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Abstract

Identifying genomic regions influenced by natural selection provides fundamental insights into the genetic basis of local adaptation.
However, it remains challenging to detect loci under complex spatially varying selection. We propose a deep learning-based framework,
DeepGenomeScan, which can detect signatures of spatially varying selection. We demonstrate that DeepGenomeScan outperformed
principal component analysis- and redundancy analysis-based genome scans in identifying loci underlying quantitative traits subject
to complex spatial patterns of selection. Noticeably, DeepGenomeScan increases statistical power by up to 47.25% under nonlinear
environmental selection patterns. We applied DeepGenomeScan to a European human genetic dataset and identified some well-known
genes under selection and a substantial number of clinically important genes that were not identified by SPA, iHS, Fst and Bayenv when
applied to the same dataset.
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Introduction
One of the main challenges of modern biology is to dissect
and understand the molecular basis for naturally occurring
phenotypic variation. Addressing this challenge is of fundamental
importance not only for the field of evolutionary biology but also
for a wide variety of applied fields involving human diseases,
improvement of agricultural crops and breeds and biodiversity
conservation.

The recent increases in genomic data generated by modern
sequencing technologies have advanced our understanding of
how natural selection, and its interactions with other evolutionary
forces, shapes the genome and phenotype of species. Such tech-
nologies have now been applied to the study of a wide range of
species, but the statistical methods used to analyze them tend to
differ. The standard approach popularized over the last decade or
so is to infer signature of selection at trait-associated loci iden-
tified through genome-wide association studies (GWAS; e.g. [1]),
which linearly model the additive allelic effect of genotypes (the
explicative variable) on phenotypes (the dependent variable). All
of the recent methods for GWAS can take into account population
stratification, using for example linear mixed models that incor-
porate the genetic relationship matrix (GRM) as a random effect
(e.g. [2]). GWAS have been used to identify variants associated with

a wide range of phenotypic traits [3] and their results are used
by several studies aimed at detecting polygenic adaptation [4–
8], mainly through comparisons of allelic or haplotypic patterns
between trait-associated loci and randomly drawn loci from the
genome [9, 10].

An alternative approach deploys a wide range of methods to
scan the genomes for the signature of selection, while generally
without consideration of the phenotypic traits. These genome
scans are often deployed to study wild species. Some of them are
aimed at identifying genomic regions exhibiting outlier behaviour
based on measures of among-population genetic differentiation
[11–13] or some other descriptor of spatial origin of a sample (e.g.
principal component axes; [14]). Other methods are focused on
identifying variants associated with selective sweeps based on
linkage disequilibrium patterns along the genome based on either
haplotype structure [15–18] or distortions of the allele frequency
spectrum [19, 20]. Another important family of methods aimed
at establishing associations between loci and environmental vari-
ables, with the assumption that such variables could represent
selective pressures acting upon genomic regions linked to the
outlier loci [11–13, 21]. These methods (with the exception of
De Villemereuil and Gaggiotti [22], which is based on FST) use
linear mixed models that consider the genotype as the dependent
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variable, and the environmental factor as the explicative variable.
Some of them are based on machine learning approaches such
as latent factor mixed models (LFMMs) [12], and redundancy
analysis (RDA) [23–25] and focus on selection gradients showing
linear or monotonic patterns across environmental gradients.

Despite this apparent methodological dichotomy with respect
to the genetic architecture of phenotypes, it is clear that a thor-
ough understanding of how natural selection shapes the pheno-
type and genome of species requires some combination of these
two different approaches. Indeed, the selective pressures exerted
by the heterogenous abiotic and biotic environment act upon
individuals’ phenotypes in a complex way and lead to changes
in the spatial structuring of variation in the genomic regions
underlying them. Thus, in order to fully characterize the action
of natural selection, we need to answer three fundamental ques-
tions: (i) what are the environmental drivers of natural selection?
(ii) what are the phenotypic traits upon which selective pressures
act? and (iii) what are the genomic regions underlying those
adaptive traits?

In the last few years, there has been an increasing inter-
est in the application of machine learning approaches in pop-
ulation genomics [14, 23, 26] and GWAS [27, 28] but no single
method applicable to both has been proposed. Here we present
DeepGenomeScan, a unified deep learning approach for genome
scan and GWAS, which can be used to answer questions (i) and (iii)
above (question (ii) would require the use of a quantitative genet-
ics method; see [29, 30]). The rationale underlying our method is
that we can use the genotype of an individual to predict not only
its phenotype but also some attribute of the habitat where they
are sampled. This framework is akin to GWAS, but in our case,
the response variable can be an individual phenotypic trait, an
environmental variable associated with its habitat, the geographic
location of the individual (latitude and longitude), or a variable
describing spatial genetic structure (e.g. reduced features from a
dimensionality reduction technique such as principal component
analysis [PCA]).

