
ORIGINAL RESEARCH
published: 15 October 2018

doi: 10.3389/fpsyt.2018.00478

Frontiers in Psychiatry | www.frontiersin.org 1 October 2018 | Volume 9 | Article 478

Edited by:

Feng Liu,

Tianjin Medical University General

Hospital, China

Reviewed by:

Gabriele Ende,

Zentralinstitut für Seelische

Gesundheit (ZI), Germany

Jeffrey A. Stanley,

Wayne State University School of

Medicine, United States

*Correspondence:

Tieqiao Liu

liutieqiao123@csu.edu.cn

Specialty section:

This article was submitted to

Neuroimaging and Stimulation,

a section of the journal

Frontiers in Psychiatry

Received: 12 May 2018

Accepted: 12 September 2018

Published: 15 October 2018

Citation:

Wu Q, Qi C, Long J, Liao Y, Wang X,

Xie A, Liu J, Hao W, Tang Y, Yang B,

Liu T and Tang J (2018) Metabolites

Alterations in the Medial Prefrontal

Cortex of Methamphetamine Users in

Abstinence: A 1H MRS Study.

Front. Psychiatry 9:478.

doi: 10.3389/fpsyt.2018.00478

Metabolites Alterations in the Medial
Prefrontal Cortex of
Methamphetamine Users in
Abstinence: A 1H MRS Study
Qiuxia Wu 1,2,3,4,5,6,7, Chang Qi 1,2,3,4,5,6, Jiang Long 1,2,3,4,5,6, Yanhui Liao 1,2,3,4,5,6,

Xuyi Wang 1,2,3,4,5,6, An Xie 8, Jianbin Liu 8, Wei Hao 1,2,3,4,5,6, Yiyuan Tang 7, Baozhu Yang 9,

Tieqiao Liu 1,2,3,4,5,6* and Jinsong Tang 1,2,3,4,5,6

1Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China, 2Mental Health

Institute, The Second Xiangya Hospital, Central South University, Changsha, China, 3Chinese National Clinical Research

Center on Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, China, 4National Clinical

Research Center on Mental Disorders, Changsha, China, 5National Technology Institute on Mental Disorders, Changsha,

China, 6Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, China, 7Department of Psychological Sciences,

Texas Tech University, Lubbock, TX, United States, 8Department of Radiology, Hunan Provincial People’s Hospital,

Changsha, China, 9Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States

Background: The medial prefrontal cortex (mPFC) contains various neurotransmitter

systems and plays an important role in drug use. Broad body of literature on how

methamphetamine (MA) affects the structure and metabolism in the animal’s mPFC is

emerging, while the effects on metabolites of mPFC among human is still unclear. In

this study, proton magnetic resonance spectroscopy (¹H MRS) was used to measure

metabolites of mPFC in methamphetamine dependent subjects.

Methods: Sixty-one subjects with a history of MA dependence (fulfiled the Diagnostic

and Statistical Manual of Mental Disorders, fourth edition criteria) and 65 drug-naïve

control subjects (age19–45) completed ¹H MRS scans using 3.0T Siemens MRI

scanner. Single voxel spectra were acquired from the mPFC bilaterally using a point

resolved spectroscopy sequence (PRESS). The ¹H MRS data were automatically fit with

linear combination model for quantification of metabolite levels of n-acetyl-aspartate

(NAA), myo-inositol (mI), glycerophosphocholine plus phosphocholine(GPC+PC),

phosphocreatine plus creatine (PCr+Cr), and glutamate (Glu). Metabolite levels were

reported as ratios to PCr+Cr.

Results: The MA group showed a significant reduction in NAA/PCr+Cr ratio and

elevation in Glu/PCr+Cr ratio and mI/PCr+Cr ratio, compared with healthy control. No

significant correlation was found between metabolite ratios and MA use variables.

