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Purpose: We performed a systematic review and meta-analysis of studies reporting the incidence of radi-
ation induced brachial plexopathy (RIBP) and the associated radiotherapy doses to this structure.
Methods: Databases were queried without language restriction for cohort studies reporting RIBP inci-
dence and associated brachial plexus dose maximum dose (bpDmax). Studies specifying RIBP relative risk
(RR) effect size were selected for meta-analysis. RRs for RIBP from each study were converted to a regres-
sion coefficient (b) and standard error corresponding to a continuous representation of bpDmax. The
adjusted b from individual studies were combined using a random effects model and weighted by inverse
variance (1/SE2). The trim and fill approach was used to assess publication bias.
Results: We identified 25 studies that included 37 unique patient cohorts eligible for analysis. Seventeen
cohorts experienced an RIBP incidence �5%, of which 6 cohorts exceeded conventional plexus constraints
of 60 Gy for bpDmax. Five of the 6 cohorts were simulated with 3D-CT techniques. Meta-analysis of eli-
gible studies demonstrated a significant increase in RIBP risk for each Gy increase in bpDmax (RR, 1.11;
95% CI 1.07–1.15). Results remained significant after adjustment for publication bias and when sensitivity
analysis was performed.
Conclusions: Our results suggest that current brachial plexus constraints of 60–66 Gy are safe. Meta-
analysis provides a log-linear model to quantify the association of brachial plexus dose and RIBP risk,
and thus inform the therapeutic ratio for dose escalation. Further prospective studies reporting dosimet-
ric data can better refine this model and inform brachial plexus constraint guidelines.

� 2019 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and
Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Damage to the brachial plexus can arise following surgery or
radiation. Brachial plexopathy manifests clinically as neuropathic
pain, paresthesias, or motor weaknesses of the upper extremities,
and can cause significant morbidity [1]. Radiation induced brachial
plexopathy (RIBP) is a late toxicity that can present months to
years following a course of radiotherapy [2]. Biopsy studies have
shown that the mechanisms of RIBP include peri-plexal soft tissue
fibrosis as well as direct demyelination [3–5]

Classically, the dose tolerance as defined by Emami for the bra-
chial plexus is 62 Gy, 61 Gy, and 60 Gy to one third, two thirds, and
the whole plexus volume respectively, for a 5% risk of RIBP at
5 years [6]. The QUANTEC studies, which aimed to provide updated
tolerances in light of radiotherapy advancement, did not specify
guidelines for brachial plexus dose tolerance [7]. In Emami’s recent
update, the dose tolerance for the brachial plexus remained at
60 Gy, but is now defined as a maximum point dose to reflect the
serial nature of the plexus as an organ [8]. Modern RTOG constraints
vary between 60 Gy and 66 Gy maximum point doses [9–12].

The supporting evidence for these recommendations is scarce
however and is derived from a small number of observational stud-
ies that comprise the basis of these widely accepted clinical guide-
lines. Furthermore, many of these studies are older and utilize non-
CT based, 2D planning techniques, possessing dosimetric uncer-
tainty [5,13,14]. There is some evidence to suggest that the dose
tolerance may be even higher than those currently recommended
[15–17]. If this is the case, radiotherapy plans may jeopardize local
control if the prescribed dose is constrained by the current toler-
ance guidelines [17,18].
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The purpose of this literature review was to synthesize the
existing evidence that describes brachial plexopathy risk in
response to radiation dose. We aimed to compare literature data
with current dose constraint guidelines and develop a model asso-
ciating brachial plexus dose and RIBP risk.
2. Methods

2.1. Search strategy

A literature search was performed using Medline, EMBASE, and
CINAHL databases for full journal articles or abstracts without lan-
guage restriction from inception to February 5, 2018. The searches
each combined relevant keywords and medical subject headings
(MeSH) with minor variations specific to each database. Database
searches were supplemented by manual searching of journal refer-
ences (Appendix A).

