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A B S T R A C T   

Zingiber officinale L. Roscoe is a significant herb that possesses many medicinal and ethno-
medicinal properties. Due to the presence of various bioactive compounds, it has immense healing 
capacity. However, ginger as a crop is susceptible to several fungal pathogens. Among all the 
fungal pathogens, Pythium and Fusarium spp. are of most concern, causing soft rot (rhizome rot) 
disease, majorly responsible for the downfall in its production by 50–90%. Pesticides and fun-
gicides spray is generally recommended for the control of soft rot. Ample use of chemicals not 
only affects the quality of the crop but also disturbs ecological integrity. Therefore, biological 
methods of disease management involving suitable microbial agents such as Trichoderma har-
zianum, Pseudomonas spp., Bacillus subtilis, Streptomyces spp. and plant extracts are attracting and 
gaining importance as a part of integrated approaches (IPM) to manage the soft rot and sus-
tainably enhance the production and improve the medicinal and pharmaceutical values of ginger. 
The present review is aimed to discuss various means of controlling soft rot disease by physical, 
chemical, biological, and nanotechnology-based methods. Moreover, various bioactive constitu-
ents of ginger and their pharmaceutical importance have been also discussed.   

1. Introduction 

A tropical herb called ginger is grown for its food and medical benefits in many countries across the world, including China, Japan, 
India, Nigeria, Taiwan, Sri Lanka, Fiji, Hawai, Australia, and Korea. India is among these countries’ top ginger growers, with the plant 
taking up the most space and yielding the most [1,2] Fig. 1(a). Meghalaya, Orissa, Arunachal Pradesh, Gujarat, Karnataka, Kerala, and 
Assam are key ginger-producing states of India, and combined they account for roughly 65% of the nation’s overall ginger productivity 
[3] Fig. 1(b). The annual global commerce in ginger is thought to be worth around US$190 million. Approximately 60–70% of ginger is 
produced globally. Of this, roughly 30% is transformed into dry ginger, 50% is used to make greenish ginger, and the remaining 20% is 
turned into a seed [4]. Since ginger is among the most significant species of the family Zingiberaceae and contains such significant 
medical, nutritive, and indigenous medicinal characteristics, it has received widespread usage as a spice, culinary ingredient, and 
traditional cure around the globe [5]. In terms of its therapeutic benefits, ginger has qualities that include antibacterial, 
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anti-inflammatory, antipyretic, antioxidant, anti-diabetic, hepatoprotective, renal, and anti-carcinogenic [6,7]. 
Ginger’s rhizome typically comprises water, aromatic oils, carbohydrates, proteins, lipids, and fibers. Ginger has prospective 

implications in conventional therapy for numerous therapeutic advantages in complement to its nutritive and taste properties [8]. 
Owing to soft rot illness, ginger productivity has regrettably decreased with time despite periodic increases in the overall territory for 
agricultural production attributable to the enormous significance of ginger. One of the prevalent illnesses affecting ginger is known as 
soft rot, which is typically brought on by the fungi Pythium and Fusarium spp. as well as the bacteria Ralstonia spp. The microorganisms 
affect the root, collars, and juicy sections of the rhizome to cause the malady. The most harmful and damaging ailment of ginger 
recorded worldwide is soft rot. Although it is challenging to obtain precise data, it is believed that ginger soft rot causes a yield decline 
of between 50 and 90% [9]. Since then, numerous different Pythium spp. have been implicated in the soft rot of ginger. When 
investigating the 11 Pythium varieties linked to ginger soft rot, Dohroo et al. [9] found both P. aphanidermatum & P. myriotylum were 
the most common. 

Over 15 Pythium varieties were identified as ginger pathogens, as indicated in research by Le et., al [8]. Additionally, 
P. aphanidermatum has been recovered in ginger soft rot, which accounts for around 60% of yield reduction. Le et al. [10] identified 11 
distinct Pythium taxa linked to ginger rhizomes off fields in Queensland, Australia, as well as tested these for pathogenesis against 
ginger in a subsequent investigation. Additionally, reports of many additional Pythium subspecies, including P. myriotylum Drechsler 
[11] and P. aphanidermatum Fitzpatrick [12], came from several nations, including Taiwan, India [13], Malaysia, the United States, 
Japan, Fiji, and Australia [14]. In addition to Pythium, Fusarium is yet another significant fungus that has been linked to ginger soft rot. 
Fusarium comes in a variety of species, but F. oxysporum. sp. zingiberi has become the most prevalent species and is mostly responsible 
for the significant decline in ginger yield caused by decomposing ginger rhizomes [15]. Altogether, the cultivation of ginger has been 
severely impacted by the two fungi listed previously, culminating in considerable financial loss. Consequently, it is vital to control 
ginger’s soft rot. While there are several commercial antifungals in the business to manage those fungi, using them can have harmful 
effects on the ecosystem. 

Additionally, repeated application of synthetic antifungal agents has led to the development of fungicide resilience in fungal in-
fections and diminished soil quality [16]. In substitution for synthetic fungicides, the use of several biological control, including 
T. harzianum and plant isolates, are thought to be environmentally benign and sustainable [17,18]. Furthermore, it has been shown 
that applying holistic control techniques to the management of soft rot is relatively efficient. There is an urgent demand to research and 
create fresh strategies for the quick and efficient control of soft rot of ginger considering the magnitude of the illness and financial 
damage. Given that different nanoparticles have diverse antifungal properties, it is thought that nanotechnology can be extremely 
important in the treatment of such illnesses. Soft rot of ginger causes a significant impact on the pharmaceutical and phytochemical 
value of the crops. The premature loss of crops and damage during storage leads to a significant reduction in the yield of numerous 
components of ginger having prominent pharmaceutical values. Effective management of the pathogen is necessary to maintain and 
improve the value of ginger both financially and pharmaceutically. This review focuses on various strategies to treat the soft rot of 

Fig. 1a. Major Ginger producing countries (https://www.atlasbig.com/en-in/countries-by-ginger-production, Accessed on 03/07/2023).  
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Fig. 1b. Major ginger growing states of India (Source- National Horticulture Board 2021–22).  
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ginger disease. 

