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Abstract: Adding chelating agents is a critical technique of heavy metal activation for enhancing
phytoextraction through the formation of soluble metal complexes which will be more readily
available for extraction. The preliminary, dynamic, equilibrium activation experiments and speciation
analysis of Pb, Cd and Tl in contaminated red soils were used to select six chelates with relatively
good activation performance from nine chelates, and the effects of dosage and pH on the heavy metals
activation were studied systematically. Results showed that the activation of Pb, Cd and Tl by chelates
reached equilibrium within 2 h, and the activation process showed three stages. Under neutral
conditions, chelates had better activation performance on Pb- and Cd-contaminated soils. Except
for S,S-ethylenediamine disuccinic acid (S,S-EDDS) and citric acid (CA), the maximum equilibrium
activation effect (MEAE) of ethylenediaminetetraacetic acid (EDTA), N,N-bis (carboxymethyl) glutamic
acid (GLDA), diethylenetriaminepentaacetic acid (DTPA) and aminotriacetic acid (NTA) was over
81%. The MEAE of Tl-contaminated soil was less than 15%. The decreasing order of the dosage of
chelating agents corresponding to MEAE for three types of contaminated soils was Pb-, Cd- and
Tl-contaminated soil, relating to the forms of heavy metals, the stability constants of metal–chelates
and the activation of non-target elements Fe in red soil. Under acidic conditions, the activation
efficiencies of chelates decreased to differing degrees in Pb- and Cd-contaminated soils, whereas the
activation efficiencies of chelating agents in Tl-contaminated soils were slightly enhanced.
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1. Introduction

As a consequence of ongoing rapid economic development and expanding urbanization,
increasingly large amounts of waste are being discharged into the soil. Among these wastes,
heavy-metal pollutants, which are well known as high bioaccumulation, recalcitrant, and toxic,
are particularly serious [1–3]. Heavy metals can enter into the human body via the food chain, posing
serious threats to the environment and human health. Therefore, it is essentially important to remove
and control the heavy metals from contaminated soil for its remediation, which has become an urgent
problem to be solved around the world [4,5].
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Compared with the conventional soil remediation methods, phytoremediation is regarded as an
environmentally-friendly, low-cost, highly efficient method; most importantly, it causes less disturbance
to the environment [6,7]. Phytoextraction, as one of the commonly used phytoremediation techniques,
is based on the principle that toxic and harmful substances are transported from contaminated soil to
plant shoots via absorption from the roots of the plant and then removed by harvesting the plants [8–12].
In the Cantabrian Mountains of southern Spain, areas contaminated by heavy metals from slag have
been remediated by means of phytoextraction [13]. As a means of potentially enhancing the efficacy of
phytoextraction, chelation-enhanced phytoextraction technology, which promotes the activation of
heavy metals from the surface of soil particles into the soil by adding chelating agents, has been widely
recognized by the majority of scientific research workers [14,15].

Commonly used chelating agents can be divided into three categories. The first
is aminopolycarboxylic acids (APCAs), such as ethylenediaminetetraacetic acid (EDTA),
diethylenetriaminepentaacetic acid (DTPA), S,S-ethylenediamine disuccinic acid (S,S-EDDS),
aminotriacetic acid (NTA), and l-glutamic acid, N,N-bis (carboxymethyl) glutamic acid (GLDA) [16,17].
These chelating agents have a strong ability to complex Pb and Cd, and consequently promote plant
uptake [18,19]. The second is natural low molecular weight organic acids (NLMWOAs), including
CA (citric acid), OA (oxalic acid), and AA (acetic acid) [20]. The third is surfactants such as RH
(rhamnose) [21]. To date, it has been established that numerous chelating agents exhibit different
degrees of activation for lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn), and other heavy
metals [22–24].

Red soil is a typical type of soil in the south of China with high iron oxide content and low organic
matter content, which has a great impact on chelate activation for heavy metals from contaminated
soil. Red soil areas are also one of the main distribution areas of non-ferrous metal mines, where
heavy metal pollution (such as Pb and Cd) caused by mining is widespread. Moreover, acid rain is
a typical climatic feature in the region of south China. At present, there are few systematic studies
on the activation characteristics of heavy metal pollution in red soil and the effect of acid rain on
activation [25]. In addition, thallium (Tl)-contaminated soil, caused by the excavation activities of
non-ferrous metal mines, is also a typical pollution type. Although Tl is a very toxic element, there is
relatively rare research on chelating-enhanced phytoextraction for Tl [26,27].