Articleswere included if theywere full journal articles or abstracts
that described the incidence of brachial plexopathy in a cohort of
patients receiving radiotherapy in which the brachial plexus was
within the radiation field. All cohorts had a minimum of 10 patients.
Studies included patients with cancer from any disease site, radio-
therapy technique, dose fractionation schedule, or treatment intent.
No restrictions were placed on patient cohorts receiving other onco-
logic treatments (ie. surgery or systemic therapy).

Studies were excluded if the dose absorbed by the brachial
plexus was not stated explicitly, the radiotherapy schedule was
irregular, or if the patients received previous radiotherapy dose
to the brachial plexus. Reviews, commentaries, and letters were
excluded.

2.2. Data extraction and analysis

Search resultswere imported intoCovidence (VeritasHealth Inno-
vation, Melbourne, Australia) for determination of eligibility. Data
pertaining to patient characteristics, treatment eras, radiotherapy
schedules, radiotherapy techniques, brachial plexus doses, brachial
plexopathy incidences, and use of systemic therapy were extracted
onto a data extraction form. In studies that described separate patient
cohorts, each cohort was extracted as an independent data set. The
maximum brachial plexus dose (bpDmax) was used to define the
radiotherapy dose absorbed by a cohort. In the case where a range
of bpDmaxwas reported, themean as defined by the studywas used.
In studies where the median bpDmax was reported, conversion to
mean and estimated standard deviation were performed utilizing
previously described methods [19]. All doses were converted into
corresponding equivalent dose in 2 Gy fractions (EQD2) doses using
the linear quadratic formula, assuming an alpha/beta of 3 for the bra-
chial plexus [20]. EQD2 doses were plotted against the incidence of
RIBP and stratified by planning methodology.

Two-dimensional (2D) planning was defined as patients who
underwent planning using X-ray radiographs and clinical markup.
In contrast, 3D planning was defined for patients who were
planned using CT-based simulation. Image-guided radiotherapy
(IGRT) refers to the subset of patients who were 3D planned and
received image-guided verification prior to each radiotherapy frac-
tion delivered. IGRT techniques include 3D-conformal radiother-
apy (3D-CRT), intensity modulated radiotherapy (IMRT),
volumetric modulated arc radiotherapy (VMAT), and stereotactic
body radiotherapy (SBRT).

2.3. Dose- risk estimation and meta-analysis

Studies that reported a specific RIBP effect size as a function of
absorbed brachial plexus were selected for meta-analysis. Synthe-
sis of the data was challenging because eligible studies reported a
combination of categorical and/or continuous effect size estimates
that were presented as risk ratios, odds ratios, or hazard ratios. In
order to homogenize effect size representations to facilitate syn-
thesis, all categorical representations were converted to a regres-
sion coefficient (b) and standard error corresponding to a
continuous representation for each Gy increase in bpDmax as
described previously [21].

This conversion of categorical reported data was done by deter-
mining a central value of RIBP effect for each category within the
included studies. Study text and/or figures were used to determine
the categorical ranges and associated central values. Regression
coefficients were calculated as log(RR)/(xn-x0), where xn denotes
the dose at group n level, and x0 denotes the dose at reference
group. Similarly, the standard error (SE) was calculated as (log[up-
per CI] – log[lower CI])/([xn-x0]*3.92), where CI is confidence inter-
val. The reference group in studies with categorical representations
of RIBP effect corresponds to the group that received the lower
radiotherapy dose. The estimates produced by these methods are
only relevant for the range of bpDmax covered in the underlying
studies, and there is a log-linear relationship assumed between
the effect estimate and dose.

The regression coefficients from individual cohorts were com-
bined using a random-effects model. The inverse variance (1/SE2)
was used to weight individual studies. Analysis was done for RIBP
incidence. The homogeneity assumption was assessed by the
Cochran Χ2 statistic, and the Ι2 statistic was calculated. The statis-
tical analyses were performed using R package meta-analysis ver-
sion 3.5–0 (R Foundation for Statistical Computing, Vienna,
Austria). A 2-tailed P < 0.05 was considered statistically significant.