Conclusions: MA use is associated with a significant increased Glu/PCr+Cr ratio,

mI/PCr+Cr ratio and reduced NAA/PCr+Cr ratio in the mPFC of MA dependence

subjects. These findings suggest that Glu may play a key role in MA induced neurotoxicity.
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INTRODUCTION

Methamphetamine is one of the most consumed amphetamine-
type stimulants (ATS) worldwide. According to the World Drug
Report 2017 (1), global methamphetamine seizures reached
a new peak of 132 tons, increased 21% than previous year,
accounting for 60–80% of ATS seizures annually. As MA use is
spreading and the treatment demand is growing, evidence on
effective treatment is scarce while MA represents the greatest
global health burden among ATS (1). There is abundant evidence
that MA cause long-lasting impairment to the brain both in
preclinical and clinical research. In preclinical studies, chronic
MA exposure activated microglials (2) and astrocytes, and
increased inflammatory mediators and other oxidative stress
related factors (3). While in human neuroimaging studies
demonstrated that chronic MA use leads to serious brain
changes, including dopaminergic (4, 5), monoaminergic (6), and
serotoninergic (7, 8) neurotransmitter system, cerebral glucose
metabolism (9, 10), structure and integrity (9–11).

1H magnetic resonance spectroscopy (1H MRS) provides
an invasive method to explore the metabolites in the brain.
Previous 1H MRS research on MA dependent (MAD) subjects
shows alterations in n-acetyl-aspartate (NAA) (12–18), choline
(Cho) (12, 13, 16, 17, 19), myo-inositol (mI) (13, 14), and
glutamate (Glu) or Glx (meaning glutamate+glutamine) (15, 20)
concentrations or the ratios of these metabolites to creatine (Cr).
Most of these studies focused on anterior cingulate (12, 16–
18), basal ganglia (13, 19), frontal gray (13) and white matter
(13–15) , with less evidence in the medial prefrontal cortex
(mPFC).

The mPFC is a terminal region of the mesocorticolimbic
dopamine system which has been reported to modulate reward
seeking behavior (21, 22) and is associated with drug addiction
(23). The functional connectivity of the mPFC is decreased
in various mental disorders (24–26), including addiction (27,
28). Previous studies suggested ATS dependent subjects have
smaller volume (29–31) and decreased gray matter density
(32) in the mPFC. To date, there is no report on measuring
metabolite levels in the mPFC in MA users relative to healthy
subjects. The mPFC contains pyramidal glutamatergic neurons
that project to numerous regions (33) and repeated amphetamine
administration alters a-amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) receptor subunits mRNA levels in rat
mPFC (34). Thus, metabolite levels in the mPFC may be
different between methamphetamine dependent (MAD) subjects
and healthy chontrols, especially Glu. In this present study, we
performed a semi-quantitative analysis to quantify the levels of
NAA, mI, GPC+PC, and Glu of the mPFC in MAD subjects. In
this study, we aimed to investigate whether MA use significantly
altered metabolite ratios to PCr+Cr in the mPFC. It was
hypothesized that first, MA use would be associated with altered
metabolite levels in the mPFC, and second, the altered metabolite
levels would be significantly correlated with MA use variables,
including age of first MA use (years old), duration of MA use
(months), and duration of abstinence from MA use (days). In
addition, we explored possible relationship between cigarettes
smoked per day (CPD), Beck Depression Inventory (BDI) score,

State-Trait Anxiety Inventory (STAI) scores and the metabolite
levels in MA users.

METHOD

Subjects
The data were collected as a part of the brain imaging study on
methamphetamine-induced psychotic symptoms, a study hosted
at the Second Xiangya Hospital of Central South University. One
hundred and twenty-six subjects (61 MAD subjects and 65 drug-
free healthy subjects, age 19–45) were enrolled in this study.
Subjects between 18 and 45 years were entitled to participate
in the study. MAD volunteers were recruited from The Kangda
Voluntary Drug Rehabilitation Centers in Hunan Province. All
MA users fulfiled the Diagnostic and Statistical Manual of Mental
Disorders, fourth edition (DSM-IV) criteria (35) for lifetime MA
dependence assessed by the Structured Clinical Interview (SCID)
(36). MAD subjects were excluded if they met criteria for other
substance dependence (excluding nicotine dependence) at any
time. Subjects were required to abstain from MA for at least
48 h before scanning. Drug free healthy control subjects were
recruited from community through advertising. Participants
were excluded if they (i) had any general medical condition or
neurological disorder, including infectious, hepatic or endocrine
disease; (ii) had a history of severe head injury with skull fracture
or loss of consciousness of more than 10min; (iii) had any
current or previous psychiatric disorder; (iv) had a family history
of psychiatric disorder; (v) women during pregnant or breast-
feed stage; (vi) had contraindications for MRI. Two licensed
psychiatrist, at MD level, conducted all clinical interviews.
Subjects were fully informed about the measurement and MRI
scanning in the study. Written informed consent was given by all
subjects. This study was approved by the Ethics Committee of the
Second Xiangya Hospital, Central South University (No. S095,
2013) and was carried out in accordance with the Declaration
of Helsinki. We used the BDI-II to measure the depression
symptoms in the last week before undergoing MRI scans. STAI
was used to measure anxiety level before MRI scanning (STAI-
Y1), and anxiety level as a personal characteristic (STAI-Y2). The
demographic characteristic were shown in Table 1.

