
cancers

Article

Functional Dependency Analysis Identifies Potential
Druggable Targets in Acute Myeloid Leukemia

Yujia Zhou 1,† , Gregory P. Takacs 1,† , Jatinder K. Lamba 2 , Christopher Vulpe 3

and Christopher R. Cogle 1,*
1 Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida,

Gainesville, FL 32610-0278, USA; yzhou1996@ufl.edu (Y.Z.); gtakacs@ufl.edu (G.P.T.)
2 Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida,

Gainesville, FL 32610-0278, USA; JLamba@cop.ufl.edu
3 Department of Physiological Sciences, College of Veterinary Medicine, University of Florida,

Gainesville, FL 32610-0278, USA; cvulpe@ufl.edu
* Correspondence: Christopher.cogle@medicine.ufl.edu; Tel.: +1-(352)-273-7493; Fax: +1-(352)-273-5006
† Authors contributed equally.

Received: 3 November 2020; Accepted: 7 December 2020; Published: 10 December 2020
����������
�������

Simple Summary: New drugs are needed for treating acute myeloid leukemia (AML). We analyzed
data from genome-edited leukemia cells to identify druggable targets. These targets were necessary
for AML cell survival and had favorable binding sites for drug development. Two lists of genes
are provided for target validation, drug discovery, and drug development. The deKO list contains
gene-targets with existing compounds in development. The disKO list contains gene-targets without
existing compounds yet and represent novel targets for drug discovery.

Abstract: Refractory disease is a major challenge in treating patients with acute myeloid leukemia
(AML). Whereas the armamentarium has expanded in the past few years for treating AML,
long-term survival outcomes have yet to be proven. To further expand the arsenal for treating AML,
we searched for druggable gene targets in AML by analyzing screening data from a lentiviral-based
genome-wide pooled CRISPR-Cas9 library and gene knockout (KO) dependency scores in 15 AML
cell lines (HEL, MV411, OCIAML2, THP1, NOMO1, EOL1, KASUMI1, NB4, OCIAML3, MOLM13,
TF1, U937, F36P, AML193, P31FUJ). Ninety-four gene KOs met the criteria of (A) specifically
essential to AML cell survival, (B) non-essential in non-AML cells, and (C) druggable according to
three-dimensional (3D) modeling or ligand-based druggability scoring. Forty-four of 94 gene-KOs
(47%) had an already-approved drug match and comprised a drug development list termed “deKO.”
Fifty of 94 gene-KOs (53%) had no drug in development and comprised a drug discovery list termed
“disKO.” STRING analysis and gene ontology categorization of the disKO targets preferentially
cluster in the metabolic processes of UMP biosynthesis, IMP biosynthesis, dihydrofolate metabolism,
pyrimidine nucleobase biosynthesis, vitellogenesis, and regulation of T cell differentiation and
hematopoiesis. Results from this study serve as a testable compendium of AML drug targets that,
after validation, may be translated into new therapeutics.

Keywords: acute myeloid leukemia; CRISPR; screening; target identification

1. Introduction

Acute myeloid leukemia (AML) is challenging to treat due to its refractory nature.
Despite achieving initial morphologic remissions in 50–70% of patients, the 10-year disease free
survival rate is 16.6% in younger AML patients (<60 years old) and 2.4% in older AML patients
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(≥60 years old) [1]. Between 2017 and 2019, eight new therapeutics were approved by the US FDA [2];
however, most of these new drugs were developed to target small subgroups of AML based on gene
mutations and their approvals were based on short-term clinical improvements such as morphologic
remissions and long-term outcomes have yet to be determined. Given the relapsing nature of AML,
new therapeutic strategies are needed.

Although AML can be subdivided into subgroups defined by cytogenetic abnormalities and/or
genetic mutations, we hypothesized that AML in aggregate depend on a common core of functions.
For example, in the clinic we already use pyrimidine analogs as backbone drug agents for the treatment
of all AML patients, based on all AML’s essential need for DNA synthesis. We speculated that there may
be additional common functions in AML that have yet to be fully investigated. However, searching for
leukemia-essential functions has been challenging. In contrast, the scientific strategy of biological
reductionism—for example, focusing on FLT3 mutant AML—is generally easier to understand and
requires fewer resources than investigating for common essential functions. Major challenges in
finding common AML functions is lack of a variety of specimens and culling leukemia-essential
from cell-essential. Long-term, inhibiting leukemia-essential functions may be applicable to a greater
number of AML patients compared to targeted therapies.

Loss-of-function screens in well annotated cell lines represent a feasible experimental approach
to interrogate gene function and cancer cell dependency [3]. The Broad Cancer Dependency Map
Consortium (DepMap) is the most comprehensive lentiviral-based genome-wide pooled CRISPR-Cas9
screen designed for this purpose, including screens of 17,634 genes across 1714 cancer cell lines in the
Avana 19Q2 library [4]. Additionally, CanSAR Black, the largest database for cancer drug discovery,
contains 215,178 experimentally derived protein–ligand interactions and 111,414 three-dimensional (3D)
molecular models which may be used to assess possible drug-gene interactions [5]. The combination
of identified essential genes and prospective drug-gene interactions may then be compared to
characteristics of existing therapeutic targets using the Drug Gene Interaction Database (DGIdb),
which annotates known drug-gene interactions [6].