In this study, the preliminary, dynamic and equilibrium activation experiments were conducted to
screen typical chelating agents (three types of nine chelating agents EDTA, EDDS, NTA, DTPA, GLDA,
OA, CA, AA, and RH), and the effects of chelating agents dosage and pH conditions on the activation
of Pb-, Cd-, and Tl-contaminated red soils was systematically investigated. Furthermore, combining
with heavy metal speciation analysis, the mechanism of heavy metal activation was investigated,
which provided potential application for selecting appropriate chelating agents for chelate-assisted
phytoremediation of heavy metals in red soil.

2. Materials and Methods

2.1. Materials

2.1.1. Soil Preparation

The soil samples used in this study were collected from the forest top red soil (0–20 cm, red soil)
near a pyrite area (22◦59′25.5” N, 112◦00′40.5” E) in Yunfu, Guangdong Province, China. Soils were
dried under natural conditions. The dried soils were screened to remove large pieces of plant debris
and stones, crushed, sieved through a 4-mm nylon sieve, boxed, and preserved for further use. The
physicochemical properties of the soil sample determined in our previous study [28] are listed in
Table 1.
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Table 1. Physiochemical properties of red soil.

Soil Properties Value

Particle size
<0.002 mm (%) 16.00

0.002–0.02 mm (%) 33.00
0.02–2 mm (%) 53.00

pH 4.5
Available N (mg/kg) 37.80
Available P (mg/kg) 0.90
Available K (mg/kg) 12.10

SOM (g/kg) 15.40
CEC (cmol/kg) 3.30

Total heavy metal concentration (mg/kg)

Pb 52.30
Cd 0.12
Tl 0.63

2.1.2. Preparation of Contaminated Soil

In order to simulate heavy metal pollution in red soil, we artificially added CdCl2·2.5H2O,
Pb(NO3)2, and TlNO3 to the prepared soil to further prepare Pb-, Cd-, and Tl-contaminated soils with
1000, 10 and 10 mg/kg, respectively. The contaminated soils underwent cycles of wetting (70% field
capacity) and drying (air-drying) for 60 days to obtain a geochemical equilibration.

2.1.3. Experimental Reagents

EDTA, DTPA, EDDS, NTA, OA, CA, AA, and RH were all of analytical grade and were purchased
from Zhiyuan Chemical Reagent Co., Ltd. (Tianjin, China), whereas GLDA was purchased from TCI
Chemical Co., Ltd. (Shanghai, China). Solutions of all nine chelating agents were prepared separately
at a concentration of 7.5 mmol/L.

2.2. Experimental Design and Operation

2.2.1. Preliminary and Dynamic Activation Experiment

A 2 h preliminary activation experiment was conducted for each of the three single-contaminated
soils (Pb-, Cd-, and Tl-contaminated soils). Then. according to the experimental results, the chelating
agent with higher activation efficiency was selected for dynamic activation experiment.

For dynamic activation experiments, we set a series of time points for the observation of the
activation effect on heavy metals with the chelating agents selected in the previous step, in order to
study the characteristics of the activation process and determine the sufficient time when the activation
reaches equilibrium, and the corresponding maximum activation efficiency.

The experimental procedures of preliminary and dynamic activation experiments were conducted
as reported by the previous study [29–31]: the prepared contaminated soil (1.0000 ± 0.0001 g) that had
been sieved through a 100 mesh was placed in a 50-mL centrifuge tube in which was added 8.0 mL of
each chelating agent solution and 1 mL of 0.01 mg/L NaNO3 solution to maintain ionic strength. The
water to soil ratio was maintained at 10:1, with the pH under 6.5 by HNO3 and NaOH. After shaking
in a 25 ◦C water bath for 1, 5, 15, 30, 60, 120, 240, and 480 min (preliminary activation experiment,
120 min), the suspension was centrifuged at 3500× g for 5 min and the resulting supernatant was
filtered through a 0.45-micron membrane filter. The concentrations of Cd, Pb, and Tl in the filtrate were
determined by atomic absorption spectrophotometry to calculate the activation efficiency [32]. Each
group of experiments was carried out three times in parallel, a total of 174 groups (27 and 144 groups
for static and dynamic experiment, respectively, and including 3 blank).
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Activation efficiency f was determined using the following equation:

f =
(CM −C0)V

MS
× 100%

where CM was the content of heavy metal in solution after the activation of chelating agent, C0 was the
content of heavy metal in solution without chelating agent, V was volume of solution, and Ms was the
mass of heavy metals in the soil.