Magnetic Resonance Data Acquisition
Structural MRI and MRS data were acquired with a Siemens
MagnetomTrio 3.0 TMR scanner (Siemens, Erlangen, Germany)
using an eight-channel standard quadrature headcoil at the
Magnetic Resonance Center of Hunan provincial People’s
Hospital, China. Three-dimensional T1-weighted images
were collected using a gradient echo sequence (repetition
time = 2,000ms, echo time = 2.26ms, field of view= 256 ×

256mm, flip angle = 8◦, matrix size =256 × 256, number of
slices = 176, slice thickness = 1mm). Using these images, a
single 1H MRS voxel was placed on the corpus callosumand
centered on the intrahemispheric fissure, including medial
superior frontal gyrus and anterior cingulate cortices, not
containing the orbitofrontal cortex (see Figure 1). 1H MRS
was performed using a short-echo point resolved spectroscopy
sequence (PRESS; repetition time= 1,500ms; echo time= 30ms;
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voxel size 30 × 25 × 30mm; number of scans = 256, spectral
bandwidth = 1,200Hz, the number of data points = 1,024
points). Water suppression was achieved using a chemical shift
selective (CHESS) sequence.

1H MRS spectra were automatically fit with linear
combination model (LCModel version 6.3–1B [LCMODEL
Inc. CA (37)] at the Second Affiliated Hospital, Shantou
University Medical College located in Shantou, Guangdong,
China. Metabolite concentration for NAA, PCr+Cr, GPC+PC,
mI and Glu were acquired using LCModel software (Figure 2).
The signal-to-noise ratio (S/N) and full width at half maximum
(FWHM) of each spectrum were checked for quality to ensure
they were adequate for reliable peak fitting for the metabolites
of interest. Only those spectra with FWHM ≤ 0.1 ppm and S/N
≥ 20 were retained. Furthermore, only those metabolite speaks
satisfying the LCModel criterion less than 20% of Cramer-Rao
lower bound (CRLB) value were reported here. PCr+Cr severs
as a reference for other metabolite peaks on the assumption that
its concentration is relatively constant. We first observed that
there was no absolute PCr+Cr difference prior to forming ratios

TABLE 1 | Demographics of participants and MA use variables in MRS study.

Abstinent MAD

subjects (N = 61)

Controls

(N = 65)

P

Age (range) 29.0 ± 5.8

(19–40)

30.0 ± 6.1

(21–45)

0.38

Gender(female/male) 54/7 53/12 0.33

Education(years) 11.5 ± 2.9 12.4 ± 2.6 0.07

BMI 24.0 ± 3.2 22.8 ± 3.2 0.08

CPD 20 (10, 20) 16 (5, 20) <0.01

BDI Score 11.0 ± 7.8 4 (0, 8) <0.01

Total AI Score 75.6 ± 16.0 71.5 ± 16.7 0.17

STAI-Y1 35.0 ± 8.0 33.5 ± 9.9 0.37

STAI-Y2 40.6 ± 9.9 38.0 ± 8.8 0.12

Age started using MA (years old) 23.9 ± 5.7

Duration of MA use (months) 51.2 ± 26.8

Abstinence from using MA(days) 42.7 ± 20.9

with respect to PCr+Cr. The common practice of normalization
by PCr+Cr removd the across-subject variability, which arises
from technical factors, such as coil loading. From these data, the
metabolite ratios of NAA/PCr+Cr, mI/PCr+Cr, Glu/PCr+Cr,
and GPC+PC/PCr+Cr were reported here.