We hypothesized that a safe and effective drug target in AML is necessary for AML cell survival
(essential), non-essential to non-AML cells (specific), and can be inhibited by drugs (druggable)
(Figure 1A). Thus, we designed computational screening methodology combining the DepMap,
canSAR Black, and DGIdb databases to identify novel druggable targets for the treatment of AML.
Gene ontology and protein–protein interaction analysis were also conducted on the druggable target
list to identify biological processes essential for AML cell survival.
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Figure 1. Experimental pipeline for identifying essential and druggable genes in acute myeloid leukemia.
Color scheme for gene grouping is consistent throughout panels. (A) Venn diagram modelling the
ideal characteristics for a safe and effective drug target. (B) Public Avana 19Q2 CRISPR Library was
curated from the Broad Cancer Dependency Map Consortium (DepMap) consortium to identify gene
dependencies in acute myeloid leukemia cell lines. Essentiality, specificity, and druggability thresholds
were set at a high specificity (0.90) by receiver–operator curve (ROC) analysis. Genes not targeted by
existing approved or experimental drugs are curated in disKO for drug discovery.
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2. Methods

2.1. Examination of AML Dependencies

The DepMap Avana 19Q2 CRISPR screening library contained CRISPR-Cas9 dropout data for
17,634 genes in 15 AML cell lines (HEL, MV411, OCIAML2, THP1, NOMO1, EOL1, KASUMI1,
NB4, OCIAML3, MOLM13, TF1, U937, F36P, AML193, P31FUJ) within a library of 1714 cell lines [3].
DepMap calculates dependency scores as the probability that a gene is a member of the distribution of
genes essential for cell survival versus a member of the genes composing the non-essential distribution
for a given cell line. Dependency scores are specific to each cell line and its respective genome. Scores are
additionally processed using CERES, a computational method accounting for copy-number-specific
effects and variable sgRNA activity, to reduce false positives [7]. DepMap identified common essential
genes, hypothesized to be essential for all human cell viability [8], as the top depleting genes in
90% of cell lines [4]. AML specific data were downloaded and tabulated in IBM SPSS Statistics for
Windows (IBM Corp., Armonk, NY, USA). Descriptive statistics were calculated for measuring gene
dependency across all AML cell lines. Mean AML dependency was calculated as the average of a
gene’s dependency values in AML cell lines. Maximum AML dependency was defined as the gene’s
greatest dependency value from any AML cell line. We also calculated AML-specific Z-scores for each
gene as the standardized difference between mean AML dependency in 15 AML cell lines and mean
dependency in all cell lines in Avana 19Q2 data set.

2.2. Assessing AML Gene Druggability

CanSAR Black was queried on 20 June 2020 to obtain druggability measures for each gene
product identified above, drawing from experimentally derived ligand-based drug interactions and
X-ray crystallography derived computational 3D protein-drug binding in the Protein Data Bank
(PDB) [9]. Unmatched queries (n = 1585, 8.988%) were assigned null scores and excluded from
screening. 3D measurements included number of successful binding models and percentage of models
successful at binding for both “druggability” and “tractability”, qualities defined by CanSar but are
herein discussed synonymously as druggability. Ligand-based measurements included standardized
scores and percentiles, which are directly related. As a result, they were not compared against each
other and only the standardized ligand-based score was used.

2.3. Determining AML Drug Target Screening Characteristics

Utilizing the Drug Gene Interaction Database (DGIdb) accessed on 20 June 2020, we constructed
a list of all known and predicted drug-gene interactions for the genes in Avana 19Q2 [6]. This list
was further parsed into those gene products inhibited (i.e., inhibitors, inverse agonists, antagonists,
negative modulators, binders, and blockers) by drug therapy. We further divided these druggable
gene products into US FDA-approved AML drug therapy, experimental or US FDA-approved drug
therapy for all cancers, and US FDA-approved drug therapy for all diseases. Possible measures
for ranking drug targets by essentiality (mean vs. max dependency), specificity (common essential
genes vs. AML-specific Z-score), and druggability (CanSAR druggability vs. tractability, raw number
vs. percentage) were compared in IBM SPSS Statistics software with appropriate parametric and
nonparametric tests.

2.4. Screening Genes for AML Drug Development

Cutoff values for criteria measurements of essentiality, specificity, and druggability, discussed in
results, were set at an estimated specificity of 0.90 based on receiver–operator curve (ROC) analysis
of the three drug categories in IBM SPSS. The genes meeting both criteria (i.e., AML specificity and
druggable) but not currently targeted by a US FDA-approved or experimental drug therapy formed
a drug discovery knock-out list termed “AML disKO.” Genes targeted by existing drugs formed a
drug development knockout list termed “AML deKO”. An analysis of functional interactions was
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conducted using StringDB [10], on the top 94 druggable AML-specific essential genes (including disKO
and deKO lists). Minimum required interaction scores were set at high confidence (0.700) and utilized
experiments, databases, co-expression, neighborhood, gene fusion, co-occurrence, and text mining to
identify interactions. Network display was simplified by hiding disconnected nodes. Markov cluster
algorithm (MCL) network clustering (inflation parameter: 3) was applied to the analysis. Gene ontology
analysis in StringDB and PANTHER [11] was also conducted on the top 94 druggable AML-specific
essential genes to identify enriched biological functions. PANTHER and StringDB were accessed on 24
August 2020.

3. Results

3.1. Identifying AML-Specific Essential Gene Characteristics

A stepwise method was used to identify essential, specific, and druggable genes for the treatment
of AML (Figure 1B). First, gene dependency scores from Avana 19Q2 data set for 15 AML cell
lines were obtained. We noted that mean dependency scores from all 15 AML cell lines followed a
bimodal distribution reflecting a division between essential and non-essential genes in AML with
the majority of genes showing low mean dependency scores (<0.2) and a smaller subset showing
high dependency (>0.95) in AML cells (Figure 2A). However, this distinction inflates the importance
of the mean dependency score because some genes with a low mean AML dependency scores have
a high maximum AML dependency score (upper left quadrant of Figure 2B), likely reflecting the
genetic heterogeneity of the AML cell lines tested. Whereas, the mean score and maximum score are
informative, neither one alone can be used to identify AML-specific essential genes.