Publication bias was analyzed using standard error-based fun-
nel plots as described by Egger et al. [22]. Additionally, the trim
and fill approach was used to obtain an adjusted effect size that
takes into account publication bias [23]. Sensitivity analysis was
performed by systematically removing each study sequentially,
and calculating a combined effect size from the remaining studies.
3. Results

3.1. Literature search

Our systematic search returned 2675 articles to screen for anal-
ysis. After removing duplicates, and adding 5 hand-searched arti-
cles, 1983 studies were selected for title and abstract screening,
with 163 moving to full text screening. Ultimately, 25 studies
met the inclusion criteria for our review, with 37 distinct patient
subgroups extracted and 4227 brachial plexuses at risk. Most stud-
ies were full journal articles, apart from 4 abstracts (Fig. 1). Only
one study was prospective. All studies, with the exception of one
Italian study, were in English. Study publication years ranged from
1966 to 2017, with 16 studies published in the year 2000 or later.
3.2. Patient characteristics

Patient characteristics are reported in Table 1. The mean age of
all patient cohorts, where made available was 56.9 (range 49–78).
The median cohort size was 67 (range 10–582). The most common
disease site was breast, followed by head and neck. Nineteen
cohorts from 11 studies were planned using 2D techniques. Eigh-
teen cohorts from 14 studies underwent 3D CT-based planning.
Of the latter cohorts, all were treated with IGRT including 3D-
CRT, IMRT, VMAT, and SBRT, with the exception of one study that
used clinical setup in the treatment of breast cancer patients [24].

For all cohorts, the median time to onset of plexopathy post
radiotherapy, where reported, was 7 months (range 4.5–



Fig. 1. PRISMA diagram. A total of 1983 studies were screened, with 163 articles selected for full text review. A total of 25 studies were included in the review.
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88 months). The median length of follow up, where reported, was
40 months (range 13–408 months). Chemotherapy usage was
more common in the 3D-CT simulated cohorts.

3.3. Dose to brachial plexus and brachial plexopathy incidence

The maximum brachial plexus dose, the dose in EQD2, dose per
fraction and the incidence of RIBP in patients planned with 2D and
3D-CT simulation are displayed in Tables 2A and 2B respectively.

The mean bpDmax to the brachial plexus in EQD2 was 71.2 Gy
in the 2D simulated cohorts and 65.8 Gy in the 3D cohorts. The
median RIBP incidence was 14% and 5.6% in these same groups.

EQD2 doses were plotted against RIBP incidence for all 37 study
cohorts (Fig. 2). A total of 16 cohorts experienced an RIBP incidence
of �5%. Of these, 10 cohorts received a bpDmax EQD2 �60 Gy, and
12 received a bpDmax EQD2 �66 Gy.
A total of 6 cohorts experienced �5% RIBP with doses greater
than 60 Gy, with 5 cohorts having been simulated by 3D-CT tech-
niques. Of these 5 cohorts, 4 consisted of patients with head and
neck cancer treated by IMRT technique.

Four cohorts total experienced an RIBP incidence >5% despite
EQD2 doses below 60 Gy. Of these, the highest RIBP incidence
was 20% observed at a bpDmax of 51 Gy in a cohort of breast can-
cer patients [24].

3.4. Meta-analysis

A total of 5 studies reporting RIBP effect size in relation to bpD-
max were selected for meta-analysis. All included studies utilized
3D-CT planning (Table 2B). Two studies reported continuous effect
sizes while the remainder had categorical dose variables; the effect
sizes in the latter studies were converted to continuous represen-



Table 1
Cohort characteristics.

Characteristic All (n = 37) 2D planned (n = 19) 3D-CT planned (n = 18)

Mean age, years (SD)* 56.9 (14.7) 54.5 (2.8) 62.9 (7.7)
Median cohort size (IQR) 67 (1 1 5) 111 (152.5) 30 (64)
Disease site (%)
Breast 20 (54.1) 19 (1 0 0) 1 (5.6)
Head and neck 6 (16.2) – 6 (33.3)
Lung 5 (13.5) – 5 (27.8)
Esophagus 3 (8.1) – 3 (16.7)
Lung and breast 1 (2.7) – 1 (5.6)

