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Abstract

Background

Randomized clinical trials compare participants receiving an experimental intervention to

participants receiving standard of care (SOC). If one could predict the outcome for partici-

pants receiving SOC, a trial could be designed where all participants received the experi-

mental intervention, with the observed outcome of the experimental group compared to the

prediction for those individuals.

Methods

We used the CancerMath calculator to predict outcomes for participants in two large clinical

trials of adjuvant chemotherapy for breast cancer: NSABPB15 and CALGB9344.

NSABPB15 was the training set, and we used the modified algorithm to predict outcomes

for two groups from CALGB9344: one which received standard of care (SOC) chemother-

apy and one which received paclitaxel in addition. We made a prediction for each individual

CALGB9344 participant, assuming each received only SOC.

Results

The predicted outcome for the group which received only SOC matched what was observed

in the CALGB9344 trial. In contrast, the predicted outcome for the group also receiving pacli-

taxel was significantly worse than what was observed for this group. This matches the con-

clusion of CALGB9344 that adding paclitaxel to SOC improves survival.

Conclusion

This project proves that a statistical model can predict the outcome of clinical trial partici-

pants treated with SOC. In some circumstances, a predictive model could be used instead

of a control arm, allowing all participants to receive experimental treatment. Predictive mod-

els for cancer and other diseases could be constructed using the vast amount of outcomes

data available to the federal government, and made available for public use.
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Introduction

In oncology, there exist statistical models which predict the likelihood of various outcomes for

an individual with a given cancer diagnosis. The underlying formulas used by CancerMath

and similar web-based programs add the risk of death conferred by disease and treatment

related variables to the underlying actuarial risk of death to generate predicted outcomes.[1, 2]

As described on CancerMath.net

The goal of Cancer-Math.net is to provide medical professionals with web-based calculators for
accurately predicting the clinical outcome for individual cancer patients, as well as for accu-
rately estimating the impact of various treatment choices on that outcome.

Programs like CancerMath can help an individual or her physician make clinical decisions.

For an individual, it is no great surprise when a predicted outcome with a 25% chance of

occurring actually takes place. In a group of 1000, an event with a 25% chance of occurring

will probably happen to 250 individuals, with numbers higher or lower than 250 increasingly

improbable. Statistical predictions of outcomes for large groups are more reliable than predic-

tions for individuals because chance events balance out as numbers increase. This prediction

of likely outcomes for a group is the goal of actuarial science, based on techniques developed

before allopathic medicine was recognizable as such. For centuries, actuaries have used predic-

tive statistical models to guide the pricing of insurance policies and other financial endeavors,

the profitability of which depend on correct estimation of risk.

Predictive statistical models are not used in place of control arms in phase III clinical trials.

If the control and intervention arms are truly equivalent, then the design of such a trial

requires no knowledge of the natural history of the disease or of variables that were important

in the past. All other variables cancel out and the only important variable is that of the inter-

vention. To apply the result of a phase III trial in clinical practice–for example the finding that

adjuvant chemotherapy improves survival for breast cancer–one must assume that conditions

at the time the trial was conducted are similar enough to conditions in the present that the

results of the trial remain relevant. Additionally, the variables affecting outcome in the trial

need to remain relatively constant for the clinical trial to be useful.

If the range of variables remains similar in new patients to what was previously observed,

the model could interpolate to predict new patient outcomes in a clinical trial participant who

receives established standard-of-care treatment. The predictions for each participant would

then be combined into a prediction for the group as a whole. This group prediction or “virtual

control” arm could be used instead of an actual control group of participants in a phase III

clinical trial who demonstrate the outcome of standard-of-care treatment by receiving it in

real life. In a phase III clinical trial with a virtual control arm, all participants would receive

experimental treatment. The outcome of the study would be determined by how much, if at

all, the observed outcome of those participants diverge from the predicted outcome for that

group of individuals if they had received standard of care. With this approach, safety signals

from the experimental arm would be analyzed against historical safety data for the virtual con-

trol arm receiving standard of care therapy.