Next, we examined the AML dependency scores of a set of gene products currently targeted by
US FDA-approved AML drug therapy. Non-parametric Mann–Whitney U-tests comparing both the
mean and maximum AML dependency scores were significantly greater (p < 0.001) for these existing
leukemia chemotherapeutic drug targets (AML Targets) as compared to a set of all other genes from
the Avana 19Q2 dataset (Non-AML Targets) (Figure 3A,B), with a greater difference in maximum AML
dependency. In contrast, similar examination of gene products targeted by all antineoplastic therapy
or by other FDA-approved drugs did not identify a significant difference (Tables S1–S8). These results
suggest that existing AML drugs preferentially inhibit genes identified as essential to AML in DepMap,
whereas other drug therapies do not. However, the set of genes inhibited by existing AML drugs could
represent either common essential genes (required in all cell lines) or AML-specific essential genes.
In fact, non-parametric Mann–Whitney U-tests comparing mean and maximum AML dependency
scores in gene lists were significant (p < 0.001) for common essential genes (Figure 3C,D), with a
greater difference in mean dependency. This could reflect the role of high mean dependency scores for
identifying common essential genes, but it also suggests that inhibition of common essential genes is a
common mechanism of action in AML drug therapies. Indeed, our results show that AML drug targets
with currently approved therapeutics were associated with inhibition of common essential genes while
cancer drug targets and other-disease drug targets with approved therapeutics were not associated
with inhibition of common essential genes (Table 1 and Tables S9a–S11b). Together, our results show
that currently approved AML drugs inhibit AML-specific essential genes but also target common
essential genes required in many different cell types. This finding fits with the clinical experience of
AML drug therapies eliciting systemic toxicities. On a technical level, these results also indicate that
maximum AML dependency is a superior discriminator for identifying AML drug targets compared to
mean AML dependency, which is more likely associated with common essential genes. Furthermore,
high dependency scores in AML cell lines alone is an insufficient discriminator between AML-specific
drug targets and common essential genes.
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Figure 2. Mean and maximum gene dependency scores from Avana 19Q2 genes and acute myeloid
leukemia (AML) cell lines. (A) Histogram of dependency scores averaged from 15 AML cell lines from
Avana 19Q2 CRISPR Library. N = 17,634, Median = 0.04, Interquartile range = 0.01–0.14. Modes at 1.0
(essential) and 0.0 (non-essential) represent the ideal distributions of genes that AML cells depend on
or do not depend on, respectively, for cell growth and survival. (B) Data points (N = 17,634) represent
genes across 15 AML cell lines from Avana 19Q2. Maximum dependency scores for each gene are on
the y-axis and mean dependency scores are on the x-axis. Maximum dependency may exceed mean
dependency at all mean dependency values except 0.0 and 1.0. (C) Histogram of AML-specific Z-scores
for each gene, calculated as the standardized difference between mean dependency in 15 AML cell
lines and mean dependency in all cell lines in Avana 19Q2. The distribution is approximately normal
and positively skewed. The positive tail represents a population of genes which may be more essential
to survival of AML cells than to other cancer cells.
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Table 1. Contingency tables and Fisher’s Exact tests for association of common essential genes with
AML, cancer, and FDA drug targets. AML drug targets and common essential genes are significantly
associated (underlined), while cancer drugs and FDA approved drugs are not significantly associated
with common essential genes.

Fisher’s Exact Tests for Common Essential Genes by Gene List

Target List Common
Essential Genes

Non-Common
Essential Genes

Significance
(2-Sided)

AML Drug Targets

AML
Actual: 17 Actual: 39

p < 0.001
Expected: 6.7 Expected: 49.3

Other
Actual: 2108 Actual: 15,470

Expected: 2118.3 Expected: 15,459.7

Cancer Drug
Targets

Cancer
Actual: 18 Actual: 122

p = 0.806
Expected: 16.9 Expected: 123.1

Other
Actual: 2107 Actual: 15,387

Expected: 2108.1 Expected: 15,385.9

All FDA Drug
Targets

FDA
Actual: 104 Actual: 914

p = 0.069
Expected: 122.7 Expected: 895.3

Other
Actual: 2021 Actual: 14,595

Expected: 2002.3 Expected: 14,613.7

3.2. Identifying AML-Specific Essential Gene Characteristics

To identify AML-specific drug targets with reduced systemic effects, we developed a novel metric,
the AML Z-score. The AML Z-score for each gene represents the standardized difference between
mean dependency in 15 AML cell lines and mean dependency of all cell lines in the Avana 19Q2 data
set. AML-specific Z-score distributions were approximately normal and positive-skewed (Figure 2C).
The positive tail indicates genes that may be specifically essential for AML cell survival than other
cell types.

Independent samples t-tests comparing AML-specific Z-scores were significant (p < 0.01) only for
genes targeted by common essential genes and AML chemotherapy but not for FDA drug targets or
other chemotherapy targets (Figure 4). This indicates that a high AML-specific Z-score is selective
for AML drug targets, selective against common essential genes, and not selective for other drug
therapies. Common essential genes have significantly lower Z-scores among AML cell lines (Figure 4D),
demonstrating that AML cells have genetic dependencies distinct from other human cells which may
be exploited to produce AML-specific cell death. We concluded that the combination of high maximum
AML dependency and high AML-specific Z-score therefore is a superior discriminator for identifying
AML-specific drug targets.