2.2.2. Influence of Chelating Agent Dosage and Solution pH on the Activation Effect of Heavy Metals

To assess the influences of the dosage of chelating agents and pH environment conditions on
the activation effect, we designed different dosages of chelating agents to the red soils contaminated
with Pb, Cd, and Tl, fixed the activation time when activation reaches equilibrium (known as the
equilibrium activation experiment), and observed the equilibrium activation effects of heavy metals
under two pH conditions (4 and 6.5, representing acid rain and non-acid rain, respectively). The
specific procedure was as follows.

Different volumes (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0 mL) of the typical chelating agent solutions
selected from the previous experiment were added into the centrifuge tubes, and the solution pH
was adjusted to either 4 or 6.5. The remainder of the procedure was the same as that described in
Section 2.2.1. Each group of experiments was performed three times in parallel for a total of 288 groups.
The activated soil was filtered and dried and left for sequential heavy metal speciation analysis.

2.2.3. Determination of Heavy Metal Speciations before and after Activation

For each of the three types of contaminated soils, a typical chelating agent was selected to examine
the speciation changes of heavy metals before and after activation in the experiment. The specific
procedure used was as follows.

We used a modified BCR three-step sequential extraction method [33] to determine the speciation
of heavy metals before and after soil activation using the following four steps: (1) To examine the
exchangeable fraction, we weighed 0.5 g of soil into a 50-mL centrifuge tube in which was added 20 mL
0.11 M acetic acid (pH = 2.8). The tubes were then shaken in a water bath at 25 ◦C for 16 h, followed
by centrifugation at 3500× g for 15 min. The resulting supernatant was taken out, and subsequently
added to 10 mL of deionized water, followed by shaking for 15 min to ensure that there was no residual
sticky soil, and then the centrifugation was repeated and the supernatant collected. After repeating
this procedure, the resulting supernatant was made up to a final volume of 10 mL. (2) To examine
the reducible fraction, we took the residue from Step 1 and added 20 mL of 0.5 M hydroxylamine
hydrochloride (pH = 1.5). After shaking and centrifugation, the subsequent procedures were the same
as those described in Step 1. (3) To examine the oxidizable fraction, we took the residue from Step 2
and added 5 mL of hydrogen peroxide (pH = 2.2), shaken at 25 ◦C for 1 h, opened the lid and steamed
at 85 ◦C. Thereafter, we added 5 mL of hydrogen peroxide, tightened the lid, and heated for 1 h in a
water bath at 25 ◦C, and then opened the lid to dryness in 85 ◦C, cooled to room temperature, and
added 25 mL of 1 M ammonium acetate (adjusted to pH = 2.0 with nitric acid). (4) The residual fraction
was calculated as the difference between the pseudo-total concentration of heavy metal (Pb, Cd or Tl)
extracted with aqua regia digestion and the sum of heavy metal concentrations in the three fractions
described above.

2.3. Statistical Analysis and Processing Methods

The data were analyzed and plotted using the Origin software package. Data are presented as the
means ± standard deviation (mean values ± SD). All data means were compared using an analysis of
variance (T-test, p < 0.05).
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3. Results

3.1. Screening of Chelating Agents and Dynamic Activation Experiment

The results of the preliminary activation experiments, and activation efficiency of the nine chelating
agents EDTA, EDDS, NTA, GLDA, DTPA, OA, AA, CA, and RH on the soils contaminated with Pb, Cd,
and Tl are shown in Figure 1.

Int. J. Environ. Res. Public Health 2020, 17, x 5 of 15 

 

3. Results 

3.1. Screening of Chelating Agents and Dynamic Activation Experiment 

The results of the preliminary activation experiments, and activation efficiency of the nine 
chelating agents EDTA, EDDS, NTA, GLDA, DTPA, OA, AA, CA, and RH on the soils contaminated 
with Pb, Cd, and Tl are shown in Figure 1. 