Segmentation was performed on T1-weighted images using
New Segment+DARTEL in Data Processing & Analysis of
Brain Imaging (38). Estimation of tissue volume was collected
from the normalized gray matter, white matter, and cerebro-
spinal fluid (CSF) images using custom Matlab (The Mathworks,
Inc.) code (http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_
totals.m). GM fractions, WM fractions and CSF fractions in the
MAD subjects and controls were shown in Table 2. No statistical
significance was found between the two groups.

Statistical Analysis
Statistical analysis was performed with SPSS 20 (IBM Inc. New
York, USA). Assumption of normality of each variable was
tested with the Shapiro–Wilk test. Because of non-normality
of the data, CPD and BDI scores were compared using a
Mann-Whitney U test, and gender with Chi-square test for
independence. Metabolite concentrations were reported as mean
± standard deviation. General LinearModelmultivariate analysis
was used to evaluate group differences in metabolite ratios
controlling for CPD and gray matter tissue fraction in the
voxle. Correlation analyses between metabolite ratios and each
of clinical parameters, including age, months of MA use, days
of abstinence, age of onset of MA use, CPD, BDI, total STAI
scores, STAI-Y1 score, and STAI-Y2 score were performed
using Pearson’s or Spearman’s correlation analysis, followed by
Bonferroni test. Statistical significance was defined at p < 0.05,
two-tailed.

RESULTS

Demographic Characteristic
The groups did not differ in gender, mean age, BMI, or
years of education (Table 1). The CPD (p < 0.01) in MAD
subjects was higher than those in healthy controls. The BDI
score (p < 0.01) was higher in MAD subjects. There were no

FIGURE 1 | Region of interest in medial prefrontal cortex in coronal, sagittal and transverse views.
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significant differences in the total STAI scores (p = 0.17), STAI-
Y1 (p= 0.37), or STAI-Y2 (p= 0.12) between the two groups.

Tissue Composition Within Voxels of
Interest
Segmentation indicates the fractional contribution of graymatter,
white matter and CSF in the MAD group = 44% gray, 30%
white and 23% CSF and in healthy control group = 46% gray,
32% white and 23% CSF. No differences in the fractions of gray
(p = 0.06), white (p = 0.10), and CSF (p = 0.85) were detected
between MAD subjects and controls.

FWHM, S/N, and CRLB Values of MRS Data
There was no difference between the MAD group and control
group in FWHM (p = 0.23). There was significant difference in

TABLE 2 | Tissue fraction of the region of interest in the mPFC.

Abstinent MAD

subjects (N = 61)

Controls

(N = 65)

P

Gray matter fraction 0.44 ± 0.08 0.46 ± 0.01 0.06

White matter fraction 0.30 ± 0.06 0.32 ± 0.02 0.10

CSF fraction 0.23 ± 0.05 0.23 ± 0.01 0.85

S/N between MAD group and healthy control group (p < 0.01).
There were significant differences between the two groups in
CRLB values for NAA (p < 0.01), mI (p < 0.01), GPC+PC
(p= 0.01) and Glu (p < 0.01) (see Table 3).

1H MRS Metabolite Ratios
The MAD group and control group did not differ significantly
in absolute PCr+Cr values (mean = 6.47 vs. 6.58, p = 0.44),
which served as the denominator for the ratios tested. Compared
with healthy controls, MAD subjects had significant decreased
NAA/PCr+Cr ratios (mean = 1.12 vs. 1.17, p = 0.02), increased

TABLE 3 | FWHM, S/N, and CRLB values between MAD subjects (n=61) and

healthy controls (n = 65).

Abstinent MAD

subjects (N = 61)

Controls

(N = 65)

P

FWHM(ppm) 0.05 (0.05, 0.06) 0.06 (0.048, 0.067) 0.23

S/N 28.85 ± 5.01 37.91 ± 7.96 <0.01

CRLB values for NAA 0.03 (0.03, 0.04) 0.02 (0.02, 0.03) <0.01

CRLB values for mI 0.04 (0.03, 0.04) 0.03 (0.03, 0.04) <0.01

CRLB values for GPC+PC 0.02 (0.02, 0.03) 0.02 (0.02, 0.02) 0.12

CRLB values for Glu 0.06 (0.05, 0.06) 0.05 (0.05, 0.06) <0.01

FIGURE 2 | 1H MRS data.Spectra of the unfiltered data superimposed with the LCModel fit.
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mI/PCr+Cr ratios (mean = 0.85 vs. 0.80, p < 0.01) and
Glu/PCr+Cr ratios (mean = 1.03 vs. 0.95, p < 0.01) in the
mPFC. There was not significant difference in GPC+PC/PCr+Cr
between the two groups (mean = 0.27 vs. 0.27, p = 0.73) (see
Table 4).