Our approach leverages the power of deep neural networks
to approximate arbitrarily complex functions linking dependent
and explicative variables [31], as well as recent algorithms for
model optimization [32], and for inferring the importance of each
explicative variable in predicting the dependent variable [33]. It is
important to note that as opposed to the prevalent use of neural
networks, i.e. prediction and pattern recognition, here our main
interest is in estimating the features (loci) that contribute the
most to the predictive power of the neural network. To achieve
this goal, we use the concept of ‘feature importance’ [33], which
represents a proxy for the effect size of any given locus. In essence,
our method estimates the effect size of genetic variants that
explain a particular trait (phenotype or environmental variable),
and identifies those with outlier values as pinpointing a QTL or a
signature of natural selection.

An important advantage of our method when applied to spatial
data is that it can consider any spatial selection pattern including
the usually assumed linear environmental gradient as well as
arbitrarily complex nonlinear spatial patterns and, importantly,
coarse-grained heterogeneous selection with no clear spatial pat-
tern. This represents an important advance as existing methods
only consider linear or monotonic nonlinear patterns. In this
particular application, our approach generalizes Yang et al.’s [34]
idea of using geographic positioning of individuals to identify loci
that exhibit particularly steep slopes of allele frequency change
associated with recent positive selection. Our generalization is 2-
fold: (i) instead of only considering monotonic spatial gradients,

we can detect loci associated with arbitrary and non-monotonic
selection patterns, and (ii) the dependent variable can be the geo-
graphic location but also a phenotypic trait or an environmental
factor.

In what follows, we introduce our method and evaluate its per-
formance focusing on genome-scan applications under spatially
complex selection scenarios, but we also present a preliminary
evaluation of DeepGenomeScan performance as a tool to carry
out GWAS (see Discussion and Supplementary Material).

Results
Underlying rationale for the deep learning
approach
A neural network can be considered as a generalized regression
approach used to learn complex functions expressing the associ-
ation between the input data and a response variable [31, 35]. In
our case, the input or predictor variables are the genotypes of the
individuals and the response variables are observed phenotypes,
environmental values, geographic locations or reduced features
describing genetic structure. In what follows, we use the term
traits to refer to these response variables.

Neural networks are closely related to standard regression; a
linear regression fits a hyperplane to the data, while a neural
network fits a space of hyperplanes in a transformed space, which
allows it to be nonlinear. However, the increased model complex-
ity of DNNs makes them more prone to overfitting than standard
linear regression models. Additionally, their lack of interpretabil-
ity has limited their use in population genetic applications. Here
we present an interpretable neural network-based framework
with adaptive hyperparameter optimization for detecting signa-
tures of natural selection. We use a multilayer perceptron (MLP),
which is composed of up to three layers of nodes (neurons)
with connections between layers but not between nodes within
a layer (Figure 1 and Supplementary Material). Connection edges
between nodes can have different weights and the main goal of
the MLP is to learn the weights that best describe the complex
function that associates inputs and outputs [36–38] by minimizing
the difference between the predicted and observed traits. Once
the optimal network is found, the weights connecting each input
node with the output node can be used to devise a test to identify
the loci that contribute the most to the trait under consideration.
The underlying rationale for this test is that the absolute values
of weights associated with the path linking an input node (i.e. a
locus) with the output can be used to estimate the importance of
an input variable [39, 40] (node or locus), which in turn is closely
associated with the effect size of a genetic variant. Loci with
extreme importance values are considered as outliers and good
candidates for being under the influence of natural selection.
Thus, the approach we implement test the null hypothesis that
the importance (effect size) of an SNP is zero. Full details of our
approach are provided in Methods and Supplementary Material.