It has previously been proposed that the predictive statistical models underlying cancer

nomograms, or visual prediction tools for assessment of risk or determination of outcomes,

could be used to augment clinical trials. Using a phase II study of prostate cancer as an exam-

ple, Koziol proposed that one could use a nomogram to predict outcomes for a group of study

participants in a phase II study, and so gauge how the observed outcomes for the study differ

from the predicted outcomes.[3] Building on this premise Jia et al built a predictive model
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using a prostate cancer nomogram and used this to predict the outcome of 155 cases of pros-

tate cancer.[4]

To determine whether a virtual control arm could be successfully used in a large clinical

trial, we used the model underlying the CancerMath breast cancer model to predict patient

outcomes from two data sets from mature clinical trials of adjuvant chemotherapy for breast

cancer: Cancer and Leukemia Group B (CALGB) 9344 and National Surgical Adjuvant Breast

and Bowel Project (NSABP) B15. CALGB 9344 was a phase III study which produced a prac-

tice changing result: the finding that for study participants with hormone-receptor negative

breast cancers, the addition of paclitaxel (P) to adjuvant chemotherapy with doxorubicin and

cyclophosphamide (AC) improved survival over that seen with AC alone.[5] NSABP B15 was a

phase III study randomizing participants thought to have tamoxifen-nonresponsive breast

cancer to adjuvant chemotherapy with either AC; cyclophosphamide, methotrexate and fluo-

rouracil (CMF); or a combination of both.[6] For our study and analysis, NSABP B15 served

as the training set to generate a multiplier to better predict survival at 15 years with the Cancer-

Math algorithm, and CALGB 9344 then served as the validation set to determine if a reliable

virtual control arm can be produced by statistical models.

Our hypotheses:

1a. Null hypothesis: Assuming treatment with AC alone and starting with the characteristics of

individual CALGB 9344 participants who did receive AC alone, the predictive model will

generate a virtual control arm with predicted yearly survival outcomes which is equal to the

observed survival of the CALGB 9344 AC only group.

1b. Alternative hypothesis: Observed survival for the group receiving AC alone is not equal to

predicted survival for this group, assuming AC alone.

2a. Null hypothesis: Assuming treatment with AC alone and starting with the characteristics of

individual CALGB 9344 participants who received both AC + P, the predictive model will

generate a virtual control arm with predicted yearly survival outcomes which is equal to the

observed survival of the CALGB 9344 experimental group.

2b. Alternative hypothesis: Observed survival for the group receiving AC+ P is not equal to

predicted survival for this group, assuming AC alone.

We expected to fail to reject the null hypothesis for #1, because of an accurate prediction by

the model for participants receiving AC only. We expected to reject the null hypothesis for #2

because the addition of P improved outcomes over what the model predicted with standard of

care (AC only).

Methods

For our study and analysis, NSABP B15 served as the training set, and we developed a multi-

plier correction to the CancerMath predictive model such that given the starting characteristics

of NSABP B15 participants, the predicted survival at 15 years matched the observed survival of

the actual NSABP B15 trial participants at 15 years. We then partitioned the predicted mortal-

ity burden at 15 years across each preceding year using a yearly mortality fraction derived

from the Surveillance, Epidemiology, and End Results (SEER) database.

CALGB 9344: Validation set

We used the CancerMath model with the multiplier correction to predict survival at 15 years

for the subset of CALGB 9344 participants with the same age range, stage and hormone-recep-

tor status as the NSABP B15 participant categories used in the training set. For this subset of
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CALGB 9344 participants, we compared predicted versus observed mortality for two groups:

those who received adjuvant AC + P and those who received only AC. We again distributed

the 15-year predicted mortality burden over preceding years.

Training data set: NSABP B15

After receiving approval from the Emory University Institutional Review Board, NRG Oncology

provided the dataset for NSABP B15, stripped of personal identifiers. NSABP B15 was a large

study of adjuvant chemotherapy for breast cancer, accruing between 1984 and 1988.[6] Partici-

pants were between 20 and 59 years old, had breast cancer with at least one positive node, and

were thought to be tamoxifen-nonresponsive. Women younger than 49 regardless of receptor sta-

tus were included, whereas women 49–59 years old were included if they had non-estrogen recep-

tor (ER)+/progesterone receptor (PR)+ tumors. For the training set we excluded all participants

with ER+/PR+ cancers to best evaluate the role of the addition of P, which was most efficacious in

hormone receptor negative tumors in CALGB 9344. Study participants received AC, CMF or

both. No difference was observed between these chemotherapy groups in regard to survival, and

CancerMath treats these two chemotherapy regimens as equivalent with respect to survival benefit.