1H-MRS Metabolite Levels With MA Use,
Age, CPD, and Anxiety
For the MA users, there were no significant correlation between
ratios of metabolites and MA use variables. There were no
significant correlation between age, CPD and metabolite ratios.

DISCUSSION

There was no significant difference in PCr+Cr levels
between MAD group and control group, so the differences
in NAA/PCr+Cr, mI/PCr+Cr, and Glu/PCr+Cr between
groups are probably due to the differences in NAA, mI and Glu
levels between groups. The first finding of the present study
is that the NAA/PCr+Cr ratio was increased in the mPFC of
MAD subjects. Finding the decreased ratio of NAA/PCr+Cr
among MAD subjects is consistent with previous studies
(12, 16, 18, 39, 40) and as well as other psychiatric disorders
(41). NAA is taken as a neuronal marker, and reflects neuronal
integrity, viability and number (42). NAA plays a key role in
enhancing mitochondrial energy production from Glu (42)
and also reflects functional status of neuronal mitochondria
(43). The changes of NAA/PCr+Cr may reflect adverse neuron
function disorder. Besides, the pathological deletion of dendrite
or degeneration of neuron may be related with decreased NAA.
The present finding suggests that there is decreased neuronal
integrity, viability, number, or mitochondraial dysfunction in
the mPFC in MAD individuals, even though they have been
abstinent from MA.

The second finding is that the ratio of mI/PCr+Cr was
significantly increased in the mPFC of MAD subjects compared
with healthy controls. The increased ratio of mI/PCr+Cr in
MAD group is in line with previous studies, which were reported
in frontal gray matter and white matter of MA users (13, 14, 44).
Mostly mI is considered as a marker of glial (45). Some studies
suggested that Ins is an osmoregulator (46) and contributes
to glucose storage (47) and is a precursor in the PI-cycle
second messenger system (47). Elevation of mI may suggest that
proliferation of glial cells or inflammation due to the damage

TABLE 4 | Metabolite concentrations in the mPFC of MAD subjects (n = 61) and

healthy controls(n = 65).

Abstinent MAD

subjects (N = 61)

Controls

(N = 65)

P

PCr+Cr 6.47 ± 0.83 6.58 ± 0.70 0.44

NAA/PCr+Cr 1.12 ± 0.08 1.17 ± 0.07 0.01

mI//PCr+Cr 0.85 ± 0.09 0.80 ± 0.09 <0.01

GPC+PC/PCr+Cr 0.27 ± 0.03 0.27 ± 0.03 0.78

Glu/PCr+Cr 1.03 ± 0.15 0.95 ± 0.14 <0.01

of neurons induced by methamphetamine, which is a marker of
MA induced neurons damage after NAA decreased. MA has been
reported to induced gliosis in vitro and in animal experiment.
After acute administration ofMA to rats (48) and vervetmonkeys
(49) induced glial activation, and gliosis remains after stopped
exposure one and half a year (49).

The final finding is a significant increase in ratios of
Glu/PCr+Cr in the mPFC of MAD subjects. The most consistent
alteration across MA abuse was reduction in NAA, while change
in Glu was inconsistent. Glx and Glu were reported to be lower in
the mPFC (39), precuneus, posterior cingulate, and right inferior
frontal cortex (20), while Glu was repored to be higher in frontal
white matter of abstinent MAD subjects (15). But the Glu levels
in the posterior gray matter did not differ with HC (15). In
one study, in the frontal gray matter of the MA users, the Glx
concentration reduced during early abstinence, reached relatively
normal after 1–2 months, and exceeded normal levels in longer-
term abstinence (50). In the Crocker’s study, the concentration
levels of Glu in the MA group was reduced relative to HC and
schizophrenia patients (39). In another study, however, Glu levels
in the ACC and DLPFC did not differ between MAD subjects
and controls (12). Several variables may contribute to these
inconsistencies. These studies evaluated different brain regions
and used different field strength. Other variables include the
length of time using MA, dose, frequency of use, duration of
abstinence and the sample size.