Simulation study
We evaluated the performance of our method using simulated
data generated by Capblancq et al. [23] (datasets are available
from the Dryad Digital Repository at: https://datadryad.org/
review?doi=doi:10.5061/dryad.1s7v5). The simulations assume
a two-dimensional stepping-stone scenario and consider three
quantitative traits (QTs), each coded by a distinct set of 10 loci
(QTLs), resulting in a total of 30 causal SNPs, out of a total of 1000.
Trait values are calculated simply as the sum of genotypic values
of the causal loci. Each QT is influenced by environmental factors
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Figure 1. DeepGenomeScan framework. The first (input) layer receives the genotype matrix so that each of its input nodes contains the genotypes of all
sampled individuals at a single locus. The last (output) layer contains the predicted trait values. Between these two layers, there is one or more hidden
layers containing nodes that compute a nonlinear transformation of the previous layer outputs. Thus, the first hidden layer will transform the input
data and feed a signal to the second hidden layer, which in turn will apply a transformation and feed the resulting signal to the third hidden layer, and
so on and so forth until the last hidden layer, which will carry out a final transformation and feed the results (the predicted traits) to the output layer.
After model training, optimization and hyperparameter tuning, the weights connecting each input node with the output are used to calculate p-values
that are then used to produce a Manhattan plot. Note that all edges of the graph have associated weights but here we include only some of them to
avoid cluttering the figure.

having a distinct spatial pattern. QT1 is influenced by factors with
a quadratic spatial gradient, QT2 is influenced by factors with a
linear gradient, and QT3 is influenced by factors with a coarse
and patchy spatial pattern. There is a total of 10 environmental
factors falling into one of these three categories (Supplementary
Figure S2). Further details of the simulation approach are provided
in Supplementary as well as in ref. [23].

We benchmarked the performance of our method with those
of two recently proposed machine learning-based approaches:
pcadapt [41] and RDA [23]. The pcadapt carries out a PCA of
the genotype matrix and identifies outliers loci that have an
unusually strong correlation with the top PCs, which explain most
of the genetic differentiation [14]. RDA is an extension of multiple
regression to the modelling of multivariate response data. It can
be considered as a PCA constrained by environmental variables
[25] as the PCA in this case is carried on the fitted values of
a multivariate linear regression of the genotype matrix on the
environmental variables. In other words, RDA detects the loci
linearly associated with environmental variables by projecting
the genetic variation between individuals that is explained by
environmental data on a reduced space [23]. Figure 2 presents
these results in terms of power (proportion of true positives), false
discovery rate (FDR) and false-positive rate (FPR or type I error).
Using a threshold p = 10−8, as typically done in GWAS, our method
has high power to detect all QTL types with a small FDR (0.117)
and FPR (0.003). On the other hand, pcadapt and RDA have no
power to detect loci associated with QTs 1 and 3, and very low
power to detect those associated with QT2 (although they have
very low error rates; Figure 2A–C). QQ plots (Supplementary Figure
S3) and Manhattan plots (Figure 3) suggest using a threshold of
0.001 for pcadapat and RDA and a threshold of up to 10−10 for
DeepGenomeScan when controlling for FPR lower than 0.005.
Using a less stringent threshold for pcadapt and RDA (P = 0.001)
but keeping P = 10−8 for DeepGenomeScan still leads to a better
performance of our method in terms of power when compared

to the other two methods (Figure 2D) and also in terms of FDR
and FPR when compared to pcadapt (Figure 2E and F). Increasing
the stringency of the test for DeepGenomeScan to the P = 10−10

lowers the FDR of our method, making it similar to that of RDA
while still having the highest power to detect QTL1 and QTL3
(Figure 2G–I). Overall, all three methods have high power to detect
loci associated with QT2, which is influenced by a linear selective
gradient. However, DeepGenomeScan with a threshold P =10−10

was the best for detecting QT1 and QT3 loci, which are influ-
enced by nonlinear selection patterns (Figure 2G). In all cases,
DeepGenomeScan outperforms both pcadapt and RDA in terms of
statistical power while controlling the type I error. In particular,
DeepGenomeScan increases statistical power, on average, by up
to 47.25% compared with pcadapt, and up to 18.35% compared
to RDA under nonlinear environmental gradient selection (QT1
and QT3). Similar results were obtained when we used q-value
thresholds (Supplementary Figures S4 and S5). The higher power
of DeepGenomeScan to detect loci under nonlinear selection
patterns is expected as neural networks can model nonlinear
functions while pcadapt and RDA only consider linear functions.