3.3. Druggability as a Discriminator

We used the CanSAR Black database to evaluate the set of candidate AML targets for drug
development feasibility. The term “tractable” within CanSAR refers to high predicted efficacy
of drug-protein interactions whereas “druggable” also includes an assessment of safety based on
potential off-target interactions with related protein families [12]. For simplicity, we refer to both
qualities synonymously as druggability. Not surprisingly, all druggability measurements for gene
products targeted by FDA-approved drugs were significant (p < 0.001, non-parametric Mann–Whitney
U-test) compared to other gene products (Figure 5), with the number of 3D tractable structures
as the most discriminatory measure of druggability among 3D structure metrics. 3D and ligand
measurements from CanSAR Black are distinct methods for assessing druggability and yield different
results which do not always agree but serve similar purposes with comparable performance (Figure 5F).
Ligand-based measurements are experimentally derived but use a limited library of ligands and
proteins. 3D modelling is determined from a variety of flexible computational models but may not
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translate to experimental results. As a result, a high score in either measurement method was used to
screen for druggable genes.Cancers 2020, 12, x FOR PEER REVIEW 7 of 23 
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Figure 3. Boxplots and Mann–Whitney tests comparing AML cell line mean dependency and
maximum dependency measurements of known AML drug targets and common essential genes.
Outliers are displayed as circles (1.5*IQR) or asterisks (3*IQR). Maximum dependency is the best
discriminator between AML targets and other targets as measured by U-statistic. (A) Boxplot of
AML mean dependency in non-AML Avana 19Q2 targets versus AML drug targets. ∆Med. = 0.0952,
U = 673,434, two-tailed p < 0.001. (B) Boxplot of AML max. dependency in non-AML Avana 19Q2
targets versus AML drug targets. ∆Med. = 0.5714, U = 691,368, two-tailed p < 0.001. (C) Boxplot
of AML mean dependency in non-common essential Avana 19Q2 genes versus common essential
genes. ∆Med. = 0.8154, U = 32,825,327, two-tailed p < 0.001. (D) Boxplot of AML max. dependency
in non-common essential Avana 19Q2 genes versus common essential genes. ∆Med. = 0.8546,
U = 14,618,798, two-tailed p < 0.001.
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Figure 4. Paired histograms and independent t-tests comparing AML-specific Z-scores of AML drug
targets (red), FDA drug targets (red), cancer drug targets (red), and common essential genes (red) with
all Avana 19Q2 genes (blue). (A) Paired histogram of AML-specific Z-scores in non-AML Avana 19Q2
targets versus AML drug targets. ∆Mean Z = 0.4645, df = 17,632, t = 2.355, two-tailed p = 0.019. If equal
variances are not assumed, p = 0.059. (B) Paired histogram of AML-specific Z-scores in non-FDA
Avana 19Q2 targets versus FDA approved drug targets. ∆Mean Z = 0.0670, df = 17,632, t = 1.407,
two-tailed p = 0.159. (C) Paired histogram of AML-specific Z-scores in non-cancer Avana 19Q2 targets
versus cancer drug targets. ∆Mean Z = 0.0553, df = 17,632, t = 0.443, two-tailed p = 0.658. (D) Paired
histogram of AML-specific Z-scores in non-common essential Avana 19Q2 genes versus common
essential genes. ∆Mean Z = −0.4900, df = 17,632, t = −14.456, two-tailed p < 0.001.

3.4. Essential Gene List for AML Drug Discovery

ROC analysis determined the cutoff values and estimated sensitivity correlating with a
0.90 specificity for maximum dependency, AML-specific Z-score, and druggability (Table 2) estimated
from respective reference gene lists. From 16,049 genes with available dependency and druggability
data, 94 genes (0.6%) met all cutoff values and were judged as good targets for AML pharmacotherapy.
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Table 2. Cutoff values and estimated sensitivity for drug target screening. A specificity of 0.90 was
established as a cutoff. Cutoff values and sensitivity were calculated from ROC analysis by linear
interpolation of neighboring values if no data point was exactly 0.90. Reference gene lists were used as
the standard for determining AML drug target characteristics in ROC analysis.

Characteristic Reference List Measurement Cutoff Sensitivity

Essentiality AML Drug Targets AML Max.
Dependency 0.9361 0.309

Specificity Non-common
essential genes AML-Specific Z-Score 1.4268 0.178

Druggability (3D) FDA Targets Number of TracTable
3D Structures 4.0652 0.400

Druggability
(Ligand) FDA Targets Ligand-Based Score 0.8875 0.382

Fifty of these 94 gene products (53%) were not targeted by an existing or experimental drug
and were annotated in a list called AML discovery gene knockout set (AML disKO) (Table 3) which
represented candidate targets for drug discovery. The remaining 44 of 94 gene products (47%) were
targeted by existing or experimental drugs for any disease and annotated in a separate list called AML
developmental gene knockout set (AML deKO) (Table 4), representing targets for validation and/or
drug repurposing.

We note that while all gene products in disKO and deKO had a high Z-score indicating greater
mean dependency in AML cells than other cells, 56/94 (60%) are previously identified common essential
genes (red) while 38/94 (40%) are not common essential genes (blue). Targeting of the disKO common
essential genes (Table 3, red) may be a viable option but would be expected to have some systemic
toxicity; however, less than other common essential genes in non-AML cells. The disKO targets which
are not common essential genes (Table 3, blue) represent candidate genes in which inhibition would be
expected to have AML-specific effects with limited non-specific effects. The deKO genes, which met
identical screening criteria for AML drug characteristics, represent similarly promising targets for
repurposing existing drugs for AML.

3.5. Essential Physiologic Processes in AML

STRING analysis identified clustering around distinct protein interaction clusters (Figure 6).
Furthermore, this network of the top 94 druggable AML-specific essential genes had significantly
more interactions among themselves than would be expected for a set of proteins of similar size,
randomly selected from the human genome. Such an enrichment indicates that the proteins are
functionally connected as a group.

Pathway analysis conducted through STRING highlighted proteins among our top AML essential
genes, with enrichment in MAPK signaling (Figure 7A), JAK-STAT/PI3K-AKT signaling pathway
(Figure 7B), hematopoiesis, stem cell, and hemopoiesis (Figure 7C), and RUNX1 related pathways
(Figure 7D). PANTHER gene ontology analysis additionally identified top enriched biological
processes involving de novo uridine monophosphate (UMP) biosynthetic process, de novo inosine
5′-monophosphate (IMP) biosynthetic process, dihydrofolate metabolic process, de novo pyrimidine
nucleobase biosynthetic process, vitellogenesis, and positive regulation of CD8-positive/alpha-beta
T cell differentiation (Table 5). Together, these results show AML cell vulnerability within metabolic
processing and suggest that these enriched pathways are required for leukemia cell survival.
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Figure 5. Boxplots, Mann–Whitney tests, and ROC analysis comparing druggability measurements
for discriminating FDA drug targets. Outliers are displayed as circles (1.5*IQR) or asterisks (3*IQR).
3D Tractable structures is the best discriminator of FDA targets and other targets as measured by
U-statistic (among 3D measurements). (A) Boxplot of log number of 3D druggable structures associated
with non-FDA Avana 19Q2 targets versus FDA drug targets. ∆Med. = 1, U = 10,520,448, two-tailed
p < 0.001. (B) Boxplot of 3D structures druggable percentage associated with non-FDA Avana 19Q2
targets versus FDA drug targets. ∆Med. = 12%, U = 10,211,976, two-tailed p < 0.001. (C) Boxplot
of log number of 3D tractable structures associated with non-FDA Avana 19Q2 targets versus FDA
drug targets. ∆Med. = 2, U = 10,782,284, two-tailed p < 0.001. (D) Boxplot of log number of 3D
structures tractable percentage associated with non-FDA Avana 19Q2 targets versus FDA drug targets.
∆Med. = 91%, U = 10,221,548, two-tailed p < 0.001. (E) Boxplot of ligand-based druggability score
associated with non-FDA Avana 19Q2 targets versus FDA drug targets. ∆Med. = 3.40, U = 11,390,680,
two-tailed p < 0.001. (F) ROC curve of 3D and ligand druggability measurements for predicting FDA
approved drug targets. 3D Tractable AUC = 0.709, 95% CI = (0.690, 0.728). Ligand Score AUC = 0.749,
95% CI = (0.733, 0.766).
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Table 3. AML disKO drug target discovery list. This table contains a list of genes for which (a)
knock-out led to AML dropout, (b) there were no drugs specifically targeting the gene-product, and (c)
the gene-product was druggable. The genes were ranked by mean dependency in 15 AML cell lines
and color coded for non-common essential genes (blue) and common essential genes (red) as identified
by DepMap. Gene descriptions are linked to the National Center for Biotechnology Information (NCBI)
gene database.