2. Chemistry and pharmacology of ginger 

The principal bioactive compounds present in ginger’s rhizome can be generally categorized into non-volatile and volatile phenolic 
chemicals, the majority of whom have unpleasant characteristics (Fig. 2). It is commonly accepted that the chemicals from these 
categories, particularly the non-volatile spicy phenolics, are responsible for the ginger rhizome’s pharmacologic impact. The main kind 
of gingerols and their derivative products, such as gingerdiols, are analogous phenolic alkanones found in healthy rhizomes. The main 
component of these substances is 6-gingerol, whereas 8- and 10-gingerol exist in lesser quantities [19–23]. Most of the volatile oil’s 
constituents are mono- and sesquiterpenes, including terpenes, camphene, curcumene, beta-phellandrene, cineole, terpineol, geranyl 
acetate, borneol, linalool, geraniol, limonene as well as alpha-zingiberene (30–70%), beta-sesquiphellandrene. The main 
aroma-contributing constituent, zingiberol, along with zingiberene, diarylheptanoids, vitamins, gingediol, and phytosterols have also 
been discovered in the oleoresin [24]. 

By reducing body fat and enhancing soft lean mass, ginger can enhance body composition. Ginger extract protects against obesity 
brought on by high-fat diets. By preventing its hydrolysis, the aquatic extract of Z. officinale known as Roscoe may reduce the 
gastrointestinal uptake of ingested fat. As a result, ginger appears to enhance body balance by altering liver enzymes, decreasing the 
uptake of fat, boosting the beta-oxidation of lipids, and raising calorie expenditure [25]. Ginger has a potent analgesic effect that 
frequently results from COX-1 antagonism. Aspirin is less effective than gingerol and its derivatives, particularly paradol, at inhibiting 
COX-1 [26]. Ginger is among the plants that are most frequently used to alleviate morning sickness and vomiting during pregnancy 
[27]. The shogaols, gingerols, and galanolactone of ginger are assumed to be the constituents of ginger that are accountable for the 
antiemetic effect, while the precise mode of operation of ginger on vomiting and nausea is yet unknown [28]. Other pharmacological 
roles of ginger are listed in the table below (Table 1 and Figs. 3 and 4). 

Fig. 2a. Important bioactive compounds of Zingiber officinale.  
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3. Impact of soft rot disease on the production of ginger 

The soft rot microorganisms can afflict hosts at any phase of development, including post-harvest storing, wherein development 
from dormant infectious agents can result in significant damage. The majority of Pythium species thrive in the ground when soil 
temperatures are elevated and wetness levels are close to or above saturation [14]. Around the summers of 2007–2008, these cir-
cumstances happened in Queensland, Australia, the province that produces ginger, and they led to a 5–30% reduction of premature 
ginger in certain contaminated farms [14]. Such losses were also reported in various other countries including India, Fiji, Taiwan, 
Korea, Japan, etc. 

All such significant damages have typically happened in seasons with suitable climates for disease proliferation. Pythium spp. has a 
significant negative influence on preservation as well; losses between 24 and 50% were recorded, while levels sometimes surpassed 
90% in India [9,29]. 

4. Morphology of Pythium spp. 

The Pythium longisporangium specimen exhibits morphology that is characteristic of a Pythium family. It is an oomycete that grows 

Fig. 2b. Important bioactive compounds of Zingiber officinale.  
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slowly and has a huge, globe-to-cylinder-shaped sporophyte, sleek-walled oogonia, and primarily hypogynous antheridia [30]. 

5. Life cycle of Pythium spp. 

Pythium persists as oospores, hyphae, and sporangia in the ground. The fungi can persist as oospores in unfavorable moisture in the 
ground and temperatures for a long period. Oospores can create sporophytes or a germ tract to invade the plants effectively. The mobile 
component of the fungi, known as zoospores, is produced by the sporangia. Before encysting and producing a germ tube that can spread 
illness, the zoospores float along for a short amount of time. Comparable to oospores, sporophytes that have formed on crop tissues 
possess the ability to sprout both directly and via producing zoospores (Fig. 5). When contaminated waste is moved to uninfected 
regions and the ground is sufficiently moist for the zoospores to float easily, the disease is disseminated [31]. 

6. Symptoms of soft rot disease 

For a timely intervention to decrease yield loss, prompt identification of soft rot disease is crucial. For cultivators, the illness is 
primarily recognized by signs that are visible above the soil, such as withering and yellowing. Soft rot initially manifests as wet, brown 
blisters above the ground sections at the rhizome-stem junction, or “collars.” The branch and rots then collapse as a result of such 
lesions growing larger and coalescing [9]. The very first signs of a baseline illness on leaflets are a yellowing of the apex of mature 
leaves, followed by discoloration that progressively spreads across the border to affect the whole of the leaf blades and then the 
sheathing. New leaflets begin to acquire an equivalent symptomatic development as affected leaves shrivel and exhibit necrotic signs, 
and so forth till the plants as a whole perish [32]. After this, sick branches can sometimes be readily pulled away since there won’t be 
any mechanical support holding them to the root systems [9]. The ginger crops might live, but they may stay unproductive and 
dwarfed if the illness is not extensive [33]. Root systems from sick crops have a brown, wet, decaying appearance and therefore will 
eventually decompose [9]. The illness’s signs could be confused with those of either microbial withering produced by R. solanacearum 
or Fusarium yellows, which are both induced by the fungus F. oxysporum f. sp. zingiberi. But a deeper look at the characteristics ought to 
make the three illnesses distinct. 