 

 

Figure 1. Maximum activation efficiency of Pb (a), Cd (b) and Tl (c) by different chelating agents. 
Error bars indicate the standard deviation (n = 3). 

As can be seen from Figure 1a for Pb-contaminated soils, the descending order of chelates for Pb 
activation ability was EDTA, DTPA, NTA, GLDA, EDDS, CA, OA, AA and RH. The APCA category 
of chelating agents showed a good activation effect, with activation efficiencies in the range of 55.51% 
to 89.16%. The low molecular weight organic acids, except CA with 11.52% activation efficiency, OA, 
AA and surfactant RH showed low activation efficiencies, less than 3%. For Cd in Figure 1b, the 
descending order for Cd activation ability was NTA, GLDA, EDTA, EDDS, DTPA, CA, RH, AA and 
OA. Similarly, the APCA showed a good activation effect, with activation efficiencies in the range of 
64.61% to 94.40%. The low molecule weight organic acids, except for CA with 47.41% activation 
efficiency, OA, AA and surfactant RH also had a low activation property and less than 5%. For Tl-
contaminated soil in Figure 1c, the activation efficiencies of nine chelating agents is low, less than 5%, 
especially of OA, AA, CA, RH which were particularly low, less than 1%. 

Figure 1. Maximum activation efficiency of Pb (a), Cd (b) and Tl (c) by different chelating agents. Error
bars indicate the standard deviation (n = 3).

As can be seen from Figure 1a for Pb-contaminated soils, the descending order of chelates for Pb
activation ability was EDTA, DTPA, NTA, GLDA, EDDS, CA, OA, AA and RH. The APCA category of
chelating agents showed a good activation effect, with activation efficiencies in the range of 55.51% to
89.16%. The low molecular weight organic acids, except CA with 11.52% activation efficiency, OA,
AA and surfactant RH showed low activation efficiencies, less than 3%. For Cd in Figure 1b, the
descending order for Cd activation ability was NTA, GLDA, EDTA, EDDS, DTPA, CA, RH, AA and OA.
Similarly, the APCA showed a good activation effect, with activation efficiencies in the range of 64.61%
to 94.40%. The low molecule weight organic acids, except for CA with 47.41% activation efficiency, OA,
AA and surfactant RH also had a low activation property and less than 5%. For Tl-contaminated soil in
Figure 1c, the activation efficiencies of nine chelating agents is low, less than 5%, especially of OA, AA,
CA, RH which were particularly low, less than 1%.
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Based on the experimental results, the six chelating agents (EDTA, EDDS, NTA, DTPA, GLDA,
and CA) with greater activation efficiency were selected for further study.

The dynamic experimental results with six chelating agents to three types of contaminated soil
are shown in Figure 2. For each of the soils contaminated with Pb, Cd, and Tl, the activation efficiency
of the six typical chelating agents showed similar characteristics over the time, which can be divided
into three stages: fast, slow, and equilibrium, and reached activation equilibrium within 2 h.
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3.2. The Effect of Chelating Agent Dosage and Solution pH on Heavy Metals Activation

The relationship between the dosage of chelating agent and the equilibrium activation efficiency
(EAE) were investigated at different pH levels by equilibrium activation experiment. Figures 3–5 show
the relation curves between the dosage of chelating agents and the EAE of Pb-, Cd- and Tl-contaminated
soils under two pH (6.5, 4) conditions.

(1) Under the condition of neutral pH (6.5): for both Pb- and Cd-contaminated soils (Figures 3
and 4), the change of EAE of the six chelating agents is divided into three stages (fast, slow and
gradually tend to stable) with the increase of the chelating agent dosage, but there were some differences
in the inflection points at which the maximum equilibrium activation efficiency (MEAE) was obtained.

