. Moreover, the biodistribution of the tracer

needs to be measured and these calculations require the use

of compartmental analysis. Finally, positron-emitting par-

ticulate tracers have been developed for the quantification

of pulmonary perfusion, including 68Ga-labeled MAA.

Conclusions

There are numerous clinical disorders that can directly

or indirectly impact the pulmonary circulation leading

to the development of PH. Unfortunately, there is cur-

rently no non-invasive diagnostic modality that can

provide direct information on the pathophysiologic

processes affecting the different layers of the pulmonary

vasculature: the endothelium, the media and the

adventitia. Molecular imaging using innovative SPECT

and PET radiotracers offers promising prospects for the

evaluation of the pulmonary circulation in physiologic

and pathologic conditions. More importantly, molecular

imaging could provide earlier detection of the disease,

prior to the development of overt hemodynamic PH.

Endothelial dysfunction is an early event in the devel-

opment of PH and, in this regard, the authors believe the

most promising agents will target endothelial metabolic

properties. Some promising studies have been per-

formed with agents targeting the endothelin receptors,

the ACE, the NE transporter and more recently the AM

receptor. The latter is to be tested in an upcoming phase

II study. The future of molecular imaging of the pul-

monary circulation in health and disease is promising.

We predict that multimodality imaging with SPECT/CT

and PET/MRI will provide combined anatomical and

functional information essential to diagnosis, follow-up

and therapeutic decisions in this field.
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