Fig. 2c. Important bioactive compounds of Zingiber officinale.  

D. Yadav et al.                                                                                                                                                                                                         



Heliyon 9 (2023) e18337

7

7. Management of soft rot of ginger 

For the control of diseases, there are several classical approaches, including cultural procedures, along with biological and chemical 
substances (Table 2). The use of these techniques in ginger farms aids in illness management and limits the spread of fungus-causing 
infections [1,8,34]. It has been shown that managing soft rot with a single traditional strategy is challenging. Hence, it has been 
discovered that combining many methods was more effective in controlling this illness [1,35]. 

7.1. Physical methods 

A crucial aspect in reducing the risk of infection by Pythium spp. is choosing healthy, illness-free seedlings [35]. There are several 
methods of seed management, such as germ enrichment, seed disinfestations, & germ sterilization, to produce seedlings of excellent 
quality. All of the aforementioned methods show promise in the treatment of pathogens without endangering embryos or the chance of 

Table 1 
Chemistry and Pharmaceutical value of ginger.  

S. 
No. 

Chemical compounds Chemical compounds identification techniques Pharmaceutical value References 

1 Geranial Gas chromatography-mass spectrometry Anti-bacterial, antifungal, antioxidant [134–136] 
2 Eucalyptol Gas chromatography-olfactometry Anti-bacterial [134] 
3 α-zingiberene Gas chromatography-mass spectrometry Anti-bacterial, antifungal, antioxidant, 

anti-inflammatory 
[134–138] 

4 ar-curcumene Anti-bacterial, antifungal, 5antioxidant, 
Anti-i6nflammatory 

[134–138] 

5 β-bisabolene Anti-bacterial, antifungal, [135] 
6 β-sesquiphellandrene Anti-bacterial, antifungal, [135,136] 
7 Germacrene-D Anti-bacterial, antifungal, [135] 
8 Camphene Antifungal, antioxidant, cytotoxic [137,139] 
9 β-phellandrene Antifungal, antioxidant [137] 
10 caryophyllene Raman spectroscopy and principal component analysis Antibacterial, antioxidant [136] 
11 α-farnesene Gas chromatography-mass spectrometry Antibacterial, antioxidant [136] 
12 6,9,9-tetramethyl-2,6,10- 

cycloundecatrien1-one 
Antimicrobial [140] 

13 b-myrcene Gas chromatography-mass spectrometry Anti-inflammatory, Larvicidal, and 
repellant 

[138,141] 

14 Citral High speed liquid chromatography Anti-inflammatory, cytotoxic [138,139] 
15 α-cadinol Gas chromatography-mass spectrometry Larvicidal and repellant [141] 
16 α-humulene Antimicrobial [142] 
17 Linalool Nuclear magnetic resonance spectroscopy & Gas 

chromatography-mass spectrometry 
Cytotoxic [139] 

18 Trans-anethole Gas chromatography-mass spectrometry Antibacterial [143] 
19 6-shogaol Liquid Chromatography-Mass Spectrometry/Mass 

Spectrometry 
Antioxidant [144]  

Fig. 3. Modern clinical and pharmacological activities of Zingiber officinale.  
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viability of seeds [34]. 
If a certain plant or some alternative crop that serves as a target for a specific microorganism is grown each year, the microbe’s 

predominance in the land also contributes to the onset of illnesses. In this situation, it is necessary to grow a wide range of crops; 
therefore, crop variation or rotations might be a useful strategy to prevent the resurgence of pathogens during successive harvests. 
Since maize and paddy are tolerable to ginger microorganisms, it was proposed that they may be employed as substitute crops once 
ginger was grown within the same farm [36]. 

One other strategy for enhanced harvest security in traditional farming techniques is the use of inhibitory soils for virulent diseases. 
According to Lee et al. [37], grounds with greater clay contents and low pH levels are better suited for growing ginger than inductive 
soils because they inhibit the development of P. zingiberum as well as F. oxysporum f. sp. zingiberi. 

A further crucial method for destroying soil germs and promoting the development and viability of crops is land solarization. 
Microbes, other parasites, and weeds are reduced when the soil that has been wrapped with plastic is heated by sun radiation during 
the summertime for one to two months. In conjunction with soil solarization, using biocontrol substances promotes crop development 

Fig. 4. Molecular targets of 6-Shogaol and 6- Gingerol (Phytoconstituents of Zingiber officinale).  

Fig. 5. Disease cycle of Pythium spp.  
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Table 2 
Biological control agents and pathogen.  

Biological control agents Pathogens References 

Fungi 
Trichoderma hamatum 

T. harzianum 
T. viride 
Gliocladium virens 
T. harzianum 
T. harzianum 
T. viride 
T. virens 
T. koningii 

Pythium ultimum 
Pythium spp. 
Fusarium oxysporum f. sp. zingiberi 

[63,64,145] 

Trichoderma harzianum strain T-22. 
Gliocladium virens 

Soil borne pathogens 
Pythium ultimum. 

[146,147] 

Trichoderma spp. Fusarium sp. [148] 
Gliocladium virens Pythium ultimum [149] 
Trichoderma harzianum 

T. Viridie 
T. harzianum 
T. harzianum 

Pythium spp. Fusarium spp. 
Pythium aphanidermatum 
Pythium aphanidermatum 
Fusarium oxysporum and Pythium sp. 

[41,65,150,151] 

Trichoderma viride 
T. harzianum 
T. koningii 
T. virens 

Fusarium oxysporum f.sp zingiberi [150] 

Rhizopycnis vagum P. myriotylum [152] 
Colletotrichum trunctatum Fusarium oxysporum 

Scleorotinia sclerotiorum 
[153,154] 

F. oxysporum Fusarium oxysporum [155] 
Trichoderma sp M. roreri [156] 
Avremonium sp. Fusarium oxysporum, 

F. albedinis 
[157] 

Bacteria 
Pseudomonas fluorescens. 