Application to a real data set
A common and longstanding framework to study the action of
natural selection is to focus on clinal variation in phenotypic
traits or allele frequencies along environmental gradients [42].
One approach to detect genomic regions under selection in these
clinal variation scenarios is to identify loci exhibiting extreme
frequency gradients across geographic space [34]. The underlying
assumption of this approach is that the environmental gradient
is continuous, leading to a monotonic but not necessarily linear
change in allele frequency or phenotype. Although there may be
several examples of such geographic variation, spatial patterns
in selective pressures and the associated allele frequency can
be non-monotonic. For example, it is possible that the maxi-
mum allele frequency is located in the middle of the geographic
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Figure 2. Performance of pcadapt, RDA and DeepGenomeScan (DNN) under different P-value thresholds. (A–C) P = 10−8 for all three methods; (D–F)
P = 0.001 for pcadapt and RDA and P = 10−8 for DeepGenomeScan; (G–I) P = 0.001 for pcadapt and RDA and P = 10−10 for DeepGenomeScan. Error bars
indicate the standard deviation and letters are used to indicate the statistical significance of the difference in performance based on a t-test with P <

0.01. Panels A, D and G present the power to identify loci underlying each quantitative trait separately (QT1–3). All other panels present the overall FDR
and FPR (across all three types of QTLs). All estimates were based on 100 simulated datasets.

region under study [34]. As our simulations show, our approach is
capable of identifying genomic regions subject to such nonlinear
selection patterns.

In principle, approaches focused on clinal spatial patterns
require the geographic coordinates of each individual sample,
which is not always available. A potential solution to this problem
is to carry out a PCA on the genotype matrix and use the first
two PC axes as surrogates for geographic coordinates [43–45]. This
approach, however, is based on a linear combination of genotypes
and can lead to poor inference of spatial locations of admixed
individuals [34]. A recently developed model-based approach can

be used to overcome this issue [34] but it requires the assumption
of a smooth monotonic function to describe allele frequency
behaviour as a function of geographic location, which may not be
appropriate in all cases. Our implementation of DeepGenomeS-
can allows the use of a more general dimensionality reduction
approach, kernel local discriminant analysis of principal com-
ponents (KLFDAPC [46]; Supplementary Material) when spatial
coordinates are not available.

Here we use a human dataset to determine if our approach
can uncover new regions of the human genome that may be
under the influence of nonlinear spatial selection patterns. We
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Figure 3. Manhattan plots of the results obtained with (A) pcadapt, (B) RDA and (C) DeepGenomeScan (DNN) for one simulated data set. Note that the
scale of the y-axis in C differs from that used for A and B. The threshold for pcadapt and RDA is set to 0.001 and a threshold for DeepGenomeScan is set
to 10−10.

applied DeepGenomeScan to European individuals from the Pop-
ulation Reference Sample (POPRES) [44, 47] dataset using previ-
ously defined geographic coordinates and then using the two first
reduced features from a KLFDAPC analysis. POPRES represents
an excellent example of human genetic variation aligning with
geography [44]. The dataset contains a total of 3192 European
individuals genotyped at 500 568 loci using the Affymetrix 500 K
SNP chip. Details about data filtering steps are provided in Online
Methods.

We calculated p-values for each SNP (see Online Methods
for details) and obtained a genomic inflation factor GIF = 1 for
this data set. Using a threshold P = 10−10 (Supplementary Figure
S6), the analysis using geographic coordinates as the response
variables detected 122 outlier SNPs located within the coding
region of 33 known genes. The full list of genes we identified,
and their chromosome positions are provided in Supplementary
Table S1. Consistent with previous widely reported regions under
selection, our method detects strong signals at the LCT region
on chromosome 2, the ADH1C region on chromosome 4, the HLA
region on chromosome 6, as well as the OCA2 and the HERC2
region on chromosome 15 (Figure 4 and Supplementary Table S1).

Besides the well-known genes under directional selection,
our method also detects some disease-related genes that
exhibited extreme variation across geographic space but were
not identified by SPA [48] and other popular methods such iHS
[49], Fst [50], Bayenv [21] when applied to the same database
(cf., Supplementary Table S4 in ref. [34]); these include MGAT5,
TMEM163, ACMSD, CCNT2, MAP3K19, R3HDM1, UBXN4, MCM6,
DARS1, EHMT2, and CFB (Supplementary Table S1). For example,
MCM6 is a regulatory element that controls the expression of
the LCT gene. The MGAT5 gene (alpha-1,6-mannosylglycoprotein
6-beta-N-acetylglucosaminyltransferase) is one of the most
important enzymes involved in the regulation of the biosynthesis
of glycoprotein oligosaccharides and is associated with invasive
malignancies and sclerosis [51–53] as well as visceral fat in
women [54]. The TMEM163 gene (transmembrane protein 163), is

associated with Parkinson’s disease, ischemic stroke and coronary
artery disease [55, 56]. The ACMSD gene (aminocarboxymuconate
semialdehyde decarboxylase) is associated with Parkinson’s
disease [55] and childhood obesity [57]. There are several other
outlier SNPs detected by our method on chromosome 2, 4, 6, 10
and 11 (Supplementary Table S1) that are not within known genes.
However, they may be linked to regulatory genes and, therefore,
are of interest for human genetic studies.