This is a relatively large sample study to report of increased
ratio of Glu/PCr+Cr in the mPFC among MAD subjects,
although preclinical studies have found such findings (51–53).
Glu is the major excitatory neurotransmitter, and most of Glu
is present intracellularly. Extracellular Glu released from nerve
terminals is taken up by Glu receptors and Glu transporters
present presynaptically, postsynaptically and extrasynaptically
in glial cells, preventing Glu excitotoxicity (54). Glu in the
glial cells is converted to glutamine (Gln) through an ATP-
dependent process in mitochondria. Gln is subsequently released
from the glial cells and taken up by Gln transporters in
neurons. Gln in neurons is converted back to Glu. This is the
“glutamate–glutamine cycle,” which represents 40–50% of the
total flux from the TCA cycle (54). Therefore, dysfunction of
Glu receptors or Glu transporters may be a possible explanation
for elevated Glu concentration in the mPFC. The elevated
Glu concentration suggests that the Gln converted from Glu
is decreased and decreased activities of glutamateric neurons.
Meanwhile the increased extracellular Glu concentration is
neurotoxic.

In the research conducted by Sailasuta et al., around
36% of normal glial tricarboxylic acid (TCA) cycle rate was
significant reduced in frontal brain of abstinent MA abusers,
which may impact the glutamate-glutamine cyle and thus result
in accumulation of Glu (55). Therefore, the other possible
explanation of the increased Glu concentration in our study is
the consequence of dysfunction of glial cells.

Furthermore, the increased extracellular Glu concentration is
considered as an important factor of relapse. Glutamateric
signal system plays an important role in drug-seeking
behavior. It has been reported that the activation of Glu
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transporter (56), or gene expression of the transporter in
the nucleus accumbens (57) plays an inhibitory role in
MA conditioned place preference (CPP), while mPFC is
acritical region for reactivation of the MA-CPP memory
(58). Glu released from the mPFC stimulates dopamine
release in the ventral tegmental area and the nucleus
accumbens (59), while dopaminergic system is considered
as primary mechanism initiating drug reinstatement (60). In a
preclinical study, the increased expression of the Glu transporter
attenuated the MA-CPP, which reduced drug-seeking behavior
(61).

Limitations
This study has several limitations. First, most of subjects in
this study were men, making it impossible to explore the
influence of gender confidently. Second, the characteristics of
MAD subjects in this study, including the range of duration of
MA use and abstinence, and the drug used in the abstinence
would be possible confounding factors. Third, the study is cross-
sectional, it is unclear whether alterations in these metabolites
would reverse completely during continued abstinence or would
persist. Furthermore, MAD subjects had a higher CPD than
the controls, and this difference was significant. We noted
this difference, controlled this covariate in statistical analysis
process and discussed their possible impacts on our MRS
results. We concluded that this difference in CPD between
the MAD subjects and healthy controls is unlikely to be the
reason for the statistically significant alterations of metabolites
of the mPFC. Our study is a relatively large sample and
we controlled the cigarette smoking when comparing the
metabolites. Finally, there were significant differences between
MAD subjects and controls in the S/N ratios and CRLB
values. But the S/N ratios and CRLB values in both groups
characterize relatively good quality of our data. Future studies
should include more women MAD subjects, measure alterations
longitudinally when MAD subjects using MA (if possible),
at the beginning of abstinence, and after longer duration

(6–24 months) of abstinence, and match subjects’ cigarette
smoking.

CONCLUSION

Our findings suggest that the alterations in ratios of Glu/PCr+Cr
of the mPFC may underlie the pathophysiology of neurological
injury in MA abuse. MA cause the Glu concentration elevation,
which has neurotoxicity and may lead to NAA concentration
decreased and mI increased. This study implicates that Glu plays
an important role in MA dependent disorder, reducing Glu
concentration or increasing the activity of Glu receptors in the
mPFC may be of great clinical significance in the treatment.
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