P. chlororaphis 
P. aeruginosa 
P. putida 
P. aurantiaca 
Burkholderia cepacian 
R. leguminosarum 

Pythium ultimum 
Fusarium oxysporum f. sp. radicis-lycopersici 
Fusarium oxysporum f. sp. ciceris 
& 
Pythium splendens 
Fusarium oxysporum 
Pythium ultimum 
Pythium sp. “group G″ strain LRC 2105 

[158,159] 

Pseudomonas fluorescens 
Bacilluspolymixa 
B. lentus 
Enterobacter agglomerans 
Glomus sp. 

Pythium myriotylum [160] 

Rhizobium japonicum Fusarium solani [161,162] 
Pseudomonas 

fluorescens 
Pythium ultimum [163] 

Bacillus mycoides Pythium 
aphanidermatum 

[164] 

Bacillus subtilis Pythium ultimum, 
Fusarium solani 

[165] 

Alcaligenes sp. 
Bacillus cereus 
Bacillus thuringiensis 

Pythium myriotylum [166] 

Bacillus vietnamensis Pythium myriotylum [166] 
Bacillus BH072 

B. amyloliquefaciens Q-12 
B. amyloliquefaciens NK10.B 

Bacillus BH072 
B. amyloliquefaciens Q-12 
B. amyloliquefaciens NK10.B 

[83] 

Bacillus strains EU07, QST713 and FZB24 Fusarium oxysporum [80] 
Bacillus amyloliquefaciens B. cactivora [82] 
Bacillus sp. Pythium myriotylum. [167] 
Bacillus subtilis strain 

M4 
Pythium ultimum [85] 

Bacillus spp. Fusarium oxysporum [84] 
Pseudomonas aeruginosa P. myriotylum [168] 
Actinomycetes   
Streptomyces janthinus, 

S. cinerochromogenes 
Actinamadura ruhra, 

Pythium coloratum [169] 

(continued on next page) 
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and inhibits the spread of a range of illnesses. The cheap and prolonged advantages of soil solarization make it among the best methods 
for conservatories, greenhouses, flower gardens, and landscapes [38]. 

Additionally, adding silicon (Si) to the ground is said to promote vegetation development while inhibiting the proliferation of 
P. aphanidermatum. As soon as infection signs start to manifest in the fields, regular phyto-sanitation is advised to stop the condition’s 
transmission to other healthier crops. To prevent the spread of microbes to healthier crops, it is crucial to locate infected crops, destroy 
them, and then sanitize the instruments employed for phyto-sanitation. 

7.2. Chemical methods 

All around the world, several antifungal agents are frequently used to manage post-harvest infections in ginger. Since Pythium spp. 
can persist in the land for extended periods after being incorporated, managing soft rot is much more challenging. Numerous synthetic 
antifungals were found and are currently in common use all over the globe. Mancozeb, copper oxychloride, Ziram, propineb, and 
Guazatine, are among the crucial antifungal agents. These antifungals are thought to be among the most efficient at preventing soft rot. 

Metalaxyl is also among the most often applied synthetic antifungal agents. This fungicide can be applied to the land or employed as 
a drench independently or in conjunction with various antifungal agents to effectively prevent soft rot brought on by Pythium [39,40]. 
In a field that was inherently polluted with P. aphanidermatum, Singh et al. [41] conducted comparison research on the seedling 
treatments with Ridomil MZ and warm water and they found that the intervention with Ridomil MZ increased root survivability by 
30%. Furthermore, Smith and Abbas [42] suggested that antifungals such as metalaxyl, fludioxonil, Ridomil, and Proplant significantly 

Table 2 (continued ) 

Biological control agents Pathogens References 

Actinnplanes philippinensis, 
Micromonospora carbonaceae 
Streptosporangium albidum 

Streptomyces rubrolavendulae S4 Pythium aphanidermatum [170] 
Nocardiopsis spp. 

ZoA 1, KC188323 
Pythium myriotylum [171] 

Management of soft rot disease in ginger using plants extract. 
Jacaranda mimosifolia, 

Moringa oleifera 
Polyalthia longifolia 
Terminalia arjuna 
Lawsonia inermis 
Aegle marmelos 
Nigella sativa 
Azadirachta indica 

Pythium aphanidermatum [4] 

Zingiber zerumbet (wild ginger) Pythium myriotylum [17] 
Allum sativa 

Aloe barbandensis 
Cassia fistula 
Lantana camara 

F. solani 
P. aphanidermatum 

[172] 

Allium cepa 
Ocimum sanctum 
Tagetes erecta 
Mentha arvensis 

P. aphanidermatum [173] 

Piper betle 
Vitex negundo 
Eucalyptus globulus 
A. Sativum 

P. aphanidermatum [174] 

Schima wallichii 
Tagetes erecta 
Lantana camara 
Ocimum sanctum 

P. aphanidermatum [173] 

Artemesia vulgaris Linn +
Urtica dioica + Zanthoxylum armatum DC +
Allium cepa L. + Allium sativum L. + Nicotiana tabacum + Capsicum annuum L. + Jeevatu 
Azadiricta indica 
Agave americana 

Pythium spp. 
Fusarium spp. 
Fusarium oxysoprum f. sp. zingiberi 
Pythium aphanidermatum 

[91] 

Acorus calamus 
Allamanda cathertica 
Lasia spinosa 
Laurus nobilis 

Pythium aphanidermatum [92] 

Alamonda leaf extract Fusarium oxysporum [93] 
Artocarpus lakoocha 

Hemedesmus indicus 
Elaegnus kologa Schlecht 
Polyalthia longifolia 
Croton roxburghii Balak. 