In the analysis where we replaced the original geographic
coordinates with the first two reduced features obtained from
KLFDAPC, we first calculated the correlation between the first
two reduced features and the original geographic coordinates. We
compared these results to those of a similar analysis using the
first two PC axes obtained from a PCA of the genotype matrix.
The results confirm that KLFDAPC provides better estimates of
geographic location than PCA (see Figure 4A and Supplementary
Figure S7), as previously demonstrated [46].

The genome scan based on the first two KLFDAPC reduced
features identifies a somewhat smaller number of outlier SNPs
(116 loci, in 34 known genes) than when using geographic coor-
dinates (Figure 4B and C and Supplementary Table S2). However,
the log10 (p-values) of the significant loci detected from these two
different strategies showed a high correlation (r = 0.995, P < 2.2e-
16; Supplementary Figure S8). 88% of the outliers detected in this
analysis were also identified by the analysis based on geographic
coordinates (102 shared loci). This analysis also detected well-
known selected genomic regions (LCT, HLA, ADH1, HERC2; Sup-
plementary Table S2). However, there were six genes that were
not identified when using latitude and longitude (Supplementary
Table S3). This group includes genes associated with cancer (e.g.
AK5), diabetes mellitus (e.g. HSPA1L, HCG26, BAG6, APOM), and
a gene of unknown function, LOC101928978. On the other hand,
there are also six genes that were not identified in this analysis but
were highlighted by the analysis based on geographic coordinates.
This group includes genes associated with pathogen recognition
and activation of innate immunity (e.g. TLR10), speech-language
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Figure 4. Spatial genetic structure of European populations and signals of selection detected by DeepGenomeScan. (A). Spatial genetic structure of
European populations inferred via KLFDAPC with a σ = 5. (B). Manhattan plot indicating loci under spatial selection obtained from DeepGenomeScan
using geographic coordinates as the response variables. (C). Manhattan plot indicating loci under spatial selection obtained from DeepGenomeScan
using inferred spatial genetic structure (the first two reduced features of KLFDAPC) as the response variables. The outliers in B–C were identified with a
threshold of P =10−10. The top hits are shown in panels B and C with their dbSNP Reference ID (rs ID). Country abbreviations: AL, Albania; AT, Austria;
BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH, Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; ES, Spain; FR, France; GB, United
Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; MK, Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal;
RO, Romania; RS, Serbia and Montenegro; RU, Russia; Sct, Scotland; SE, Sweden; TR, Turkey; YG, Yugoslavia. A full list of outlier loci can be found in
Supplementary Tables S1 and S2.

disorder 1 (e.g. FOXP2), skin and eye colour (e.g. OCA2), expres-
sion of gamma-Glutamyltransferase (SOX9-AS1), bipolar disease
or neuropsychiatric disorders (e.g. CDH7), as well as a gene of
unknown function, LOC105373760 (Supplementary Table S4).

Discussion
In this study, we present DeepGenomeScan, a new deep learning
method that can scan the genomes to identify loci under the
influence of directional selection. Although model-based genome
scans are still in use, they are increasingly being replaced by
non-parametric methods such as pcadapt [14] and RDA [23].
However, both approaches have their shortcomings: pcadapt can-
not explicitly associate those loci with environmental variables
that may underlie the selective pressure [23], and RDA cannot
detect associations influenced by nonlinear environmental gradi-
ents (cf., Figure 2). DeepGenomeScan overcomes these limitations
by leveraging the ability of neural networks to model nonlin-
ear functions. We found that DeepGenomeScan outperformed
pcadapt and RDA-based genome scans in detecting signatures
of selection under various spatial selection patterns. Markedly,
DeepGenomeScan increases statistical power by up to 47.25%
under nonlinear environmental selection patterns (quadric envi-
ronment gradients and grained heterogeneous spatial patterns).
We applied DeepGenomeScan to POPRES [47] dataset to detect sig-
nals of natural selection. DeepGenomeScan identified a number
of well-known genes under selection in the European population
(e.g. LCT, HLA, ADH1, HERC2 and OCA2), as well as a number
of previously unreported genes putatively under selection; these
new candidate genes could not be identified by SPA [48], iHS
[49], Fst [50] and Bayenv [21] when applied to the same dataset.
Presumably, some of these genes were not previously detected
because they are not subject to linear and monotonic selection
gradient in space. Some of these genes have also been linked to
complex diseases such as Parkinson’s, obesity or various types of
cancer, suggesting that natural selection plays a role in shaping
the disease susceptibility of modern day human populations.