For the Pb-contaminated soil (Figure 3), descending order of MEAE of the six chelating agents
at inflection point was EDTA (90.91%) > NTA (89.62%) > DTPA (89.13%) > GLDA (87.13%) > EDDS
(76.38%) > CA (50.03%), whereas the corresponding chelating agents dosage was EDTA (3.11), NTA,
DTPA, and GLDA (all 4.66), EDDS (9.32), and CA (10.88). With the exception for relatively low EDDS
(76.38%) and CA (50.03%), the MEAE of the other four chelating agents (EDTA, NTA, DTPA, GLDA)
are all above 87%, and the corresponding dosage of chelating agents varies from 3 to 11.
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For the Cd-contaminated soil (Figure 4), the descending order of MEAE of the six chelating agents
at the inflection point was EDTA (86.96%) > DTPA (85.39%) > GLDA (83.69%) > NTA (80.98%) > CA
(76.11%) > EDDS (69.07%), whereas the corresponding chelating agents dosage was EDTA (56.21 unit),
DTPA, GLDA and NTA (all 421.54 unit), CA and EDDS (both 505.85 unit). Similar to Pb-contaminated
soils, the MEAE of CA (76.11%) and EDDS (69.07%) were relatively low, and that of the other four
chelators (EDTA, DTPA, GLDA, NTA) were between 87% and 81%. The corresponding dosage of
chelating agents ranged from 56 to 506 unit, which was much higher than that of Pb-contaminated soil.

The EAE in Tl-contaminated soil differed significantly from that in the Pb- and Cd-contaminated
soils, as the three-stage change pattern was not detected (Figure 5). It is considered that the activation
of heavy metals in this soil was still in the first or second stage. However, it is unnecessary to continue
the observations due to the extremely large dosage of chelating agents. The descending order of the
MEAE under the conditions of this experiment was as follows: EDTA (15.48%) > CA (9.55%) > DTPA
(6.05%) > EDDS (4.57%) > GLDA (3.53%) > NTA (3.31%), all less than 15%. For all kinds of chelating
agents, the dosage of chelating agent is much greater than that of Cd.
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(2) Changes of activation characteristics of chelating agents in acidic pH environment.
For Pb-contaminated soil (Figure 3), the activation efficiencies of the six chelating agents under

neutral conditions were all better than those in an acidic environment. Moreover, the difference of EAE
under two pH conditions is different for several chelating agents. The maximum differences of EAE
for EDTA, NTA, and DTPA are less than 5.46%, and tended to decrease with an increasing dosage of
chelating agent. The most significant differences were observed among EDDS and CA, for which the
difference of EAE was 35.93% and 54.13%, and the difference increased with an increase of chelating
agent dosage. Values for GLDA were intermediate between those of EDDS and CA, with a maximum
difference in EAE of 47.21%, and the difference decreased significantly with an increase in the dosage
of chelating agent.

For Cd-contaminated soil (Figure 4), with the exceptions of NTA and DTPA, which showed slightly
better activation under acidic conditions than in the neutral environment (the maximum difference in
EAE was 1.31 to 4.45%), the remaining four chelating agents all performed better under neutral pH
conditions, among which EDDS and CA showed the most significant differences, with 48.87% and
52.82% respectively. Moreover, the differences increased with an increase in the dosage of chelating
agent. Secondly, the maximum difference in GLDA was 48.50% and decreased with the addition of
chelating agents. EDTA showed the smallest difference in EAE, with a maximum difference of less
than 0.95%.

For the Tl-contaminated soil (Figure 5), the activation effects of the six chelating agents were
slightly better under acidic conditions than in a neutral environment, although the maximum difference
in EAE was no more than 10%.

3.3. Speciation Characteristics of Heavy Metals before and after Activation

In the speciation analysis experiment (Figure 6), we selected three samples, namely, EDTA-activated
Tl-contaminated soil, EDDS-activated Cd-contaminated soil, and CA-activated Pb-contaminated soil,
in order to examine the changes in the speciation characteristics of heavy metals before and after
activation. The results are shown in Figure 6, in which the form of heavy metals is represented by
the horizontal coordinates, arranged in the order of activation from easy to difficult (exchangeable,
reducible, oxidizable, and residual), and the contents of heavy metals in different forms are represented
by the vertical coordinates.