Automation of CancerMath

The web-based nomogram calculators at http://cancer.lifemath.net allow interactive explora-

tions of treatment effects on mortality risk given a patient’s demographic and clinical informa-

tion. Unlike other programs, the source code for CancerMath is available on-line, well

documented, and free for scientific use.[7] In order to perform calculations for a multiple sub-

ject population, we adapted the CancerMath implementation for automated processing. We

extracted the JavaScript of the original web-based nomogram calculators with permission

from the author, and transformed the code automatically based on a set of predefined rules to

expose the input and output variables. The code transformations are limited to function inter-

faces, thus the correctness of the algorithm implementation and the output are preserved. This

minimal transformation also allows for easy upgrade to newer versions of nomogram imple-

mentations and adaptation of new nomogram calculators.

A wrapper script was used to invoke the transformed nomogram functions using subject data

in a CSV file as input, perform post processing tasks such as interpolating the mortality risk at

monthly intervals, and output the risk data to files for further analysis. The wrapper script lever-

ages a user defined mapping to assign data elements in the input CSV files to the nomogram

input variables. The transformed code as well as the wrapper script requires only Node.js as the

runtime environment, and can be deployed on servers or desktop systems. The transformation

code and the wrapper script, referred to as AutoCM, are available at https://bitbucket.org/tcpan/

autocm under Apache 2.0 license. The CancerMath logic remains under its own license.

Training set: Mortality prediction

Based on patient age, tumor diameter (cm), number of positive nodes, ER status, PR status,

hormone therapy, and chemotherapy type, CancerMath predicts the chance of an individual

surviving at 15 years. In the training data set, we first produced a database of virtual partici-

pants with variables corresponding to the actual participants in NSABP B15. Treatment for the

virtual participants was set to the “first generation regimen” for all participants, which in Can-

cerMath includes AC and CMF, and matched demographic and clinical features were entered

to generate a predicted survival for each virtual participant. We averaged the predicted 15-year

survival points for the virtual population and compared this to the observed Kaplan-Meier

estimate of 15-year survival.
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Validation data set: CALGB 9344

After receiving approval from the Emory University Institutional Review Board, the Alliance

for Clinical Trials in Oncology Foundation provided the dataset for CALGB 9344, stripped of

personal identifiers. CALGB 9344 was a large study of adjuvant chemotherapy for breast can-

cer, accruing between 1994 and 1999. The dataset contained complete data for 2651 study par-

ticipants, of whom 1378 received AC + P and 1273 received AC. In CALGB 9344, all

participants with ER+ cancers also received adjuvant tamoxifen. As noted previously, we

excluded participants with ER+/PR+ cancers from the data analysis of both training and vali-

dation sets and retained those with any other receptor combination. We also excluded partici-

pants older than 60, which were present in the CALGB 9344 set but not in the NSABP B15 set.

With these adjustments, we produced a database of virtual participants with variables corre-

sponding to the actual participants in CALGB 9344. Treatment for the virtual participants was

again set to the “first generation regimen” for all participants, both those who did get only AC

and those who received paclitaxel in addition. In CALGB 9344, participants with ER+ or PR

+ received tamoxifen and this data was also input. For each participant, her 15-year predicted

survival estimate from CancerMath was multiplied by a subgroup specific correction, esti-

mated from the NSABP B15 data. Subgroups included combinations of ER/PR status (ER-/

PR- or ER+/PR- or ER-/PR+) and age group (20–39 or 40–59). Yearly estimates of survival

(1-year, 2-year, etc.) were adjusted using SEER (details below). Next, for each patient, we took

sequential random draws Xi from the Uniform(0,1) distribution, where i = 1 to 15 years. If Xi