P. aphanidermatum 
F. oxysporum 

[94]  

D. Yadav et al.                                                                                                                                                                                                         
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aid in the control of soft-rot brought on by P. myriotylum in a potted trial rather than just carbendazim seedling therapy. 
Additional fungicidal substances such as zineb, thiram, captafol, phenylmercuric acetate, methyl bromide, copper oxide, mercuric 

chloride, and mancozeb have also been shown to be efficacious towards several Pythium organisms [43]. Metalaxyl was found to be 
significantly effective in controlling rhizome-rot, according to Dohroo et al. [44]. Comparable to this, treating ginger soft rot with a 
combination of metalaxyl & captafol and soaking the soil and seed efficiently managed the problem [45]. 

When Srivastava [46] applied zineb or mancozeb to the ground after treating the rhizomes with carbendazim and mixing Thiodan 
grit into the ground to prevent pest infestation, he successfully managed the soft-rot of ginger in Sikkim. In their research, Gautam and 
Mainali [47] showed that the mixture of insecticides Carbendazim 50 DF, Mancozeb 80 WP, and Chlorpyrifos 20 EC was much more 
potent towards rhizome flies and soft rot. 

7.3. Biological methods 

Currently, environmentally benign infection control techniques are used. There is a rising concern across the globe over the usage 
of dangerous antifungal agents in farming. Consequently, developments in farming towards better durability over the last 20 years 
have contributed to an upsurge in awareness about the risks connected with the application of artificial insecticides and the usage of 
biological products to manage plant infections. Biocontrol is the lowering of an organism’s capacity to cause illness or the concen-
tration of its bacterial culture, whether it is done organically while it is alive or by deliberately introducing antagonists into the 
ecosystem [48,49]. By using modern biology as well as genetics-related techniques, it was feasible to evaluate the function of bacterial 
inoculum in real habitats to an extent that was hitherto impossible, leading to fresh discoveries into the fundamental processes of how 
biocontrol products work [50]. 

Currently, a wide range of microorganisms, primarily fungi, and bacteria have been identified that fight off significant agroeco-
logical insects and illnesses. These comprise Trichoderma spp. [34,51], Pseudomonas, Bacillus, Streptomyces [52–56], mycoparasitic 
Verticillium species [57], and Lecanicillium species [58], among others. Scientists from all over the world are paying close emphasis to 
fungal organisms towards plant diseases as prospective biological control tools in various plants. Trichoderma/Hypocrea is among the 
highly researched fungi species [34,57,59]. 

7.3.1. Fungi as a biological control agent 
Biological control treatments may also cause physiologic changes in plants, like the development of phytohormones or the overly 

sensitive reaction, or the creation of chitinase and glucanase, which activate the plant’s protective mechanisms [60]. Since Pythium 
pathogens can immediately infect seeds or roots and have the potential to produce long-lasting root rots, the biocontrol of these species 
is quite challenging. Despite these limitations, antagonistic fungi, microbes, and actinomycetes were successful in controlling several 
significant disorders [34,60]. 

Numerous Pythium species can be controlled using fungal endophytes Trichoderma as a biological control agent. Trichoderma en-
gages in several noteworthy functions, including the formation of substances that degrade cell walls, indole acetic acid and cyanide, 
phosphate solubility, and others. These processes play a significant role in the cellular wall degradation of Pythium spp. Oomycetes [61, 
62]. The treatment of P. aphanidermatum-caused soft-rot sickness in turmeric plants was previously described by Vinayarani and 
Prakash. According to the research, fungal endophytes T. harzianum significantly inhibited the development of the mycelium that is 
responsible for the turmeric rhizome-rot infection [62]. An antagonistic response was seen in in vitro testing utilizing T. viride, T. 
hamatum, and T. harzianum towards P. aphanidermatum, F. solani, and F. equiseti [63–67]. After T. viride and T. harzianum were treated 
to the ground in conjunction with sawdust, a significant reduction of soft-rot disease was observed in agricultural conditions [68]. 

When T. harzianum was administered to soil together with neem oil cakes, it was found that P. aphanidermatum, which causes soft 
rot of ginger, was effectively controlled [69]. After utilizing biological control agents, the possible reduction of proliferation of 
Fusarium oxysporum and P. aphanidermatum inducing yellows and soft rot of ginger was noted [1,41,69]. Ram et al. [70] showed how 
various biological control organisms, such as T. virens, T. harzinum, and T. aureoviride, can prevent ginger soft rot. According to reports, 
the colony abundance of all F. solani and P. aphanidermatum was greatly diminished by all of the aforementioned biological control 
treatments. According to Ginting et al. [71], F. oxysporum, a phytopathogenic fungus, can be effectively controlled by the fungal 
endophytes C. gloeosporioides. Table 2 shows list of various antagonist fungi used as biocontrol agent to manage Pythium and Fusarium 
spp. in ginger and other crops. 

7.3.2. Mechanism of action of Trichoderma species 
Trichoderma species exhibit antifungal activities by various mechanisms which include competition for nutrients, activation of 

resistance by plants, induction of defense mechanisms, enzymes that degrade cell walls, etc. Relative to competing species, Tricho-
derma has a greater ability to transport and absorb soil minerals. Trichoderma’s capacity to produce Adenosine Triphosphate from the 
breakdown of various carbohydrates, including those formed from polysaccharides commonly found in fungal habitats, underpins the 
effective utilization of accessible resources [72]. Before stimulating crop, development and providing disease defense, Trichoderma 
species must infiltrate crop roots. Colonization denotes the capacity to cling to and detect crop roots, infiltrate the crop, and endure 
toxic compounds generated by the crops in reaction to the intrusion by an external entity, regardless of whether it is pathogenic. 
Trichoderma variants typically improve root proliferation and expansion, crop yield, tolerance to abiotic stressors, and nutrient ab-
sorption and utilization through root colonizing [73]. 