(1) For Pb-contaminated soil, the exchangeable, reducible, oxidizable, and residual fractions of
the heavy metals before activation were 449.77, 445.50, 52.62, and 52.12 mg/kg, accounting for 45%,
45%, 5%, and 5%, respectively. Exchangeable and reducible fractions are the dominant forms, with a
percentage of 90%. After activation, the values were 149.60, 239.47, 38.86, and 42.79 mg/kg, respectively.
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In contrast to the oxidizable and residual fractions, which decreased slightly, the exchangeable and
reducible fractions decreased by 300.17 and 206.03 mg/kg (66.74%, 46.25%), respectively, and by 506.20
mg/kg in total for both fractions, which was similar to the activation efficiency of CA in the activation
experiment. Further calculations showed that the activation by CA was relatively low, as 389.06 mg/kg
of the exchangeable and reducible fractions (accounting for 43.46%) remained unactivated, which
means a strong potential for activation.
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(2) In the Cd-contaminated soils, the exchangeable, reducible, oxidizable, and residual fractions
of the heavy metals before activation were 6.70, 1.66, 0.75, and 0.89 mg/kg, accounting for 67%, 17%,
7%, and 9%, respectively. Exchangeable and reducible fractions are also the dominant forms, with a
percentage of 84%. After activation, Cd in all four speciations decreased in different degrees, with a
total reduction of 7.94 mg/kg, which is essentially consistent with the activation efficiency of 79.04%
mentioned previously (the MEAE of Cd with EDDS under neutral pH). The number of exchangeable
and reducible fractions decreased by 82%, and the remaining 18%, indicating that there was small
potential for further activation.

(3) For Tl-contaminated soils, values for the exchangeable, reducible, oxidizable, and residual
fractions of the heavy metal before activation were 2.1383, 2.0717, 0.8109, and 4.9491 mg/kg, accounting
for 21%, 21%, 8%, and 49%, respectively. Reducible fraction is the most dominant form, followed by
exchangeable fraction, reducible fraction and oxidizable fraction. After chelate activation, the values
changed to 1.0347, 1.9360, 0.7408, and 4.4854 mg/kg, respectively. The total reduction was 1.502 mg/kg,
which is essentially the same as the EDTA activation result of 1.498 mg/kg obtained in the activation
experiment. After activation, only the exchangeable fraction showed a substantial reduction, and
there was still 1.0347 mg/kg (accounting for 48.39%) of the exchangeable fraction which remained
unactivated, indicating the potential for further activation.

4. Discussion

In general, chelating agents activate the heavy metal through the formation of soluble
metal-chelates, which would improve the release of heavy metal on the soil surface, positively
impacting the phytoextraction. However, the activation efficiency of chelating agents comprehensively
depends on the structure of chelating agents, the types and speciation of heavy metals and soil
condition (such as pH). The result of the preliminary experiment demonstrated that the activation
effect of DTPA, EDTA, EDDS, GLDA, NTA, and CA was relatively high, while the activation of low
molecular weight organic acids OA, AA and surfactant RH was particularly low. The activation
efficiency of chelating agents is related to the coordination atoms that they provide [34]. On the basis
of the chemical structure of chelating agents, DTPA, EDTA, EDDS, GLDA, NTA, and CA can form
8, 6, 6, 5, 4 and 4 coordinate bonds, respectively, which enable these agents to capture heavy metal
ions on the surface of soil particles and promote the formation of stable complexes, thus enhancing
the activation efficiency. Oxalic acid (OA) and acetic acid (AA) provide only 2 and 1 coordination
atoms, respectively, and generate insoluble lead oxalate and cadmium oxalate; therefore, the activation
effect of these chelating agents tends to be poor, and even could not be measured by atomic absorption
spectrophotometry in the present work. In addition, the surfactant RH, a bipolar molecule, composed
of a hydrophilic polar head and a hydrophobic non-polar tail, also has a low activation effect. When
rhamnose interacts with heavy metals, the hydrophobic end binds to the contaminant, whereas the
hydrophilic end protrudes outward, with only 2 binding bonds reacting with heavy metals. Thus, the
activation effect is relatively poor [35].

The activation effect of chelating agents can also be explained by the chelate stability constant
(lgK) for the interaction between chelating agents and heavy metals. The higher value of the constant,
the better is the activation effect [36–38]; for example, the values for Cd-EDTA and Cd-GLDA (16.5 and
10.31, respectively) are higher than that for Cd-CA (7.9). Furthermore, the activation effect of chelating
agents is also closely related to the type of heavy metal [39]. We, accordingly, noted the significant
differences in the activation effects for the three heavy metals in the present study.