Discovery Knockout Genes (AML disKO)

Gene AML Mean
Dependence

AML Max.
Dependence

AML-Specific
Z-Score

3D
Tractable
Structures

Ligand
Score Gene Description

CBFB 0.88 0.98 8.39 5 −3.00 Core-binding factor subunit beta
GPX4 0.85 0.99 2.85 6 −3.00 Glutathione peroxidase 4
RHOA 0.82 0.99 4.27 39 −1.60 Ras homolog family member A

UMPS 0.81 1.00 3.49 33 −1.30 Uridine monophosphate
synthetase

GFPT1 0.81 0.99 4.73 13 −1.30 Glutamine-F6P transaminase 1
RFK 0.75 0.98 3.92 4 −3.00 Riboflavin kinase

CAD 0.71 0.99 4.30 36 0.90 Carbamoyl-phosphate synthetase
2, aspar . . .

LDB1 0.57 0.99 6.37 6 −0.90 LIM domain binding 1

NMNAT1 0.53 1.00 2.45 5 −3.00 Nicotinamide nucleotide
acetyltransferase 1

CCNC 0.48 0.98 1.57 29 1.55 Cyclin C

FLI1 0.44 0.96 8.83 5 −3.00 Fli-1 proto-oncogene, ETS
transcription fa . . .

MBNL1 0.44 0.94 3.26 5 −3.00 Muscleblind like splicing
regulator 1

TRIM28 0.41 0.98 2.53 5 −3.00 Tripartite motif containing 28

PREX1 0.36 0.94 8.55 9 −0.95 PIP3 dependent Rac exchange
factor 1

SH3GL1 0.36 0.96 3.07 0 1.35 SH3 domain containing GRB2 like
1, endo . . .

PEX6 0.35 0.96 1.44 0 1.00 Peroxisomal biogenesis factor 6
PUS1 0.33 0.94 3.78 5 1.25 Pseudouridine synthase 1

RUNX1T1 0.14 0.94 3.89 4 −3.00 RUNX1 partner transcriptional
corepressor 1

ADIPOR2 0.08 0.97 3.85 4 −3.00 Adiponectin receptor 2

POLR2E 1.00 1.00 1.61 10 −3.00 RNA polymerase II, I and III
subunit E

TSR1 1.00 1.00 2.09 5 −3.00 TSR1 ribosome maturation factor
CTCF 1.00 1.00 1.43 6 −3.00 CCCTC-binding factor

NEDD8 1.00 1.00 1.55 11 −3.00 NEDD8 ubiquitin like modifier
MIS18A 1.00 1.00 1.56 0 1.35 MIS18 kinetochore protein A

ANAPC4 1.00 1.00 1.60 10 −3.00 Anaphase promoting complex
subunit 4

POLR1A 1.00 1.00 1.51 0 1.40 RNA polymerase I subunit A

EIF4A3 0.99 1.00 1.57 10 −3.00 Eukaryotic translation initiation
factor 4A3

SMC4 0.99 1.00 1.61 1 0.90 Structural maintenance of
chromosomes 4

NUTF2 0.99 1.00 1.56 4 −3.00 Nuclear transport factor 2
TFRC 0.98 1.00 2.52 13 −3.00 Transferrin receptor

COPZ1 0.98 1.00 1.51 11 −3.00 COPI coat complex subunit zeta 1
ADSL 0.98 1.00 2.29 4 −3.00 Adenylosuccinate lyase
TERF2 0.98 1.00 1.70 11 −3.00 Telomeric repeat binding factor 2

SNRPD3 0.98 1.00 1.52 9 0.30 Small nuclear ribonucleoprotein
D3 polype . . .

CUL1 0.97 1.00 1.57 8 −0.50 Cullin 1
RIOK2 0.97 1.00 1.98 6 1.80 RIO kinase 2

AP2M1 0.93 1.00 2.43 13 −0.95 Adaptor related protein complex 2
subunit . . .

POTEG 0.93 1.00 2.33 0 1.00 POTE ankyrin domain family
member G

USP8 0.93 0.99 1.64 5 −1.85 Ubiquitin specific peptidase 8
PFN1 0.93 1.00 1.85 5 −3.00 Profilin 1
CFL1 0.92 1.00 3.49 8 −3.00 Cofilin 1

UROD 0.92 1.00 3.12 19 −3.00 Uroporphyrinogen decarboxylase

SETDB1 0.81 1.00 2.35 15 −3.00 SET domain bifurcated histone
lysine met . . .

PDCD6 0.76 0.97 1.62 10 −3.00 Programmed cell death 6
RCOR1 0.75 1.00 2.66 9 −0.05 REST corepressor 1
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Table 3. Cont.

Discovery Knockout Genes (AML disKO)

Gene AML Mean
Dependence

AML Max.
Dependence

AML-Specific
Z-Score

3D
Tractable
Structures

Ligand
Score Gene Description

YTHDC1 0.74 0.94 2.36 36 −3.00 YTH domain containing 1

OR7A10 0.72 0.94 1.96 0 2.75 Olfactory receptor family 7
subfamily A me . . .