In trials conducted in conservatories, plant seedlings that had formerly been exposed to Trichoderma germs produced a significant 
rise in production [72]. Traditionally thought to have an inhibitory action on the invading microorganism, Trichoderma variants can 
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defend crops from root infections [72]. Transgenic plants that were extremely adaptable to or entirely impervious to the foliar mi-
crobes Alternaria solani, and B. cinerea as well as the land microbe Rhizoctonia solani were produced when the chitinase Chit42 from 
T. harzianum was expressed in tobacco plants [74]. An adequate reaction to every specific pH state is one of the strategies used by 
Trichoderma variants to accomplish colonization and infection suppression in a variable pH environment. T. harzianum isolates that 
regulate environmental pH stringently maintain ideal levels for their endogenous secretory enzymes [75]. 

7.3.3. Bacteria and actinomycetes 
The bacteria’s capacity to create significant byproducts such as lipopeptides, which have substantial fungicidal action, makes them 

extremely useful as biological control tools [76,77]. Luminous Pseudomonas, Streptomyces, and Bacillus spp. gained the most emphasis 
amongst bacterium and actinomycetes since they are simple to culture on a mass scale and may be used to treat both ground and 
seedlings. 

Previously, Zouari et al. [78] revealed that Bacillus amyloliquefaciens variant CEIZ-11 showed a wide spectrum of fungicidal activity 
against a variety of crop infections, particularly P. aphanidermatum. According to earlier research [79], Bacillus species can manu-
facture a variety of antimicrobial drugs in a strain-specific way. In research by Rao [80], the secretion of lysogenic enzymes, hy-
drolases, and proteolytic enzymes by the Bacillus strains EU07, QST713, and FZB24 was examined for its suppressive action on 
Fusarium. There are preceding findings on the identification and separation of Bacillus sp., which defends alfalfa plants from Phy-
tophthora megasperma-caused seedling sickness [81]. 

It has been demonstrated that the antifungal abilities of the Bacillus amyloliquefaciens strain can suppress Bipolaris stem rotting 
brought upon by B. cactivora [82]. A unique bacteria called BH072 B. amyloliquefaciens, which was derived from nectar, demonstrated 
potent fungicidal action against many fungi in one investigation [83]. In their work, Sarwar et al. [84] found that the biosurfactant of 
Bacillus species showed effective efficacy vs several plant pathogens, such as F. oxysporum, which induces rot disease, and Fusarium 
moniliforme, which originates the paddy bakanae infection, among others. Ongena et al. [85] provided evidence for the protective 
effects of bioactive peptides released by B. subtilis variant M4 versus Pythium ultimum-induced dampening of bean seeds [86]. Table 2 
shows list of various bacterial strains used as biocontrol agent to manage Pythium and Fusarium spp. in ginger and other crops. 

7.3.4. Plants extracts 
The regulation of plant infections brought on by Pythium spp. can be done in an economical and environmentally friendly manner 

by using diverse flora as biocontrol agents. Usnea pictoides was found to have antagonistic action towards the ginger soft-rot disease- 
causing P. aphanidermatum, according to Vinayaka et al. [87]. Iranian plant methanolic and water extracts have been shown to have 
fungicidal action toward Pythium sp [88]. Neem and other limonoids, according to Dohroo and Gupta [89], too were highly successful 
in controlling a variety of plant diseases. Additionally, Neem leaves were found to have certain sulfurous substances that had fungicidal 
capabilities, according to Pant et al. [90]. Acharya et al. [91] reported the activity of various plant extracts such as Arthemesia vulgaris 
Linn, Urtica dioica, Nicotiana tabacum, and Capsicum annuum Linn against Pythium and Fusarium species that cause soft rot of ginger. In 
another study, Kumar et al. [92] demonstrated the antifungal activity of extracts of Acorus calamus, Allamanda cathertica, Lasia spinosa, 
and Laurus nobilis against Pythium aphanidermatum that causes ginger soft rot disease. The antifungal activity of extracts of Alamonda 
leaves against rhizome rot causative agent F. oxysporum was reported by Hasnat et., al [93]. 

Rakesh and co-workers reported the antifungal activity of extracts of Artocarpus lakoocha, Hemedesmus indicus, Elaegnus kologa 
Schlecht, Polyalthia longifolia and Croton roxburghii Balak against P. aphanidermatum and F. oxysporum that causes ginger soft rot disease 
[94]. The assessment of plant varieties’ resistance to the rot-causing fungus P. aphanidermatum was also studied in the past in various 
experimental and conservatory settings [95]. Several phytoconstituents are fungitoxic to P. aphanidermatum, which was collected from 
a ginger sample with rhizome rot, according to research by Haouala et al. and Suleiman and Emua [96,97]. Table 2 shows list of some 
plant extracts which are used to manage soft rot disease in ginger. 

7.3.5. Nanotechnology based management 
When it comes to managing phytopathogens, nanotechnology has numerous perks over traditional chemical solutions that are 

known to be ecotoxic. By strategically delivering pharmacological substances, nanoparticles in farming seek to minimize the number of 
toxic substances applied [98]. Nanoparticles (NPs) have the potential to both alleviate current effects and substantially accelerate the 
paradigm shift in agricultural output [99]. NPs are used to stimulate plant growth as well as to inhibit the expansion of diseases [100]. 
The farming sector uses nano biosensors to combat several plant diseases [101]. It is advantageous in many different ways; for 
instance, the use of nanocapsules in plant illnesses and pest control. The control of ginger soft rot by nanotechnology-based methods is 
urgently needed. 