Based on the dynamic experimental results, for each soil contaminated with Pb, Cd and Tl, the
activation efficiency of the six typical chelating agents show changes in fast, slow and tend to equilibrium
over time. We used quasi-first-order and quasi-second-order kinetic models to simulate the activation
process of heavy metals by chelating agents [40,41], the results showed that pseudo-second-order
kinetic model fits quite well to the activation of Pb, Cd, and Tl for the six selected chelating agents with
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the goodness of fit more than 0.9878, thereby reflecting the chemical activation characteristics of the
chelating agents [42].

The adsorption of heavy metals on soil, particularly red soil, can be classified into non-specific
and specific adsorption [43]. Non-specifically adsorbed heavy metal ions have better activity and
migration ability, and interact readily with chelating agents, resulting in easy desorption from the
surface of soil particles. As to specific adsorption, adsorbed heavy metals tend to have poor activity
and migration ability and they can only be desorbed from the soil by stronger chemical complexation
or chelation. In the process of soil heavy metal activation, non-specifically adsorbed heavy metal ions
are rapidly desorbed into solution at an early stage of activation, and there is an early rapid increase in
the concentration of heavy metals in solution. With increasing time, there is a gradual transition to the
desorption of specifically adsorbed heavy metal ions, and so the activation process becomes slower
and eventually reaches a dynamic equilibrium.

The EAE of the six chelating agents showed a pronounced three-stage pattern of fast, slow, and
relatively stable with an increase of the chelating agents dosage of Pb- and Cd-contaminated soils
under neutral pH conditions. Further statistical analysis shows the EAE of the six chelating agents
approximately obeyed the law of logarithmic change with the increase of the chelating agents dosage,
coefficients of determination ranging from 0.693 to 0.984. In this study, Pb- and Cd-contaminated soils
have better activation effect, which is closely related to the existing forms of Pb and Cd, and most
of them exist in exchangeable and reducible fractions, and these results were consistent with other
researchers [44–46].

The EAE in Tl-contaminated soil differed significantly from that in the Pb- and Cd-contaminated
soils, and the three-stage change pattern was incomplete. Under the present experimental conditions,
the MEAE of Tl is below 15%, which is mainly related to the existential speciation of Tl, the stability
constant of complexation reaction and the activation of non-target element Fe in red soil. In red soil, Tl
mainly existed as residual fraction (based on the results of heavy metal speciation analysis), which
is one of the important reasons for the low activation ability. Second, taking EDTA as an example,
the complexation stability constant (lgK) of Tl is much smaller than that of Pb, Cd (Pb, Cd and Tl,
respectively, 18.0, 16.5, 2.3) [36,47]. In addition, because the complexation stability constant of EDTA
and Fe is higher (lgK = 25.1), and the stability constant of the target element is much lower than Fe,
the activation of the target element will be greatly weakened. Some researches showed that Fe can
occupy the site of ligand, which would weaken the chelated activation to the heavy metal [48–51]. The
activation efficiency of the target element can only be improved by adding larger dosages of chelating
agent; thus, with the dosage of chelating agent for Cd, Tl activation was much higher than that for Pb,
especially Tl.

In practical applications, in order to avoid chelating agents poisoning plants, the activation effect
under the condition of safe dosage is a problem worthy of attention. Taking common tolerant plant
maize as an example, it has been found that the safe dosage of chelating agent (such as EDTA) is
generally less than 3 mmol/kg [52,53]. Using 2.5 mmol/kg as the safe dosage, the maximum activation
effect of various chelating agents was further calculated. Under the safe dosage, for Pb-contaminated
soil, the six chelating agents all achieve the MEAE, EDTA (90.91%) > NTA (89.62%) > DTPA (89.13%) >