< probability of death in year i given the patient survived to year i–1, then that simulated

patient dies, and the survival time is recorded. Else, the patient proceeded to year i+1, and the

process was repeated. If the patient’s simulation survived to 15 years, then the survival time

was censored at 15 years. Survival estimates for both the observed and simulated data were

reported at yearly intervals for those receiving AC+P and those receiving AC, and standard

errors were estimated using Greenwood’s formula[8]. Ninety-five percent confidence intervals

were reported, and significance was assessed at the 0.05 level. Comparisons at yearly intervals

between observed and predicted arms were made using two-sided two-sample Z-tests. Statisti-

cal analysis was performed using R 3.3.1 [9]Due to the exploratory nature of this analysis, we

did not adjust our analysis for multiple comparisons.

Results

Training set: Multiplier correction factor

We found that the CancerMath prediction model underestimated mortality for the NSABP

B15 participants. In the NSABP B15 database, a total of 1,450 participants were ER-/PR-, ER

+/PR-, or ER-/PR+, and all were aged 20–59. The highest frequency age-ER-PR groupings

were 40–59 ER-/PR- (n = 263), 40–59 ER+PR- (n = 167), and 20–39 ER-/PR- (n = 108)

(Table 1). Observed survival at 15 years for NSABP B15 age-ER-PR subgroups ranged from

33.7% (20–39 ER+/PR-) to 52.9% (40–59 ER-/PR+). Predicted survival using CancerMath ran-

ged from 57.1% (40–59 ER+/PR-) to 67.1% (20–39 ER-/PR+). In total, the observed 15-year

survival for the 1,450 NSABP B15 participants without ER+/PR+ breast cancers was 47.7% ver-

sus the predicted survival of 61.6%, a difference of 13.9%. To improve prediction accuracy for

the subsequent validation set we estimated a multiplier correction to add to the CancerMath

prediction. For each subgroup the multiplier correction was the observed survival divided by

the predicted survival. These corrections ranged from 0.54 to 0.809, and equaled 0.775 overall

(Table 1).
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Technical report 10 available at CancerMath.net notes that the CancerMath predictive

model was prone to “under-predicting short-term lethality for very lethal and ER- cancers“[7].

It is not within the scope of this project to determine exactly why CancerMath underpredicted

mortality for participants on this trial.

Training set: Probability density function / mortality fraction

For the participants in NSABP B15, observed survival at each yearly interval following diagno-

sis was used to generate a survival curve for the group as a whole. CancerMath predicts the

15-year mortality and then generates a predicted survival curve using a probability density

function, with the yearly mortality fraction up to 15 years derived from that seen in the entirety

of the SEER breast cancer cohort from 1986 through 2003.[7] For the NSABP B15 population,

the curve generated by the CancerMath program overestimated survival in the years immedi-

ately following diagnosis.

We suspected that this overestimation of survival was because a function based on the entire

SEER database skews towards outcomes for ER+/PR+ cancers, which are more common than

cancers with other receptor types. The risk of death in the years 2 through 5 after diagnosis is

greater for non ER+/PR+ cancers as compared to ER+/PR+.[10] To confirm this, we used the

SEER database to identify 92,701 patients with a primary breast cancer diagnosed between 1993

and 1996. The Kaplan-Meier survival estimate for overall survival at 15 years was 47.8%, and of

the 52.2% mortality across the 15 years, 10.3% occurred in the 1st year, 10.3% in the 2nd year,

9.5% in the 3rd year, 8.6% in the 4th year, and 61.3% occurred in the remaining 11 years

(Table 2). In the subset of this group who matched those in our training set (not ER+/PR+, aged

20–59 and Stage II/III) we identified 7,139 patients. The Kaplan-Meier estimate for overall sur-

vival at 15 years was 55.6%, and of the 44.4% mortality across the 15 years, 6.4% occurred in the

1st year, 19.8% in the 2nd year, 15.5% in the 3rd year, 12.8% in the 4th year, and 45.5% occurred

in the remaining 11 years (Table 2). A revised mortality fraction was produced using the 7139

patients in this subset. Returning to the training set, this new mortality fraction was used to allo-

cate a percentage of the predicted 15-year total mortality burden to each preceding year.