Median latency to brachial plexopathy, months (IQR)** 7 (6) 10 (31) 7 (0.5)
Median follow up, months (IQR)*** 40 (38) 66 (2 4 9) 28 (37.9)
Systemic therapy (%)
Adjuvant 6 (16.2) 2 (10.5) 4 (22.2)
Concurrent 9 (24.3) – 9 (50)
Concurrent or adjuvant 1 (2.7) – 1 (5.6)

SD-standard deviation, IQR-interquartile range.
* Mean of median age of patient cohorts as presented in original studies. Missing values from 14 cohorts.
** Missing values from 19 cohorts.
*** Missing values from 8 cohorts.
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tations as described previously. A single RR for each Gy increase in
dose was determined for each study.

The individual continuous effect sizes of these studies and the
cumulative effect size are presented in Fig. 3. [15,17,24,33,35].
The cumulative (combined) estimated RR was 1.11 (95% CI, 1.07–
1.15). Given the small number and heterogeneity of included stud-
ies, the random effects model was used. Each study was weighted
based on number of patients, event rate, and bpDmax range. The
study by Chen et al. received the greatest weight [33]. Sensitivity
analysis did not report significant change in the cumulative RR,
which ranged from 1.09 (95% CI, 1.05–1.13) to 1.13 (95% CI,
1.03–1.23) with removal of Eblan et al. [15] and Amini et al. respec-
tively [17]. Each cumulative RR value determined by sensitivity
analysis was statistically significant.

Fig. 4A presents a graphical representation of the dose-effect RR
for individual studies. The central dose values of each category
within individual studies are shown as data points. The filled
Table 2A
2D Planned Cohorts.

Author Year Disease Site Dose per Fraction to
Brachial Plexus (Gy)

Maximum
Brachial P

Barovic [5] 2004 Breast 2.6 52
Barr [25] 1987 Breast 3.4 51
Basso-Ricci [26] 1980 Breast 1.38 60
Johansson [13] 2002 Breast 3 49

4 52.8
4 51.7

Malaspina [27] 1980 Breast 4.4 44
8.8 44
14.7 44

Miller [28] 1998 Breast 2.6 52
Powell [14] 1990 Breast 3.1 46

1.8 54
Salner [29] 1981 Breast 2 50
Stoll [3] 1966 Breast 4.25 51

4.58 55
4.55 41
4.35 43.5

Studer [30] 2014 Breast 3.3 42.9
Svensson [31] 1975 Breast 3.36 57.2

Measure

Range (Gy) 1.38–14.70 41–60
Mean (Gy, SD) 4.22 (2.98) 50.5 (5.33
Median (%, IQR)
points represent the endpoint category, that is, the cohort of
patients experiencing RIBP. The open points represent the patient
cohort that did not experience RIBP, and are set as the reference
category. This figure illustrates that, as expected, all RRs were in
the direction of increasing risk with higher dose, justifying the con-
version of RRs from categorical to continuous representations.

Lines corresponding to continuous effect sizes are presented in
Fig. 4B, with the slopes of the lines representing the RRs. These
effect estimates are presented over the range of 44 Gy-90 Gy
(determined by the ranges of bpDmax reported in the included
studies). The cumulative RR is 1.11 per Gy increase in bpDmax,
with the 95% CI ranging from 1.04 to 1.19. The baseline risk for this
line was modelled to begin at 60 Gy, corresponding to the current
lowest RTOG constraint.

A funnel plot for the degree of asymmetry of individual studies
around the combined RR was generated (Supplemental Fig. 1). We
used trim and fill approach to adjust our estimate for asymmetry.
Dose (Mean) to
lexus (Gy)

EQD2 (Gy) RIBP Incidence (%) Chemotherapy (%)

58.2 19/140 (14) Adjuvant (20)
65.3 6/250 (2.4) –
54 16/490 (3.2) –
63 8/56 (14) –
82 11/23 (48) –
80 45/71 (63) –
65.12 1/15 (6.6) –
103.8 14/24 (58.3) –
155.5 18/21 (85.7) –
58.7 2/223 (0.9) –
55.6 17/338 (5) –
51.8 1/111 (0.9) –
50 8/565 (1.4) Adjuvant (23.8)
74 13/84 (15) –
83.4 24/33 (73) –
62 4/25 (16) –
64 14/139 (10) –
54 1/130 (0.7) –
72.8 45/130 (34.6) –

50–155.5
) 71.2 (24.5)

14 (38.7)



Table 2B
3D-CT Planned Cohorts.