GLDA (87.13%) > EDDS (76.38%) > CA (50.03%). For Cd-contaminated soil, only EDTA can achieve the
MEAE (86.96%, when the EDTA dosage was 1.8 mmol/kg), the activation effect of GLDA, DTPA, NTA
can reach 69.31%, 69.08% and 63.95%, respectively, equivalent to 82.29%, 80.61% and 77.22% of the
MEAE. The efficiency of the remaining three chelating agents CA and EDDS were 15.17% and 11.48%,
respectively, under the dosage of 2.5 mmol/kg. For Tl-contaminated soil, the activation efficiencies
of six chelating agents under safe dosage conditions were lower than 3%. It can be seen that under
the condition of safe dosage, the first type of chelating agent (APCAs including EDTA, NTA, DTPA,
GLDA and EDDS) has a good activation efficiency in Pb-contaminated soil and all above 76%. For
Cd-contaminated soil, the activation efficiency of EDTA, GLDA, DTPA and NTA can also be more
than 63%. Furthermore, considering the degradation characteristics of chelating agent and the risk
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of groundwater pollution, DTPA and EDTA are difficult to degrade, so GLDA and NTA are the best
choice for phytoremediation of both Pb- and Cd-contaminated red soils.

In addition, even if EDTA is non-biodegradable, the Pb and Cd chelate formed by it has a limited
migration distance under local red soil conditions and does not affect groundwater [54]. Therefore, it is
considered that the application of an appropriate dosage of chelating agent, even EDTA, will not pose
a threat to groundwater. For Tl-contaminated soil, the activation efficiencies of the six chelating agents
are very low under red soil and safe dosage, and the method of enhancing the activation efficiency
needs further study.

On the basis of the above experimental results, it showed that the six chelating agents had a
better activation effect on Pb- and Cd-contaminated soils under neutral pH conditions. Under acidic
conditions, H+ will combine with chelating agents to form conjugate acids, thereby weakening the
chelating reaction. Moreover, pH affects the stability of chelates between chelating agents and heavy
metals, and it has been found that the stability constants of chelates formed between Pb-/Cd- and
GLDA, EDTA, EDDS, IDSA, HIDS, MGDA are higher at pH = 6.5 than that at pH = 4 [55,56]. For the
Tl-contaminated soil, the activation effects of the six chelating agents were slightly better under acidic
conditions than in a neutral environment, although the maximum difference in activation efficiency
was no more than 10%. This difference may be related to the enhancement of the cation alternating
effect of heavy metal ions with H+ under acidic conditions [28].

5. Conclusions

Based on the experiments of chelating agent activation and speciation analysis of heavy metals in
red soil, the following conclusions were obtained.

(1) The activation of Pb, Cd and Tl in red soil by chelating agent reached equilibrium within 2 h,
and the activation effect showed the dynamic characteristics of three stages (fast, slow and equilibrium),
which was related to non-specific and specific adsorption in red soil.

(2) Under neutral conditions, the equilibrium activation effect (EAE) of the six chelating agents
(EDTA, GLDA, DTPA, NTA, EDDS and CA) approximately obeyed the law of logarithmic change with
the increase of the chelating agents dosage, coefficients of determination ranging from 0.693 to 0.984.
Compared with Tl-contaminated soil, chelating agents had better activation performance on Pb- and
Cd-contaminated soils. Except for EDDS, CA, the maximum equilibrium activation effect (MEAE) of
other chelating agents (EDTA, GLDA, DTPA and NTA) was over 81%, and Pb-contaminated soil was
slightly better, which is closely related to the existing forms of Pb and Cd, and most of them exist in
exchangeable and reducible fractions. Tl activation efficiency is very low (less than 15%), which is
mainly related to the existential speciation of Tl (dominated by residual fraction), the stability constant
of complexation reaction and the activation of non-target element Fe in red soil. Secondly, the order
of the dosage of chelating agents corresponding to MEAE for three types of contaminated soils was
Pb-contaminated soil > Cd-contaminated soil > Tl-contaminated soil.

Under acidic pH conditions, the activation efficiencies of chelating agents decreased in different
degrees in Pb- and Cd-contaminated soils, whereas the activation efficiencies of chelating agents in
Tl-contaminated soils were slightly enhanced.

(3) Taking maize as an example, considering the safe use of chelating agents to plants and the
limited migration of chelated heavy metals in red soil, EDTA, GLDA, DTPA and NTA can be used
as the best chelating agents for phytoremediation in red soil polluted by both Pb and Cd. When
degradation is considered, GLDA and NTA are the best option.
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