Validation set

With the new yearly mortality fraction from SEER using only stage 2 and 3, non ER+/PR+

cases, and the new multiplier correction for the 15-year mortality prediction, the training stage

of the project was complete and we began the validation stage. In the CALGB 9344 database,

Table 1. NSABP B15(learning set) observed and predicted 15 year survival estimates.

Category N Observed survival Predicted survival Correction (Obs/Pred)

All B15cases, except ER(+)/PR(+) 1450 0.477 0.616 0.775

20–39 ER(-)/PR(-) 250 0.527 0.652 0.808

20–39 ER(+)/PR(-) 70 0.337 0.625 0.54

20–39 ER(-)/PR(+) 61 0.508 0.671 0.755

40–59 ER(-)/PR(-) 634 0.488 0.604 0.809

40–59 ER(+)/PR(-) 295 0.413 0.571 0.723

40–59 ER(-)/PR(+) 140 0.529 0.669 0.791

NSABP B15 is the training set. Subsets are defined using combinations of ER-PR status (ER-/PR-, ER+PR-, ER+PR-) and age group (20–39, 40–59). Observed survival is

estimated using the Kaplan-Meier method. Predicted survival at 15 years for each patient is estimated using the CancerMath calculator. Predictions within each subset

combination were averaged across patients. Column 5 is the ratio of observed to predicted survival which is used as a multiplier correction for predictions made for

individuals within each subset in the validation set (CALGB 9344).

https://doi.org/10.1371/journal.pone.0221336.t001
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679 patients aged 20–59 who were ER-/PR-, ER+/PR-, ER-/PR+ were assigned AC + P, and

685 were assigned AC. The 15-year observed Kaplan-Meier survival estimates for each sub-

group, and the 15-year prediction survival estimates for each subgroup based on the Cancer-

Math algorithm are displayed in Table 3. Looking at the ER-/PR- subgroups, for example,

15-year survival in experimental arm participants within the predicted virtual group treated

Table 2. Mortality fraction: Percentage of 15 year total mortality occurring each year among breast cancer cases in SEER 1993–1996.

Year Number at Risk (All cases) Percent died (All cases) Number at Risk (non ER+/PR+ subset) Percent died (non ER+/PR+ subset)

0 92701 0 7139 0

1 87974 0.103 6967 0.064

2 82952 0.103 6335 0.198

3 78211 0.095 5826 0.155

4 73998 0.086 5412 0.128

5 70255 0.077 5131 0.084

6 66912 0.067 4915 0.065

7 63765 0.064 4746 0.05

8 60773 0.06 4594 0.045

9 58027 0.056 4470 0.036

10 55293 0.054 4354 0.032

11 52635 0.053 4256 0.029

12 50179 0.049 4147 0.03

13 47771 0.047 4019 0.036

14 45558 0.044 3933 0.025

15 43344 0.042 3833 0.024

The mortality fraction was defined as the percent of total mortality at year 15 occurring each year through Year 15. The percent at Year X was estimated by dividing the

total mortality estimate through Year 15 (1 minus KM at 15 years) by the difference in survival between Years X-1 and X. Columns 2 and 3 represent number at risk and

mortality fraction for all SEER cases with a breast cancer primary site (C500-C509) from 1993–1996. Columns 4 and 5 represent the number at risk and mortality

fraction for the following subset: ER(-)/PR(-) or ER(+)/PR(-) or ER(-)/PR(+), ages 20–60, Stage II/III

https://doi.org/10.1371/journal.pone.0221336.t002

Table 3. CALGB 9344 (validation set) observed and predicted 15 year survival estimates.