DYNLL1 0.71 0.97 1.87 7 −3.00 Dynein light chain LC8-type 1

CYP2A13 0.71 0.94 2.65 8 1.15 cytochrome P450 family 2
subfamily A me . . .

NBEAL1 0.71 0.98 2.65 0 0.95 Neurobeachin like 1

Table 4. AML deKO existing drug target list. This table contains a list of genes for which (a) knock-out
led to AML dropout, and (b) there were drugs specifically targeting the gene-product. The genes are
were ranked by mean dependency in 15 AML cell lines and color coded for non-common essential
genes (blue) and common essential genes (red) as identified by DepMap. Known targets in AML are
bolded. Gene descriptions are linked to the National Center for Biotechnology Information (NCBI)
gene database.

Developing Knockout Genes (AML deKO)

Gene AML Mean
Dependence

AML Max.
Dependence

AML-Specific
Z-Score

3D
Tractable
Structures

Ligand
Score Gene Description

CDK6 0.86 1.00 3.30 16 0.20 Cyclin dependent kinase 6

NAMPT 0.76 1.00 5.95 63 0.30 Nicotinamide
phosphoribosyltransferase

KMT2D 0.76 0.99 3.40 1 1.35 Lysine methyltransferase 2D
CCND3 0.73 0.99 6.64 1 1.65 Cyclin D3
EP300 0.72 1.00 3.19 32 1.05 E1A binding protein p300

PPAT 0.71 1.00 2.29 0 1.65 Phosphoribosyl pyrophosphate
amidotrans...

PI4KB 0.67 0.97 3.86 14 0.35 Phosphatidylinositol 4-kinase beta

ATIC 0.62 0.99 2.16 5 −0.40 5-aminoimidazole-4-carboxamide
ribonucl . . .

FECH 0.62 0.97 3.60 23 −3.00 Ferrochelatase
TYMS 0.59 1.00 1.43 60 1.10 Thymidylate synthetase

GART 0.56 0.98 3.72 29 0.05 Phosphoribosylglycinamide
formyltransfer . . .

BRPF1 0.53 0.94 2.71 56 1.10 Bromodomain and PHD finger
containing 1

KMT2A 0.50 0.96 4.01 19 −0.25 Lysine methyltransferase 2A
LMO2 0.49 0.99 14.21 5 −3.00 LIM domain only 2

SOS1 0.49 0.99 3.23 59 0.05 SOS Ras/Rac guanine nucleotide
exchan . . .

RAF1 0.42 1.00 5.47 6 1.00 Raf-1 proto-oncogene,
serine/threonine ki . . .

RPS6KA1 0.41 0.94 7.38 6 0.80 Ribosomal protein S6 kinase A1
MDH2 0.36 0.99 3.41 7 −0.55 Malate dehydrogenase 2
LDLR 0.33 0.99 3.21 11 0.20 Low density lipoprotein receptor

FLT3 0.31 0.99 3.05 7 1.65 Fms related receptor tyrosine
kinase 3

NRAS 0.30 1.00 2.89 4 −0.10 NRAS proto-oncogene, GTPase
RUNX1 0.30 1.00 6.77 5 −1.45 RUNX family transcription factor 1
HDAC7 0.29 0.99 2.46 5 1.20 Histone deacetylase 7
USP14 0.25 0.95 2.52 8 −1.90 Ubiquitin specific peptidase 14
JAK3 0.17 1.00 1.74 35 1.60 Janus kinase 3
ETV6 0.15 0.99 3.56 4 1.45 ETS variant transcription factor 6
JAK2 0.13 0.99 8.95 93 1.90 Janus kinase 2

KIT 0.13 0.97 1.44 23 1.50 KIT proto-oncogene, receptor
tyrosine kina . . .

CSF2RB 0.12 0.99 5.13 5 −3.00 Colony stimulating factor 2
receptor subun . . .

TYRP1 0.08 0.97 3.50 9 −3.00 Tyrosinase related protein 1
XPO1 1.00 1.00 1.48 6 −1.25 Exportin 1

HSPA5 0.99 1.00 1.56 26 −0.95 Heat shock protein family A
(Hsp70) mem . . .

WNK1 0.99 1.00 2.08 6 −1.90 WNK lysine deficient protein
kinase 1

AURKA 0.98 0.99 1.51 154 1.60 Aurora kinase A
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Table 4. Cont.

Developing Knockout Genes (AML deKO)

Gene AML Mean
Dependence

AML Max.
Dependence

AML-Specific
Z-Score

3D
Tractable
Structures

Ligand
Score Gene Description

AHCY 0.94 1.00 1.96 8 0.75 Adenosylhomocysteinase

MCL1 0.88 1.00 3.61 95 0.15 MCL1 apoptosis regulator, BCL2
family m . . .

PSMC1 0.88 0.97 1.75 25 −3.00 Proteasome 26S subunit, ATPase 1
FDPS 0.86 0.99 2.24 88 1.05 Farnesyl diphosphate synthase

PSMD8 0.85 0.95 1.73 14 −3.00 Proteasome 26S subunit,
non-ATPase 8

ACTB 0.82 0.99 1.92 18 −3.00 Actin beta
DHFR 0.77 1.00 1.61 79 1.25 Dihydrofolate reductase

HUS1 0.73 0.99 1.83 4 −3.00 HUS1 checkpoint clamp
component

DHODH 0.71 1.00 1.77 71 1.05 Dihydroorotate dehydrogenase

SETD2 0.70 0.95 1.69 18 1.20 SET domain containing 2, histone
lysine m . . .
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gene co-occurrence (blue), co-expression (black), protein homology (purple), text mining (yellow). 
Dashed lines represent strongest interaction scores. Number of nodes: 94; Number of edges: 144; 
Average node degree: 3.06; Avg. local clustering coefficient: 0.509; Expected number of edges: 86; PPI 
enrichment p-value: 5.47 × 10−9. 