Author Year Disease Site Radiation
Technique

Dose per
Fraction to
Brachial Plexus
(Gy)

Dmax (Mean)
to
Brachial Plexus
(Gy)

Dmax Range to
Brachial Plexus
(Gy)

EQD2
(Gy)

RIBP
Incidence (%)

Chemotherapy
(%)

�Amini [17] 2012 Lung 3D-CRT 2 69.7 56–82 69.7 14/90 (16) Concurrent
(90)

Chang [32] 2014 Lung SBRT and IMRT 8.75 35 – 82.25 3/10 (30) –
�Chen [33] 2014 Head and Neck IMRT 1.86 65 50–79 63.14 51/352 (14) Concurrent

(63)
Din [34] 2013 Lung and

Breast
SBRT – – – 70.5 9/234 (3.8) –

�Eblan [15] 2013 Lung 3D-CRT 2.11 78 – 79.6 5/11 (45.5) Concurrent
(80)
Adjuvant (8.8)

�Forquer [35] 2009 Lung SBRT 8 26 6–83 61.8 7/37 (18.9) –
�Lundstedt [24] 2015 Breast 3D-CRT 2.04 50.9 – 51.3 38/192 (19.8) Adjuvant

(88.5)
Metcalfe [36] 2016 Head and Neck 3D-CRT 1.70 59.4 41–70 55.8 2/27 (7) Concurrent

(92.6)
Sood [37] 2017 Lung SBRT 6.60 30.1 10–67 57.8 0/18 (0) –
Thomas [16] 2015 Head and Neck IMRT 2.08 72.3 49–78 74.1 0/68 (0) –
Truong [18] 2012 Head and Neck IMRT 1.76 58.1 46–70 55.31 0/114 (0) Concurrent

(87.7)
Yahya [38] 2016 Head and Neck IMRT 2.75 59.8 – 71.6 0/11 (0) Concurrent

(69.2)
IMRT 2.01 60.3 – 60.3 0/20 (0)
IMRT 2.00 60 – 60 0/30 (0)

Yang [39] 2017 Cervical
Esophagus

3D-CRT 2.03 60.8 – 61.2 3/26 (11.5) Concurrent
(28)

IMRT 1.84 55.3 – 53.5 2/30 (6.7)
VMAT 1.90 56.9 – 55.8 1/22 (4.5)

Yathiraj [40] 2016 Head and Neck IMRT 2.08 62.4 – 63.4 0/67 (0) Concurrent
(75)

Measure
Range (Gy) 1.70–8.80 30.1–78.0 51.3–

92.2
Mean (Gy, SD) 3.03 (2.31) 59.5 (14.3) 65.8

(10.9)
Median (%, IQR) 5.6 (15.5)

� Included in meta-analysis.

Fig. 2. Incidence of radiation induced brachial plexopathy versus absorbed plexus
dose. Radiation induced brachial plexopathy (RIBP) incidence vs. EQD2 dose
absorbed is plotted for all cohorts, and stratified by planning methodology. Lines
denote both the current brachial plexus dose constraint of 60 Gy, as well as the 5%
RIBP incidence level. Abbreviations: RIBP = radiation induced brachial plexopathy.
EQD2 = equivalent dose in 2 Gy fractions.
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The imputed estimate (RR 1.12; 95% CI 1.06–1.19) is similar to the
cumulative effect reported in the main analysis. This suggests that
although the number of studies included in this meta-analysis was
limited, the resultant effect was not likely attributed to publication
bias.
4. Discussion

Previous dose tolerance guidelines derived their recommenda-
tions from a handful of cohort studies [6,41]. Our study compre-
hensively reviewed all existing literature that describes RIBP
incidence within patient cohorts. We identified 25 studies with
37 unique patient cohorts that reported radiotherapy dose to the
brachial plexus and subsequent incidence of RIBP. We found that
in cohorts reporting<5% incidence of RIBP, the EQD2 plexus dose
was 60 Gy or less in 62.5% of the cohorts, and under 66 Gy in
75% of cohorts.