Category Treatment N Observed survival Predicted survival (CancerMath) Multiplier correction Predicted survival (Final)

20–39 ER(-)/PR(-) AC+P 121 0.649 0.624 0.8078 0.504

20–39 ER(+)/PR(-) AC+P 23 0.549 0.714 0.5399 0.385

20–39 ER(-)/PR(+) AC+P 27 0.536 0.631 0.755 0.476

40–59 ER(-)/PR(-) AC+P 323 0.525 0.572 0.8085 0.462

40–59 ER(+)/PR(-) AC+P 112 0.485 0.648 0.723 0.468

40–49 ER(-)/PR(+) AC+P 73 0.583 0.614 0.7914 0.486

20–39 ER(-)/PR(-) AC 145 0.497 0.613 0.8078 0.495

20–39 ER(+)/PR(-) AC 26 0.182 0.722 0.5399 0.39

20–39 ER(-)/PR(+) AC 29 0.572 0.646 0.755 0.488

40–59 ER(-)/PR(-) AC 312 0.454 0.564 0.8085 0.456

40–59 ER(+)/PR(-) AC 94 0.472 0.659 0.723 0.476

40–59 ER(-)/PR(+) AC 79 0.625 0.6 0.7914 0.475

CALGB9344 is the validation set. Subsets are defined using combinations of ER-PR status (ER-/PR-, ER+PR-, ER+PR-) and age group (20–39, 40–59) used for learning

set. Observed survival is estimated using the Kaplan-Meier method. Predicted survival at 15 years for each patient is estimated using the CancerMath calculator.

Predictions were averaged across patients within each subset. Column 6 is the correction factor which is used as a multiplier for these subset combinations within

CALGB. Column 7 is the final predicted survival after applying the multiplier.

https://doi.org/10.1371/journal.pone.0221336.t003
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with AC aged 20–39 years compared to the observed group treated with AC + P was 50.4% ver-

sus 64.9%, and 46.2% versus 52.5% in the group aged 40–59 years. Multiplier corrections from

Table 1 were multiplied by the predicted survival in each subgroup to obtain the adjusted pre-

dicted survival for each group. In the control comparisons (observed participants treated with

AC alone compared to virtual participants treated with AC alone), 15-year survival rates were

similar. Again looking closer at our ER-/PR- subgroup, 15-year survival within the predicted

virtual group treated with AC aged 20–39 compared to the observed group treated with AC

was 49.5% versus 49.7%, and 45.6% versus 45.4% in the group aged 40–59 years.

Finally, overall observed survival for the AC + P and AC groups was estimated using the

Kaplan-Meier method at yearly intervals and is shown in Tables 4 and 5. The NSABP correc-

tions from Table 3 were multiplied by each patient’s 15-year survival estimate from Cancer-

Math to obtain 15-year adjusted predicted survival estimates (Tables 4 and 5). The mortality

fraction was then applied to obtain yearly estimates for predicted overall survival from Years 1

to 14 and random draws from the Uniform(0,1) distribution were utilized to simulate a pre-

dicted survival time for each patient. Observed and predicted yearly survival were compared,

as shown in Fig 1.

Plotted in Fig 1 is observed survival for study participants (aged 20–59, who were ER(-)ER

(-)/PR(-), ER(+)/PR(-), ER(-)/PR(+)) as estimated by the Kaplan-Meier method, as well as

simulated predicted annual survival rates for each arm, after applying the B15 multiplier cor-

rection and the SEER mortality fraction. A: population receiving AC+P. B: population receiv-

ing AC only.

Starting with Year 5, each yearly survival estimate for AC+P (Fig 1A) was statistically signif-

icantly different than the predicted value (p<0.05)–fitting with the published results of

CALGB 9344 noting a statistically significant survival advantage with the addition of paclitaxel

in hormone receptor negative breast cancers. Looking closer, at year 5, predicted and observed

Table 4. Survival estimates by year for CALGB 9344 subsets, observed and predicted–AC+P.