Pathway analysis conducted through STRING highlighted proteins among our top AML 
essential genes, with enrichment in MAPK signaling (Figure 7A), JAK-STAT/PI3K-AKT signaling 
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Figure 6. STRING: Protein–protein interaction network functional enrichment analysis among the
top 94 identified AML drug targets. Nodes represent proteins. Edges connecting nodes represent
protein–protein associations. Associations are based on evidence and require a high confidence
(0.700) minimum required interaction score. Display was simplified by hiding disconnected nodes
in the network. MCL network clustering (inflammation parameter: 3) was applied. Associations do
not necessarily mean that the proteins are physically bound. Interaction types: Curated databases
(turquoise), experimentally determined (magenta), gene neighborhood (green), gene fusions (red),
gene co-occurrence (blue), co-expression (black), protein homology (purple), text mining (yellow).
Dashed lines represent strongest interaction scores. Number of nodes: 94; Number of edges: 144;
Average node degree: 3.06; Avg. local clustering coefficient: 0.509; Expected number of edges: 86;
PPI enrichment p-value: 5.47 × 10−9.
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Figure 7. STRING: AML associated enriched pathways among the top 94 identified drug targets.
All settings are consistent with Figure 6. Highlighted proteins represent functional enrichment.
Display was simplified by hiding non-enriched proteins. Panels represent different enriched
pathways. (A) MAPK signaling: MAPK family signaling cascades (green), MAPK1/MAPK3
signaling (yellow), RAF/MAP kinase cascade (pink). (B) JAK-STAT/PI3K-AKT signaling pathway:
JAK-STAT signaling pathway (red), PI3K-AKT signaling pathway (blue). (C) Hematopoiesis, stem cell,
and hemopoiesis: Regulation of hematopoietic stem cell differentiation (green), hematopoietic or
lymphoid organ development (blue), hemopoiesis (yellow), regulation of hemopoiesis (purple).
(D) RUNX1 related pathways: RUNX1 regulates transcription of genes involved in differentiation
of HSCs (brown), Regulation of RUNX1 expression and activity (green), RUNX3 regulates p14-ARF
(yellow), RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function (pink).

Table 5. PANTHER gene ontology biological process enrichment analysis among top identified AML
essential genes. Gene ontology analysis was conducted to identify enriched biological processes among
the top identified AML essential genes. Fisher’s exact test and FDR correction were applied. Biological
processes with a p value of <0.001 and enriched over 50% are displayed.

PANTHER Gene Overrepresentation Test

GO Biological Process
Complete

Homo Sapiens
REFLIST (20851) Queried Expected Fold

Enrichment p-Value FDR

‘de novo’ UMP biosynthetic
process (GO:0044205) 3 3 0.01 >100 2.03E−06 2.81E−04

‘de novo’ IMP biosynthetic
process (GO:0006189) 6 4 0.03 >100 9.64E−08 2.85E−05

dihydrofolate metabolic
process (GO:0046452) 3 2 0.01 >100 2.19E−04 1.37E−02

‘de novo’ pyrimidine
nucleobase biosynthetic

process (GO:0006207)
7 4 0.03 >100 1.51E−07 3.71E−05

vitellogenesis (GO:0007296) 4 2 0.02 >100 3.28E−04 1.87E−02
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Table 5. Cont.

PANTHER Gene Overrepresentation Test

GO Biological Process
Complete

Homo Sapiens
REFLIST (20851) Queried Expected Fold

Enrichment p-Value FDR

positive regulation of
CD8-positive, alpha-beta T cell

differentiation (GO:0043378)
4 2 0.02 >100 3.28E−04 1.87E−02

pyrimidine nucleobase
biosynthetic process

(GO:0019856)
9 4 0.04 93.61 3.25E−07 6.56E−05

tetrahydrofolate biosynthetic
process (GO:0046654) 7 3 0.03 90.26 1.20E−05 1.29E−03

IMP biosynthetic process
(GO:0006188) 10 4 0.05 84.25 4.53E−07 8.41E−5

myeloid progenitor cell
differentiation (GO:0002318) 6 2 0.03 70.21 6.08E−04 3.06E−02

histone H3-K4 dimethylation
(GO:0044648) 6 2 0.03 70.21 6.08E−04 3.05E−02

regulation of CD8-positive,
alpha-beta T cell differentiation

(GO:0043376)
6 2 0.03 70.21 6.08E−04 3.04E−02

folic acid-containing
compound biosynthetic process

(GO:0009396)
9 3 0.04 70.21 2.18E−05 2.10E−03

nucleobase biosynthetic
process (GO:0046112) 19 6 0.09 66.51 1.57E−09 9.30E−07

IMP metabolic process
(GO:0046040) 13 4 0.06 64.8 1.07E−06 1.70E−04

UMP metabolic process
(GO:0046049) 10 3 0.05 63.18 2.83E−05 2.58E−03

UMP biosynthetic process
(GO:0006222) 10 3 0.05 63.18 2.83E−05 2.57E−03

pyrimidine ribonucleoside
monophosphate biosynthetic

process (GO:0009174)
10 3 0.05 63.18 2.83E−05 2.55E−03

pyrimidine ribonucleoside
monophosphate metabolic

process (GO:0009173)
10 3 0.05 63.18 2.83E−05 2.54E−03

pyrimidine nucleobase
metabolic process (GO:0006206) 17 5 0.08 61.95 5.26E−08 1.65E−05

regulation of ribonucleoprotein
complex localization

(GO:2000197)
7 2 0.03 60.18 7.79E−04 3.73E−02

brainstem development
(GO:0003360) 7 2 0.03 60.18 7.79E−04 3.72E−02

pyrimidine nucleoside
monophosphate biosynthetic

process (GO:0009130)
15 4 0.07 56.16 1.72E−06 2.55E−04

positive regulation of
CD8-positive, alpha-beta T cell

activation (GO:2001187)
8 2 0.04 52.65 9.71E−04 4.43E−02

positive regulation of synaptic
vesicle endocytosis

(GO:1900244)
8 2 0.04 52.65 9.71E−04 4.41E−02

pyrimidine nucleoside
monophosphate metabolic

process (GO:0009129)
16 4 0.08 52.65 2.14E−06 2.95E−04

histone H3-K4
monomethylation

(GO:0097692)
8 2 0.04 52.65 9.71E−04 4.40E−02

ribonucleoside monophosphate
biosynthetic process

(GO:0009156)
33 8 0.16 51.06 1.57E−11 1.79E−08
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4. Discussion