The insight upon which our method relies is the idea
that we can use the genotypes of individuals to predict any
associated trait, not limited to just their phenotype but also their

spatial location or the environmental attributes of the habitat
they live in. Intuitively, the type of functions that can be used
to describe the association between genotypes and any of these
dependent variables is likely to be radically different depending on
the ‘trait’ under consideration. Therefore, no single model-based
approach can be used to take advantage of the above-mentioned
insight. Additionally, no single model-free statistical method
can be used to approximate very complex nonlinear functions
linking genotypes and these disparate traits. In contrast, Deep
Neural Networks can approximate arbitrarily complex nonlinear
functions linking dependent and predictor variables [31]. For
example, we applied our method to link genotypes to proxies
of spatial locations based on the reduced features obtained
from KLFDAPC, a nonlinear feature reduction method that has
been shown to outperform PCA in recapitulating individual
geography [46]. These characteristics allows DeepGenomeScan
to identify loci associated with very complex spatial selection
patterns and thus can be an invaluable tool for population
and evolutionary genomics applications. While we focused on
the genome-scan applications to detect signatures of natural
selection, we note that our method can also be used to identify
genomic regions associated with phenotypic traits (i.e. GWAS). In
the Supplementary Material, we present a preliminary evaluation
of the performance of DeepGenomeScan when applied to detect
genomic regions associated with QTs. This was done using
the same set of simulations described for the genome-scan
application but in this case, the response variable was a QT
that influenced fitness (see details in Supplementary Methods).
The results showed that DeepGenomeScan can achieve high
power (80%) to identify QTLs under a wide range of spatial
scenarios (linear, nonlinear and coarse-grained heterogeneous
environments) while maintaining very low error rates (FDR < 0.12;
FPR < 0.001; see Supplementary Figures S9 and S10). A compre-
hensive evaluation on this framework in a more realistic GWAS
setting needs to be tested independently, but is outside the scope
of the current paper.

Our approach represents an integration of GWAS and genome
scan approaches in the specific case of spatially structured pop-
ulations. More precisely, it is focused on traits that vary spatially.
Thus, it is not well adapted to study global selective sweeps unless
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they are at an early stage where selected variants still exhibit
clinal variation. Similarly, DeepGenomeScan is not appropriate
to carry out GWAS of panmictic populations. On the other hand,
it is perfectly suited to the study of local adaptation. There are
three questions that need to be answered in this context: (i) what
are the environmental drivers of natural selection? (ii) what are
the phenotypic traits upon which selective pressures act? and (iii)
what are the genomic regions underlying those adaptive traits? As
a genome-scan method, DeepGenomeScan can identify the envi-
ronmental drivers of natural selection while as a GWAS tool, it can
identify the genomic regions underlying adaptive traits. Therefore,
it can answer questions (i) and (iii). Question (ii), however, would
require the application of a quantitative genetic method to iden-
tify phenotypic traits that are good candidates for being involved
in local adaptation to heterogenous environmental conditions. In
this regard, we note that a recent review [29] has highlighted the
fact that the study of local adaptation requires combining pop-
ulation genomics and GWAS methods in the context of common
garden experiments. Therefore, our unified approach provides an
excellent tool to implement such frameworks.

It is noted that DeepGenomeScan significantly improved the
power of detecting selection under nonlinear environmental gra-
dients. Although less well studied empirically, nonlinear envi-
ronmental selection gradients (e.g. coarse-grained heterogenous
selection) with no clear spatial pattern has been an important
focus of theoretical studies aimed at explaining observed patterns
of genetic variation [58–63]. This scenario is particularly relevant
to studies of protected polymorphisms [59, 61, 62] and hard versus
soft selection [60]. Additionally, the importance of this type of
selection pattern is particularly relevant for genome-wide asso-
ciation studies focused on diseases and phenotypic characters
that do not exhibit clear spatial patterns. Deep learning genome-
scan methods capable of uncovering genomic regions associated
with this type of selection pattern can, therefore, provide a more
general understanding of how prevalent these particular mecha-
nisms are.

There are still several methodological challenges faced when
implementing deep learning methods, which are associated with
the computational cost of hyperparameter tuning and neural net-
work training. However, recent adaptive resampling algorithms
(cf., ref. [32]), which we implemented in our software, carry out an
efficient exploration of hyperparameter space, allowing the use of
deep learning to analyze large population genomic data sets.