Time N Observed survival (95% CI) Predicted, Adjusted (95% CI) p-value

1 662 0.975 (0.963–0.987) 0.963 (0.949–0.977) 0.193

2 611 0.903 (0.881–0.925) 0.869 (0.844–0.894) 0.046

3 550 0.815 (0.786–0.844) 0.785 (0.754–0.816) 0.171

4 500 0.752 (0.719–0.785) 0.704 (0.669–0.739) 0.053

5 472 0.714 (0.681–0.747) 0.658 (0.623–0.693) 0.024

6 438 0.681 (0.646–0.716) 0.614 (0.577–0.651) 0.01

7 410 0.66 (0.625–0.695) 0.588 (0.551–0.625) 0.006

8 389 0.644 (0.607–0.681) 0.573 (0.536–0.61) 0.008

9 368 0.633 (0.596–0.67) 0.546 (0.509–0.583) 0.001

10 353 0.618 (0.581–0.655) 0.529 (0.492–0.566) <0.001

11 339 0.602 (0.565–0.639) 0.513 (0.476–0.55) <0.001

12 323 0.582 (0.543–0.621) 0.507 (0.47–0.544) 0.007

13 299 0.567 (0.528–0.606) 0.495 (0.458–0.532) 0.009

14 269 0.555 (0.516–0.594) 0.479 (0.442–0.516) 0.006

15 242 0.548 (0.509–0.587) 0.455 (0.418–0.492) <0.001

Columns 2 represents the number at risk for AC+P at yearly intervals. Columns 3 represents the Kaplan-Meier

estimates for overall survival at each year, along with 95% confidence intervals, for the observed data. Columns 4

represents the predicted survival estimates for overall survival at each year, along with 95% confidence intervals.

Columns 5 represents p-values obtained by comparing the observed survival to the predicted survival using two-

sided two-sample Z-tests.

https://doi.org/10.1371/journal.pone.0221336.t004
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survival with AC + P were 65.8% and 71.4% (p = 0.024), respectively; and at years 10 and 15

were 52.9% and 61.8% (p<0.001), and 45.5% and 54.8% (p<0.001), respectively. In contrast,

we failed to reject the null hypothesis that yearly observed estimates and predicted values for

AC (Fig 1B) were significantly different (p>0.05).

Discussion

After refining the CancerMath predictive model with processing of one training set (NSABP

B15) and a receptor-subtype specific yearly mortality increment derived from SEER data, we

were able to accurately predict the yearly mortality for a virtual control group within the vali-

dation set (CALGB 9344) receiving standard of care. We successfully showed that the group

receiving experimental treatment (paclitaxel) along with standard of care (AC) outperformed

the survival prediction made for the virtual control group predicated on treatment being only

standard of care. Underscored further, we were able to reach a conclusion similar to that

reached in the actual study about the benefits of paclitaxel without the need to enroll thousands

of control patients to receive standard of care AC alone. We propose that with the use of a vali-

dated statistical predictive model, a clinical trial could evaluate the benefit of adding a new

therapy to standard of care in a study where all participants receive the new combination and

none receive only standard of care. The predicted outcome for the group would serve as the

control arm. Our successful effort offers proof of principle.

A virtual control group produced by a statistical predictive model is not a historical control,

as the term is commonly used. The construction of a historical control group means matching

an individual trial participant to a single historic individual considered to be similar to him or

her. Reducing an individual to a set of variables and using those variables to predict her out-

come is not the same. Empirically deriving the influence of a variable from multiple historic

Table 5. Survival estimates by year for CALGB 9344 subsets, observed and predicted–AC.

Time N Observed survival (95% CI) Predicted, Adjusted (95% CI) p-value

1 653 0.955 (0.939–0.971) 0.974 (0.962–0.986) 0.057

2 583 0.859 (0.834–0.884) 0.882 (0.858–0.906) 0.194

3 508 0.759 (0.728–0.79) 0.785 (0.754–0.816) 0.251

4 463 0.704 (0.669–0.739) 0.702 (0.669–0.735) 0.936

5 425 0.66 (0.625–0.695) 0.661 (0.626–0.696) 0.969

6 393 0.624 (0.587–0.661) 0.626 (0.591–0.661) 0.939

7 361 0.592 (0.555–0.629) 0.6 (0.563–0.637) 0.766

8 347 0.578 (0.541–0.615) 0.574 (0.537–0.611) 0.882

9 323 0.55 (0.511–0.589) 0.558 (0.521–0.595) 0.772

10 306 0.53 (0.491–0.569) 0.54 (0.503–0.577) 0.717

11 286 0.511 (0.472–0.55) 0.533 (0.496–0.57) 0.425

12 271 0.502 (0.463–0.541) 0.512 (0.475–0.549) 0.717

13 255 0.496 (0.457–0.535) 0.492 (0.455–0.529) 0.885

14 244 0.492 (0.453–0.531) 0.48 (0.443–0.517) 0.664

15 169 0.482 (0.443–0.521) 0.469 (0.432–0.506) 0.637

Columns 2 represents the number at risk for AC at yearly intervals. Columns 3 represents the Kaplan-Meier

estimates for overall survival at each year, along with 95% confidence intervals, for the observed data. Columns 4

represents the predicted survival estimates for overall survival at each year, along with 95% confidence intervals.