As expected, this finding is consistent with current brachial
plexus dose tolerance constraints. The original brachial plexus dose
tolerance was Dmax = 60 Gy as defined by Emami [6]. Current
RTOG trial dose constraints for the brachial plexus are 60 Gy (RTOG
0412, 0435, 0522) or 66 Gy (RTOG 0615, 0617) [10,16,42,43] in
conventional dose fractionation. However, the study sheds light
on some important issues in the determination of plexus tolerance.

It should be noted that 19 of 36 included cohorts (53%) con-
sisted of patients planned with 2D techniques. These early studies
treated exclusively breast cancer patients. Non-conformal radio-
therapy planning and delivery lack the dosimetric accuracy and



Fig. 3. Individual Study and Overall Relative Risk of Relationships between Brachial Plexus Maximum Dose and Brachial Plexopathy Risk. The size of each data maker
represents the weighting factor (1/SE2) assigned to the study. For the combined result, the width of the diamond represents the 95% confidence interval of the summated
results.

Fig. 4. Relative Risk of Radiation Induced Brachial Plexopathy in Relation to Brachial Plexus Maximum Dose. (A) The relationship between brachial plexus maximum dose and
RIBP risk are denoted for the 5 individual studies. Data points correspond to median values of the endpoint category (filled) and reference category (open) respectively.
Numbers correspond to the references for original studies. (B) RR values are converted to continuous estimates per Gy increase of dose, which is represented by the slope. The
bolded line represents the weighted cumulative average of the individual RRs, with the shaded region representing the 95% confidence interval. Abbreviations: RR = relative
risk; RIBP = radiation induced brachial plexopathy.
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precision of modern 3D techniques and leads to higher toxicity
rates and worse disease control [44,45]. The risk of inter-
fractional target volumes shifts and potential over dosage to struc-
tures such as the brachial plexus is higher. Our data shows higher
proportions of RIBP in cohorts treated with non-IGRT techniques.

In the present study, all head and neck cohorts with a bpDmax
�60 Gy resulted in an RIBP incidence of 0%. All patients were trea-
ted with IMRT techniques. The mean Dmax of the plexus doses
ranged from 60.3 to 72.3 Gy [16,18,38,40]. The brachial plexus tol-
erance has been thought to be greater in patients receiving head
and neck radiotherapy. Postulated reasons for this discrepancy
include shorter patient survival, smaller plexus volume irradiated,
and less field overlap hotspots in these patients in comparison to
breast cancer studies from which brachial plexus constraints are
mainly based upon. Adjuvant treatments such as surgery and
chemotherapy may also contribute to this observation [46].

Determination of potential discrepancies in plexus tolerance is
critical as treatment doses often approach 70 Gy in head and neck
patients. Chen et al. found that with IMRT, higher plexus doses
were measured compared to 3D conformal plans [47]. IMRT and
VMAT are the current standard radiotherapy technique in the
treatment of head and neck malignancies. Although these tech-
niques allow for better dose conformity, they pose an increased
risk of hotspots [18]. The factors influencing brachial plexus toler-
ance, particularly dosimetric and volumetric variables, warrant
further evaluation.

Meta-analysis of the studies that reported plexus dosimetry and
RIBP effect size resulted in a log-linear relationship between
increasing bpDmax and RIBP relative risk; each 1 Gy increment
was associated with a 1.11 RR increase in RIBP. Assuming a RIBP
risk of 5% at a bpDmax of 60 Gy based on original Emami guideli-
nes [6], at 70 Gy, this model would predict a risk of 14.2%
(0.05 � 1.11(70–60) = 0.142). This model can serve as a guiding tool
in the quantification of RIBP risk over the range of bpDmax given
in Fig. 4B.