In this study we generated a list of druggable gene targets specific to AML through the
examination of large datasets of genome-wide pooled CRISPR screening and pharmacotherapy
modeling. Our approach contrasts with recent efforts that focus on AML subgroups defined by
genomic mutation. For example, a recent study used only five AML cell lines to identify candidate
AML drug targets, three of which (60%) contained MLL translocations, which likely skewed their
results toward MLL-driven AML [13]. The prior CRISPR screen identified five gene KOs leading
to AML dropout in all five cell lines, including AURKB, MAP2K1, MAP2K2, IGF1R, and HDAC3.
Although none of these targets passed our screening criteria, related genes such as AURKA, HDAC7,
RUNX1, and KMT2A were identified as targets with existing inhibitors (Table 4). We note that inhibitors
to AURKB and MAP2K have already shown poor efficacy in AML clinical trials although it may be
worthwhile to explore these targets specially in MLL-translocated AML [14,15]. In this study we
aggregate a large number of AML sources (15 AML cell lines) with the intent to find common functions
among all AML subtypes. This strategy admittedly comes at the sacrifice of finding mutation-specific
vulnerabilities (such as SYK in FL3-mutant AML), but at the potential benefit of finding shared targets
applicable to a greater number of patients.

The genes identified in our deKO list (Table 4) are targets of already approved drugs, which provides
an internal validation of our computational method. In particular, the genes FLT3 and KIT from our
deKO list are known targets in AML. The FLT3/KIT inhibitors Midostaurin [16] and Quizartinib [17],
were recently approved for AML treatment in the US and Japan respectively. The hypomethylating
agents Azacitidine and Cytarabine, frequently used in AML, were also shown to enhance FLT3 and
KIT inhibition in combination with both Midostaurin, Quizartinib [17,18]. MCL1 is a known target in
AML with drugs in development, alone and in combination with other anti-apoptosis inhibitors such
as venetoclax [19].

Other deKO genes with inhibitors designed for other diseases may also represent drugs for
repurposing. We found LDLR as a highly essential gene in AML cell lines, indicating that cholesterol
metabolism is essential in AML. Pravastatin in phase 2 Southwest Oncology Group (SWOG) clinical
trials has shown improved morphologic remission in combination with Idarubicin and Cytarabine [20].

Additionally, we identified novel targets for AML drug discovery in our disKO list (Table 3).
These targets have distinct advantages for drug discovery because common essential gene inhibition
is more likely to induce toxicity across many AML genotypes while AML-specific essential gene
inhibition is less likely to cause systemic toxicity. A scatterplot of the disKO genes are presented
in Figure 8. Gene-KOs shown in red in the upper outer quadrant represent particularly attractive
targets given their essentiality and specificity for AML. These AML-specific, non-common essential
genes in disKO such as CBFB may have lower mean dependency scores relative to common essential
genes, but are highly essential and specific to at least one AML cell line. If Hart et al. is correct that
inhibition of common essential genes is more likely to produce clinical toxicity, then inhibiting these
AML-specific essential drug targets will likely be safer. AML cases with CBFB translocations are known
to be responsive to cytarabine chemotherapy and exhibit favorable clinical prognosis in pediatric and
adult patients [21,22]. Experimental studies have shown CBFB as an essential gene in several AML
genotypes [23,24]. Mouse models of AML show that inhibition of CBFB has anti-leukemic activity [25].
Our results confirm CBFB as a druggable vulnerability in AML and expand the knowledgebase by
providing many other drug targets for focused investigation.
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Figure 8. Scatter plot of mean and maximum gene dependency scores of disKO genes in 15 AML cell
lines from Avana 19Q2. Data points (n = 50) represent genes curated in disKO. Overlapping points
may obfuscate some genes. Common essential genes are red and non-common essential genes are
blue. Maximum dependency scores for each gene are on the y-axis and mean dependency scores are on
the x-axis.

Our results highlight the importance of AML metabolism and opportunities for therapeutic
intervention. Uridine and inosine biosynthesis are known essentials for AML cell proliferation and
differentiation [26,27]. Recently a dihydrofolate reductase (DHFR) antagonist was identified as a
potent and selective inhibitor of AML [28]. It was recently demonstrated that leukemia stem cells were
not reliant on amino acid metabolism due to their ability to compensate through increased fatty acid
metabolism [29].

When interpreting our results, several considerations need to be made. First, the disKO list was
constructed from a genome-wide data analysis. Before embarking on any drug development work,
target validation testing is needed. Second, Avana 19Q2 included only 15 cell lines, which may not
fully represent the heterogeneity of AML. Follow-up tests using primary AML cells would validate the
AML cell-line results in this study and add clinical relevance. Third, in vivo experimental data is also
needed before clinical testing.

In conclusion, we used an agnostic, genome-wide approach to identify potential new therapeutic
targets for AML and provide hit lists for target validation, drug discovery, and drug development.

5. Conclusions

Data analysis of an agnostic, genome-wide CRISPR screen led to the identification of 94 druggable
genes specific and essential for AML survival. These genes represent potential drug targets after
validation testing.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/12/3710/s1,
Table S1: U Test of AML_dep_mean across Common_Essential, Table S2: U Test of AML_dep_mean across
FDA_inhibitor, Table S3: U Test of AML_dep_mean across Cancer_inhibitor, Table S4: U Test of AML_dep_mean
across AML_inhibitor, Table S5: U Test of AML_dep_max across Common_Essential, Table S6: U Test of
AML_dep_max across FDA_inhibitor, Table S7: U Test of AML_dep_max across Cancer_inhibitor, Table S8: U Test
of AML_dep_max across AML_inhibitor, Table S9a: Contingency table of FDA_inhibitor * Common_Essential,
Table S9b: Chi-Squared analysis of FDA_inhibitor * Common_Essential, Table S10a: Contingency table of
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Cancer_inhibitor * Common_Essential, Table S10b: Chi-Squared analysis of Cancer_inhibitor * Common_Essential,
Table S11a: Contingency table of AML_inhibitor * Common_Essential, Table S11b: Chi-Squared analysis of
AML_inhibitor * Common_Essential,
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