Columns 5 represents p-values obtained by comparing the observed survival to the predicted survival using two-

sided two-sample Z-tests.

https://doi.org/10.1371/journal.pone.0221336.t005
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individuals sidesteps idiosyncracies of time, place and randomness. A prediction based on

these variables will be more reliable than one based on perceived similarity to a different

individual.

Current methods of clinical trial design are becoming untenable. Funds for the conduct of

large clinical trials are increasingly limited, and there is great interest in rapid, small single arm

studies aimed at “accelerated approval” of interventions. A virtual control arm would

strengthen phase II or accelerated approval studies that currently have no control arm[3],

while avoiding ethical issues associated with placebo controls.[11] Clinical trials designed

using a virtual control arm would also be more economical, as the control group is now a

mathematical prediction and fewer participants will be required to enroll to complete the

study, Additionally, current studies anticipate their accrual needs using the observed outcomes

of historical groups of people perceived to be similar to the population of interest–a historical

control group. A historical control group is not the same thing as the proposed virtual control

method. The virtual control group is made in real time using variables specific to actual indi-

viduals enrolled in the trial. Accurately predicting the likelihood of an outcome means accu-

rately judging the number of participants in the experimental group needed to demonstrate an

effect on that outcome. Alternatively, a future trial may choose to enroll patients in a trial with

a high ratio of active to standard-of-care (e.g., 5:1 or 10:1). From that trial, one could deter-

mine how well the virtual control predictions match with the observed control, but without

the cost of many control patients. For all of these important reasons, we envision a meaningful

path to employ predictive models to generate virtual control groups.

In the introduction to their book Applied Predictive Modeling, Kuhn and Johnson note “our

abilities to predict or make decisions are constrained by our present and past knowledge and

are affected by factors that we have not considered. These realities are limits of any model, yet

these realities should not prevent us from seeking to improve our process and build better

models.”[12] Testing any predictive statistical model against other retrospective and prospec-

tive datasets as they become available will allow refinement of the variables affecting survival,

inclusion of new variables as they are discovered, and creation of a true actuarial-type predic-

tive model. Predictive models like CancerMath have been developed for cancer diagnoses, and

could be devised for myocardial infarction, head trauma, or any other discrete event which

influences a clinically important end point. Improved predictive statistical models for cancer

and other diseases would not only improve the efficiency of clinical trials, but would also

improve individual patient management as was the intent of the CancerMath creators.

Predictive statistical models require time and money to create and maintain. This has

proven worthwhile for finance and insurance companies whose models make predictions that

are then used to turn a profit. As it regards to health outcomes, a predictive model like Cancer-

Math is useful in individual patient management, and could be useful in the design and analy-

sis of clinical trials, but in neither case can the prediction itself be directly used to make

money. Who then should pay for these models, and how do they get a return on their invest-

ment? We propose that these models should be made and maintained by the federal govern-

ment[13], as it is the role of government to undertake projects which are not in themselves

profitable but that promote the common interest. Besides the very useful SEER dataset, the fed-

eral government is also privy to large private clinical datasets from two overlapping sources:

NIH-funded clinical trials (such as those we were allowed to use) and those submitted by

industry to the FDA. Disease specific models could be readily produced by actuaries using

these rich data sources, perhaps jumpstarting efforts to incorporate validated nomograms into

Fig 1. Predicted vs observed overall survival of CALGB patients receiving either AC+P (Fig 1A) or AC (Fig 1B).

https://doi.org/10.1371/journal.pone.0221336.g001
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clinical practice, the potential benefits of which we have shown with this study. As a public ser-

vice these predictive models could be available to all, and having been created by an impartial

party, generated results would be more credible when used to validate or justify new interven-

tions aimed at improving outcomes.
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