We acknowledge certain limitations of our analysis. First, the
inter-patient anatomic heterogeneity and inter-observer differ-
ences in plexus delineation introduces uncertainty in the reported
brachial plexus absorbed doses. Sood et al. reported significant
variability in brachial plexus dose in SBRT plans for 31 patients
with apical lung tumors. The median maximum dose was
15.8 Gy, but with a broad range of 1.7–66.5 Gy [37]. Furthermore,
our study includes a significant proportion of patients planned
with 2D techniques, which results in further plexus dose variability
and uncertainty within each cohort. These uncertainties are unfor-
tunately characteristic of the study data and unavoidable. Central
measures of the absorbed plexus dose remain the most reasonable
parameter in comparing cohorts. Novel, anatomically validated
brachial plexus contouring guidelines may serve to provide more
accurate and precise dosimetric data in future studies [48].

Second, our analysis did not investigate factors that may modify
RIBP risk. Several cohort studies have reported evidence suggesting
an increased risk of RIBP in patients receiving chemotherapy. Olsen
et al. found that the incidence of RIBP in breast cancer patients
receiving CMF chemotherapy was 20% compared to only 4% in
the tamoxifen arm (p = 0.01) [49]. Similarly, another study of
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breast cancer patients found an RIBP incidence of 4.5% versus 0.6%
in the chemotherapy and non-chemotherapy arms respectively
(p < 0.0001) [50]. In the present study, chemotherapy was deliv-
ered to patients in 16 of 36 included patient cohorts. Concurrent
or adjuvant chemotherapy was given in 4 of the 5 included
meta-analysis studies (Table 2B).

Extensive surgery in the peri-plexal region has also been shown
to increase the risk of RIBP [51]. The majority of included cohorts in
our study involved breast cancer patients, a proportion of which
may have undergone axillary surgery. Caution must be taken when
extrapolating tolerance constraints to patients who have had these
adjunct therapies.

The dose fractionation may also influence the risk of developing
RIBP. Like other normal tissues, the lower alpha/beta ratio of the
brachial plexus suggests increased tissue sensitivity to larger frac-
tion sizes. A review of breast cancer studies found that the risk of
RIBP was <1% when fractions sizes ranged between 2.2 and
2.5 Gy and total dose did not exceed 40 Gy. With fraction sizes
between 2.2 and 4.58 Gy and total dose up to 60 Gy however, the
RIBP incidence ranged from 1.7 to 73% [52]. Although all bpDmax
values in the present study were converted to corresponding
EQD2 doses, RIBP risk may in practice, be higher in cohorts treated
with hypofractionation than estimated by our model. The present
study contains too few cohorts to account for this hypothesis in
our predictive model.

Third, follow-up times were heterogeneous amongst individual
cohorts. Studies with longer follow-up may capture more RIBP
events. This is unfortunately a bias inherent in the nature of a sys-
tematic review.

Fourth, our model assumes a log-linear relationship between
bpDmax and RIBP risk. This assumption is supported by the indi-
vidual study trends (Fig. 4A). It is however, limited to the dose
ranges given by the reference studies. Extrapolation of risk beyond
this range must be approached with caution, albeit rare that bra-
chial plexus doses should exceed this range.

The brachial plexus, like other neuronal structures, has been
classically described as a serial organ. The risk of toxicity is defined
in relation to bpDmax. This is the parameter used in current trial
dose constraints, and is also the measure used in our analysis.
However, emerging evidence exists that there is a volume effect
associated with the brachial plexus. Lundstedt et al. found an abso-
lute risk increase of 12% in breast cancer patients receiving V40

>13.5 cm3 compared to smaller volumes [24]. Similarly, Chen
et al. found a significant increase in RIBP incidence when V70

>10% [33]. We did not perform volumetric analysis in our study
given the heterogeneity of data. Lower irradiation volumes may
be an explanatory factor for the lower rates of RIBP observed in
head and neck patients.