Nanotechnology’s market worth as fungicide and crop growth stimulants has recently increased dramatically. Nanomaterials let 
farmers distribute micronutrients in a regulated manner with the least amount of nutritional loss possible [102,103]. The nano-
materials have the potential to administer active chemicals or minerals in a precise fashion, making them an excellent fungicide 
distribution mechanism in farming. They also have compact sizes, vast surfaces, improved durability, and better accessibility to crops 
[104–107]. According to reports, synthetic fungicides can also attack non-target lifeforms and have detrimental impacts on all 
ecological living beings. Thus, using these synthetic insecticides can irrationally increase risk and disrupt ecological integrity, espe-
cially concerning threatened and vulnerable species. As a result, various strategies are being developed by research organizations to 
treat fungal diseases without any negative consequences [107]. 

One of the finest options for battling fungi infections is the creation of multimodal nanoparticle complexes, which contain many 
active chemicals [108]. The application of nanotechnology to treat the fungi-caused soft rot ailment in ginger is not documented in the 
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official literature. Nevertheless, there have been reports of utilizing nanomaterials to treat Pythium sp. and Fusarium sp. derived from 
various crops. Copper sulfide nanoparticles have been shown by Chakraborty et al. to have suppressive action toward Fusarium sp 
[109]. Silver nanoparticles (AgNPs) have been widely advocated for use in managing plant infectious fungi, but sadly, they have 
received less attention in the control of illnesses caused by Pythium species and Fusarium species, which cause wilts and soft rot, 
respectively [110,111]. 

The study conducted to control white rot disease in onion and garlic using AgNPs, biologically synthesized by F. oxysporum. The 
biosynthesized AgNPs at various concentrations showed a promising antifungal activity against the linear growth, mycelial biomass 
and scelerotial germination of S. cepivora isolates. Therefore, AgNPs can be used as nanofungicide against white rot disease and as 
nanofertilizers for onion and garlic productions [112–114]. 

7.3.6. Challenges for application of nanotechnology to control fungal pathogen 
In this age of scientific discovery, new ideas and applications for human and environmental well-being emerge every decade. 

Nanotechnology also comforts this decade and its advantages make it essential in agriculture. Despite its use in agriculture, some 
challenges remain. Nanohybrid materials regulate fungi. Silver, gold, copper, iron, graphene, silica, chitosan, and other organic 
molecules are used to make composites or nano-hybrids. Nanohybrid synthesis requires expensive chemicals, reagents, and energy. 
Thus, nanohybrids may be effective against phytopathogens, but they may infiltrate the plant system or accumulate in its vegetative 
sections when applied in the field. Before developing nano-formulations for antibacterial/fungicidal applications, it is necessary to 
comprehend the effect of nanoparticles on crop plants. Numerous researchers have hypothesized that nanoparticles may impede plant 
growth and development [115]. 

NPs interaction with soil pollutants including metals and organic molecules can alter bioconcentration or inherent toxicity, which 
can harm plants. NP-contaminant combinations may cause unexpected hazardous consequences via multiple pathways that influence 
chemical availability, absorption, and metabolic processes involved in detoxification and degradation. The mechanisms of the NP- 
contaminant interaction on joint toxicity are unclear [116]. 

Qian et al., reported the adverse effects of copper oxide nanoparticles (CuO NPs) treatment on wheat seedlings due to a combi-
nation of CuO NPs and released Cu2+. Its treatment significantly reduced wheat root and shoot biomass by 35.8% and 15.8%, 
respectively [117]. Effect of different concentrations of AgNPs were investigated in Trigonella foenum-graecum. The highest amount of 
trigonelline (TG) and nicotinic acid (NT) contents were obtained in 10 mg/L of AgNPs. Treatments with an AgNPs concentration higher 
than 10 mg/L led to reduced growth, biomass, chlorophyll, protein, TG and NA contents [118]. NPs exposure to plants causes ROS, 
lipid peroxidation, redox homeostasis disruption, DNA, and membrane damage. It causes oxidative stress, plant growth disruption, and 
genotoxicity. Despite the many benefits of NPs for agriculture, investigating the hazards of nanotoxicity from NPs in food for human 
consumption is necessary because engineered and inadvertent NPs can create future health issues. Thus, future study must clarify NPs 
characteristics to assure safe use in agriculture, one of the key food sources for humans [119]. 

8. Traditional vs modern strategies 

8.1. Cultural strategies 

Cultural methods such as crop rotation, tillage, organic modification, drainage, and quarantine are frequently used to reduce PSR 
and prevent the propagation of Pythium spp. to uninfected farms. By adding more organic matter to the soil, these approaches aim to 1) 
increase soil condition and hence create a more diversified and disease-suppressive soil biota, and 2) restrict Pythium spp. inside the 
affected region and prevent the spread to uninfected areas. Crop rotation may not always be an effective strategy to manage Pythium 
spp. on ginger because the majority of the Pythium spp. that were identified on ginger is also virulent on a broad spectrum of hosts. 
Harvey and Lawrence [120], however, thought that rotations of crops could change Pythium spp. populations, arguing that every plant 
would be related to a certain Pythium Spp. and that probable inoculum could be decreased to some degree in areas with yearly ro-
tations. According to Urrea et al. [121], the diversity of Pythium spp. is significantly dependent on the rotation of host crops that are 
vulnerable to the fungus, and it is low in monoculture systems. As a result, pathogenic Pythium spp. multiplied and took over under 
mono-cropping regimes [122]. Stirling et al. [123] found that methods to retain the existence of antagonist soil microbes were less 
efficient in controlling the pathogen if factors for P. myriotylum proliferation were perfect, such as high temperatures and saturated 
soils. 

For effective ginger farming and PSR management, tillage techniques that minimize soil disturbance ought to be taken into 
consideration. According to Rames et al. [124], minimum tillage resulted in soils with larger microbial numbers than the standard 
tillage technique; nevertheless, the grounds also seemed to set hard, and ginger establishment and growth were poor after direct 
mechanical drilling of the seed. 