Although the application of deep learning to population genet-
ics problems is still in its infancy [32], there are already some
examples of such applications [36, 64–69]. One of these applica-
tions is aimed at distinguishing between hard and soft sweeps and
simultaneously incorporating the confounding effects of demo-
graphic history [36]. This application involves using simulated
data generated under predefined evolutionary models. A draw-
back of this strategy is that it introduces model assumptions
into a computational framework that could be completely free of
them. Therefore, it introduces the same model mis-specification
issues that affect statistical inference based on generative models
[70]. This drawback is absent when the objective is to assign
individuals to geographic locations as in ref. [64] or when scanning
the genome in search of outlier loci, as in our study. Overall,
DeepGenomeScan fully exploits the flexibility and power of deep
neural networks, which makes it applicable to a wide range
of problems including identification of genomic regions associ-
ated with diseases or economically important phenotypic traits,
assignment of individuals to geographic locations, or identifica-
tion of environmental factors associated with selective pressures.

Methods (online methods)
In what follows we first describe the architecture of the deep
neural network and its implementation. We then describe the
statistical approach to identify SNPs that are located in regions
subject to positive (local adaptation or selective breeding) or
negative selection (diseases). Finally, we explain the simulation
approach used to test performance and the dataset used to pro-
vide a practical application.

MLP architecture
In this study, we constructed an MLP network with three hidden
layers (Figure 1 and Supplementary Figure S1). To describe this
MLP, we first assume that the genotypes of the n sampled indi-
viduals at p loci are described by a n × p matrix, x = (xij), and
are coded by the count of reference alleles, which in the case of a
biallelic marker takes values xij = 0, 1, 2, where i = 1, 2, . . . , n, and
j = 1, 2, . . . , p. Furthermore, the trait values of all individuals are
arranged in a n × 1 vector y = (yi). Then the input layer of the MLP
consists of p nodes, each one representing a distinct locus. The
information contained in node j comprises the individual geno-
types at locus j, x∗j = (x1j, · · · , xnj). This information is transformed
into a signal which is fed to the first hidden layer. The signal
received by each node k = 1, 2, . . . , K1 of the first hidden layer ŝk1 =
(ŝk1

1 , · · · , ŝk1
i , · · · , ŝk1

n ) represents a weighted nonlinear regression of
individuals’ trait values on their multilocus genotypes. Here, the
superscript k1 identifies the kth-node of the first hidden layer.
Each element ŝk1

i of the signal vector received by a node k of the
first hidden layer is given by

ŝk1
i = f1 (xi∗) = G

⎛
⎝ p∑

j=1

xijw
k1
j + bk1

⎞
⎠ = G

(
xi∗wk1 + bk1

)
, (1)

where wk1
j is the weight of locus j, bk1 is a scalar representing a

bias in the signal received by node k in the first hidden layer, and
G(·) is the activation function used to transform the information
sent by the input layer to the first hidden layer.

In a similar way, each node k of the second hidden layer will
take the output signal of all nodes of the first hidden layer and
apply a transformation before sending the signal to the third
hidden layer:

ŝk2
i = f2

(
ŝk1

i

)
= G

(
K1∑

m=1

ŝk1
i wk2

m + bk2

)
= G

(
f1 (xi∗) wk2 + bk2

)
(2)

. If there are only two hidden layers, then the neural network
is represented by f (x) = f2(f1(x)). In general, there can be an
arbitrary number L of hidden layers, each consisting of Kl nodes
and the signal generated by the last hidden layer is the vector of
predicted trait values, ŷ = (ŷi). Therefore, a MLP network can be
represented by

f (x) = f L(f L−1 (· · · f2 (
f1 (x)

))
, (3)

where fl(·) is the signal received by the lth layer.
Given the input data, i.e. the genotypes, and the observed trait

values, the neural network learns the weights
w = (w1, . . . , wL) with wl = (w1l, · · · , wKll) and biases b =
(b1, . . . , bL) with bl = (b1l, · · · , bKll) that best describe the
relationship between the inputs and the outputs by minimizing
the difference between predicted and observed trait values [71,
72]. These weights represent an essential element of our genome

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac354#supplementary-data
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scan method because they are used to identify outlier loci (see
below) using a procedure supported by previous studies [40, 73],
which show that the importance of a variable (locus) can be
estimated as the combination of the absolute values of weights
associated with the graph edges connecting the predictor variable
(locus) with the MLP output (predicted trait).