Lastly, our analysis includes observational rather than random-
ized data. However, it is unlikely that randomized trials assessing
dose tolerances will ever be conducted. There were only 5 studies
eligible for inclusion in the meta-analysis. Therefore, a random
effects model was required, and the resultant cumulative effect
size was associated with a wide confidence interval. This again
illustrates the need for additional prospective, dosimetric study
data to further refine our model.
5. Conclusion

A review of the available literature suggests that current bra-
chial plexus constraints of 60–66 Gy are safe, albeit a significant
proportion of the evidence is based on obsolete 2D techniques.
Meta-analysis of contemporary studies reports a log-linear model
associating bpDmax with RIBP risk; each 1 Gy increase is associ-
ated with a 1.11 RR increase in RIBP. The results of this model
can inform the therapeutic ratio for dose escalation, but are limited
by, amongst other factors, the quality and heterogeneity of studies.
There is a need for further prospective studies investigating dosi-
metric parameters to better inform brachial plexus constraints.
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Appendix A. Search strategies for each database
Database
 Search
Medline
 1. Brachial Plexus/
2. Brachial Plexus Neuropathies/
3. brachial plex*.mp. [mp = title, abstract, orig-

inal title, name of substance word, subject
heading word, floating sub-heading word,
keyword heading word, organism supple-
mentary concept word, protocol supplemen-
tary concept word, rare disease
supplementary concept word, unique identi-
fier, synonyms]

4. 1 or 2 or 3
5. radiation dosage/ or dose–response relation-

ship, radiation/
6. Radiation Injuries/
7. exp Radiotherapy/
8. radiation.mp. [mp = title, abstract, original

title, name of substance word, subject head-
ing word, floating sub-heading word, key-
word heading word, organism
supplementary concept word, protocol sup-
plementary concept word, rare disease sup-
plementary concept word, unique
identifier, synonyms]

9. radiotherap*.mp. [mp = title, abstract, origi-
nal title, name of substance word, subject
heading word, floating sub-heading word,
keyword heading word, organism supple-
mentary concept word, protocol supplemen-
tary concept word, rare disease
supplementary concept word, unique identi-
fier, synonyms]

10. brachytherap*.mp. [mp = title, abstract, orig-
inal title, name of substance word, subject
heading word, floating sub-heading word,
keyword heading word, organism supple-
mentary concept word, protocol supplemen-
tary concept word, rare disease
supplementary concept word, unique identi-
fier, synonyms]
(continued on next page)
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Appendix A. Search strategies for each database (continued)
Database
 Search

11. radiotherapy.fs.
12. radiation effects.fs.
13. or/5–12
14. 4 and 13
Embase
 1. exp brachial plexus/
2. exp brachial plexus neuropathy/
3. brachial plex*.mp. [mp = title, abstract,

heading word, drug trade name, original
title, device manufacturer, drug manufac-
turer, device trade name, keyword, floating
subheading word, candidate term word]

4. 1 or 2 or 3
5. exp cancer radiotherapy/
6. exp radiation injury/
7. exp radiation dose/
8. radiation.mp. [mp = title, abstract, heading

word, drug trade name, original title, device
manufacturer, drug manufacturer, device
trade name, keyword, floating subheading
word, candidate term word]

9. radiotherap*.mp. [mp = title, abstract, head-
ing word, drug trade name, original title,
device manufacturer, drug manufacturer,
device trade name, keyword, floating sub-
heading word, candidate term word]

10. brachytherap*.mp. [mp = title, abstract,
heading word, drug trade name, original
title, device manufacturer, drug manufac-
turer, device trade name, keyword, floating
subheading word, candidate term word]

11. radiotherapy.fs.
12. or/5–11
13. 4 and 12
CINAHL
 S1 (MH ‘‘Radiotherapy”)
S2 (MH ‘‘Radiation Dosage”)
S3 (MH ‘‘Radiation Injuries”)
S4 00radiotherap*‘‘
S5 00brachytherap*”
S6 S1 OR S2 OR S3 OR S4 OR S5
S7 (MH ‘‘Brachial Plexus”)
S8 (MH ‘‘Brachial Plexus Neuropathies”)
S9 00brachial plex*‘‘
S10 S7 OR S8 OR S9
S11 S6 AND S10
Appendix B. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.ctro.2019.06.006.
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