Pythium spp. release zoospores that can swim and disperse in free water, hence Smith and Abbas [42] hypothesized that effective 
water drainage is crucial for PSR management. Drain breaks that are carefully positioned throughout the field can stop the spread of 
zoospores by catching them in surface water flowing along beds and interrow. In addition, Kim et al. [125] demonstrated that when 
compared to a control, unridged field, the frequency of PSR was reduced by almost 70% in fields with thin ridge farming. Given that the 
yield was only half as the control, this method was thought to be unfeasible. 
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8.2. Modern strategies 

Ginger germplasm does not yet contain any sources of resistance to this disease [126]. Ginger is entirely sterile and can only be 
propagated vegetatively by utilizing a rhizome. The use of any traditional method for promoting disease resistance in ginger is 
hampered by total sterility and the low heterogeneity for disease resistance, demanding the employment of transgenic technology for 
plant modification. Previous research suggested that Zingiber. zerumbet, an uncultivated variant of cultivated ginger, could contribute 
to the genetic enhancement of ginger by providing soft rot resistance [127]. According to the gene-for-gene paradigm, the ability to 
recognize a particular pathogen is controlled by plant-encoded disease resistance (R) gene products. Upon recognizing a 
pathogen-encoded elicitor, these gene products initiate downstream signal transduction cascades, which then quickly mobilize de-
fenses to stop pathogen growth [128,129]. Nair et al. [130] noticed a connection between the wild taxa’s resistance to 
P. aphanidermatum infections and ZzR1 expression. Given that mandatory vegetative propagation prevents genetic improvement in 
ginger cultivars, this is a significant genomic resource for the progression of tolerance to P. aphanidermatum. The economic significance 
of soft rot infection and the ecological effects of chemical management methods make it imperative to understand the molecular basis 
of resistance mechanisms. 

9. Host plant resistance 

The microorganisms that cause soft rot could still cause plant mortality or at the very least reduced yields, even though it is possible 
to control it to a certain degree using chemical, biological, and nanotechnology means. Although creating a Pythium-resistant variation 
will be preferable, neither of the palatable ginger cultivars now in existence is immune to harmful pathogens [130]. Senapati and 
Sugata [131] screened 134 ginger variants that were accessible in Koraput, India, and discovered one variety that was resilient to 
P. aphanidermatum as well as eight others that had modest tolerance. However, the findings were not shared by other investigators 
across the nation, leading to the conclusion that the resilient cultivar in this instance was likely a regionally distinctive response against 
P. aphanidermatum. Thus, efforts to create a ginger variety with soft rot resistance persist. 

10. Comparison between various management strategies 

Farmers and agriculturists should learn healthy, non-toxic, effective, and eco-friendly strategies (green strategies) for controlling 
fungal diseases in plants in order to protect human and animal health and soil biodiversity. For the control of plant fungal diseases, 
these strategies must be implemented in vivo. Physical treatments (heat, irradiation, PL, plasma) are also commonly applied to sanitize 
food packaging, reducing the risk of spoilage during storage and transport [132]. Physical treatments prevent chemical residues from 
adhering to produce. UV light may stimulate plant defence systems in fresh fruits and vegetables, in addition to killing microorganisms 
[133]. In comparison to chemical treatments, potential drawbacks of physical methods are that they do not remove dirt and plant 
debris and that they may lead to physical (e.g. thermal) damage to the produce. Additionally, regulations for chemical treatments are 
tightening to limit the accumulation of fungicides and of disinfection by-products in food produce, in irrigation, processing water and 
in the environment. New technologies for fungal control are also necessitated by the emergence of resistance. Existing fungicides can 
be enhanced by exploiting synergies between chemical agents, thereby reducing chemical consumption. Current crop management 
strategies should be strengthened by identifying novel synergies and commercialising existing synergistic combinations. Biocontrol 
and methods of stimulating plant defence can reduce food spoilage and crop disease, while films and coatings can protect fruit from 
mechanical damage and be adapted to enhance the delivery of other control measures. On contrary Bacillus spp. (B. cereus) as 
biocontrol agent its enterotoxigenic virulence factors in infant formula and ready to use baby food was investigated because it is 
considered as the more harmful one in lower numbers 133. 

11. Conclusion 

Ginger is one of the medicinally important commercial crops, cultivating throughout the world for various purposes having global 
market of US$190 million. But, on the other hand, there are number of pest & diseases which causes deterioration of this highly 
important industrial crop. Soft rot disease is one of an important disease caused by Pythium and Fusarium spp., responsible for 
quantitative and qualitative losses of ginger. 

The current review focused on various aspects of the soft rot disease, its etiology and the management practices including physical, 
chemical, biological methods and nanotechnological approaches as well as their ‘pros and cons’. Although, application of physical 
methods of disease control is ecofriendly in nature but it is costly and time consuming. Similarly, chemical methods/fungicides have 
been proven to be promising in controlling soft rot disease of ginger but they have several side effects. Nanotechnology has also been 
providing the significant opportunities to treat phytopathogens by avoiding excess use of chemical fungicides, herbicides, and fer-
tilizers but it requires expensive chemicals, reagents and needs extensive experimental trials for evaluation of toxicity to beneficial 
microbes, animals, human beings and environment. However, biological management is the only method that could be used as an 
effective source of fungicides/bioagent(s) of eco-friendly in nature for the soft rot disease control. Literature also revealed that there 
are number of commercial fungicides/bioagents are available in the market viz., Trichoderma Tricoderma. Harzianum, T. viride, T. 
virens,T. koningii as well as Pseudomonas fluorescens Bacillus subtilis, Streptomyces rubrolavendulae; that could not only be used as an 
effective fungicide but also having the edge over synthetics. 

Besides this, findings of the present review could also be used as a base line for budding researcher, plant pathologist and policy 
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makers; who are working in the area of pest & disease management. 
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