Implementation
DeepGenomeScan trains the deep neural network to estimate
the nonlinear function mapping genotypes to individual traits.
This process involves not only learning the vectors of weights
and biases by iteratively adjusting these parameters but also
the tuning of a large number of hyperparameters associated
with structural components of the model, which impact model
performance. These include those determined by the network
architecture (activation functions, number of neurons per hidden
layer) and those included in the optimization algorithm used for
training (e.g. learning rate, batch size). For optimization, we used
resilient backpropagation [74] with weight backtracking when
analyzing both simulated and real datasets. However, the tuning
algorithm used depended on the size of the input data. In the
case of simulated datasets, which were of limited size, we used
a full resampling strategy corresponding to Algorithm 1 in [32]
based on a repeated k-fold cross validation with k = 5 and five
repetitions. In the case of the large POPRES dataset, we used
an adaptive resampling approach corresponding to Algorithm 2
in [32], which incorporates futility assessment into the model
tuning process. The resampling approach in this case was the
same as in the analysis of simulated data (five replications of a
fivefold cross-validation). Detailed information about the settings
used for the optimization and tuning algorithms is presented in
Supplementary Notes.

Identification of outlier loci
As mentioned before, the SNP importance can be estimated as
combinations of the absolute values of connection weights [40,
73]. This is done once the optimal model is found. We used
Olden and Jackson’s [33] method, which is based on Garson’s
[75] algorithm to calculate the relative importance for each input
node but adds a randomization step to identify non-significant
connection weights.

DeepGenomeScan carries out separate runs for each trait and
generates a vector of SNP importance for each of them. Given
T traits, the position of each SNP in trait space is described by
its associated vector of importance values and, therefore, it is
possible to calculate the Mahalanobis distance between the focal
locus and all other loci. Our approach leads to an intuitive defi-
nition of outlier loci as any locus with an ‘extreme’ Mahalanobis
distance. Since the squared Mahalanobis distance follows a chi-
squared distribution with T degrees of freedom, the P-values
associated with each SNP can be obtained from a χ2

T distribution
[76] and used for identifying ‘outlier’ loci. This approach relies
on the assumption that variables used to calculate Mahalanobis
distance follow a normal distribution. Therefore, we used the
arcsine transformation to normalize the weights before calcu-
lating the Mahalanobis distance. We set the p-value threshold
by controlling FDR [77] under 0.1 with QQ plots as additional
references [78]. SNPs at the point where p-values deviate from
the expected distribution on the QQ plot are considered as highly
significant SNPs [78]. Based on this principle, we determined the
P-value threshold for the analysis of a real dataset described
below.

Human dataset
We applied DeepGenomeScan to European populations from the
POPRES project [47]. This project consists of 6000 individuals from
worldwide populations. The subsample of European populations
contains a total of 3192 individuals genotyped at 500 568 loci
using the Affymetrix 500 K SNP chip. The sample collections
and genotyping for POPRES are described in [47]. We removed
individuals from outside of Europe and individuals whose
grandparents had different geographic origins based on the
criteria used by [44]. We also removed samples that only have
one individual per country, such as Denmark, Finland, Latvia,
Ukraine, Slovakia and Slovenia. Geographic coordinates for each
individual corresponded to the central point of the geographic
area of the individual’s country of birth.

We removed the monomorphic SNPs and filtered out auto-
somal biallelic SNPs with a minor allele frequency (MAF) below
5%, and a missing rate of 5% or more. In the end, we kept 1,
382 individuals from 32 countries carrying 283, 499 autosomal
SNPs. We annotated and updated the variant reference ID based
on the comprehensive report of short human variations from the
human variation database (dbSNP, GRCh37p13, b151, release 2018,
https://ftp.ncbi.nih.gov/snp/organisms/human_9606/VCF/) using
bcftools [79].

Data and code availability
The simulation data used in this study are available at https://
datadryad.org/review?doi=doi:10.5061/dryad.1s7v5.

The datasets used for the analyses described in this manuscript
were obtained from dbGap at https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000145.v4.p2 through
dbGap accession number phs000145.v4.p2 (request approval
#90291–1).

The DeepGenomeScan R code is hosted on GitHub at https://
github.com/xinghuq/DeepGenomeScan. The scripts used in this
study are available at https://github.com/xinghuq/DeepGenomeSc
an/tree/webpkg/DeepGenomeScan_simulation%2BPOPRES. The
KLFDAPC package is available at https://xinghuq.github.io/
KLFDAPC/.
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