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Soft corals of the genus Sinularia are being increasingly adopted to treat a wide variety of disease processes. However, the
mechanism underlying its activity against human oral cancer cells is poorly understood. This study evaluates the cyototoxicity
effects of the genus Sinularia extracts (S. grandilobata, S. parva, S. triangula, S. scabra, S. nanolobata and S. gibberosa) by SCC25
and HaCaT cells. The cell adhesion assay indicates that extracts reduce the cell attachment. Extracts exhibit a dose-dependent
cytotoxic effect using MTS assay.Treatment of extracts to observe the morphological alterations in cells, membrane blebbing,
nuclear condensation, and apoptotic bodies is demonstrated. Flow cytometry shows that extracts sensitized the cells in the G0/G1

and G2/M phases with a concomitant significantly increased sub-G1 fraction, suggesting cell death by apoptosis. Extracts of the
genus Sinularia thus apparently cause apoptosis of SCC25 and HaCaT cells, and warrant further research investigating the possible
antioral cancer compounds in these soft corals.

Copyright © 2009 Guey-Horng Wang et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Medicinal marine organisms are most appropriate for phar-
macological research and drug development, since their
constituents can be employed not only as therapeutic agents,
but also as starting materials or models for synthesis of drugs
of pharmacologically active compounds. Many efforts have
recently been made to identify new therapeutic drugs against
cancer, especially using novel biologically active compounds
from natural marine organisms [1].

Coral growths are a few hundred million years old.
Pressure from the natural selection has led corals to develop
a delicate chemical balance for self protection. Soft corals
(coelenterata, octocorallia, alcyonaceae) are a rich source of
steroids and terpenoids [2, 3], and most isolated diterpenes
are cembranolides [4]. Hence, such chemical toxins may
exhibit various biological activities, such as antitumor,

antimicrobial, and HIV-inhibitory activity. The authors
have previously reported various bioactive metabolites from
marine organisms, including sesquiterpenoids, diterpenoids,
and steroids [5–8]. Many of these metabolites have been
found to be cytotoxic, or to possess other biological activities
[9–11]. However, little thorough cytotoxicity research has
been performed on these soft corals. Therefore, this study
investigates the cytotoxic mechanism of the organic extracts
of six Taiwanese soft corals, namely Sinularia grandilobata, S.
parva, S. triangula, S. scabra, S. nanolobata, and S. gibberosa.

Oral cancer is a significant global public health prob-
lem, causing high morbidity and mortality that have not
improved in decades [12]. Squamous cell carcinomas (SCCs)
are the most common type of oral cancer. Although
new operative techniques and adjuvant measures including
chemotherapy and radiotherapy against oral SCCs have
progressed, patients with advanced oral SCCs still have a
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poor prognosis, with a 5-year survival rate of 65% [13].
Thus, new anticancer drugs are required to enhance current
protocols for diagnosis and treatment of SCCs.

Apoptosis is an important phenomenon in exerting
antitumor response to cancer therapy and is also a valuable
marker for predicting tumor response following anticancer
treatment. Cell death can be apoptotic, or result from
morphological changes such as membrane blebbing, cell
shrinkage, chromatin condensation, and nuclear fragmen-
tation with formation of apoptotic bodies. Translocation
of membrane phosphatidylserine and sub-G1 fraction is a
form of programmed cell death that occurs naturally in
cells and can be beneficial to cancer therapy [14]. Ability to
manipulate the machinery of cell death is an obvious goal
of medical research, and effect on regulation of apoptosis
might lead to new possibilities for oral cancer treatment [15].
Hence, this study evaluated the induction of cell apoptosis
of the genus Sinularia extracts on human SCC25 cells and
premalignant keratinocytes (HaCaT).

2. Materials and Methods

2.1. Material. The six soft corals of the genus Sinularia
including S. grandilobata, S. parva, S. triangula, S. scabra,
S. nanolobata and S. gibberosa were collected by hand via
scuba along the coast of Southern Taiwan, at a depth of
10–15 m and were stored in a freezer until extraction. A
voucher specimen was deposited at the Department of
Marine Biotechnology and Resources, National Sun Yat-Sen
University, Taiwan.

2.2. Preparation of Extracts. The tissues of six soft corals of
the genus Sinularia were freeze-dried and then exhaustively
extracted with ethyl acetate (two times). The ethyl acetate
extracts were then filtered and concentrated under vacuum
to provide a brownish semisolid crude extract. Organic
extracts were dissolved at a concentration of 10 mg/mL in
100% dimethyl sulfoxide (DMSO) at stock solution. Stock
solution was diluted to the desired final concentrations
with growth medium just before use. The final DMSO
concentration did not exceed 0.1%.

2.3. Cell Lines and Cell Culture. Human oral squamous cell
carcinoma (SCC25) cells was purchased from the American
Type Culture Collection (Rockville, Md, USA). Human
premalignant keratinocytic cells (HaCaT) were a kind gift
from Hamm-Ming Sheu (National Cheng Kung Univer-
sity Medical College, Tainan, Taiwan). Cells were cultured
in medium supplemented with 10% fetal bovine serum
(Hazelton Product, Denver, Pa, USA) and 1% penicillin-
streptomycin at 37◦C in 5% CO2; specifically SCC25 cells
in Dulbecco’s Modified Eagle’s Medium/F12 medium and
HaCaT cells in Dulbecco’s Modified Eagle’s Medium medium
(GIBCO, Grand Island, NY, USA).

2.4. Cell Adhesion Assay. Cells (1.5× 105 cells/well) were sub-
cultured into 24-well plates and incubated. After 24 hours of
incubation, the medium was changed by adding DMEM/F12

or DMEM containing 1% bovine serum albumin (BSA)
and with or without serial concentrations ofextracts for 18
hours. Attached cell number was estimated by means of
a DNA carmine-based colorimetric method [16]. Briefly,
cells were fixed with 100% methanol, dried and stained
with alcoholic/HCl carmine. Colorant was extracted with
0.01 N NaOH, and absorbance was determined at 540 nm.
The cell number was estimated using a titration curve of
cell density (SCC25: y = 5 × 10−8x + 0.0143;R2 = 0.9849;
HaCaT: y = 3 × 10−8x + 0.0019;R2 = 0.9904), and results
were given as a percentage of the cell number with respect
to control cells. For the titration curve, cells were plated
at densities ranging form 1 × 103 to 7 × 105 cells/well
in 24-well plates using serial dilutions of concentrated cell
suspensions. After adhesion, some wells of each density
were harvested with trypsin and cells were counted in a
hemacytometer; meanwhile, parallel cultures were fixed and
stained as described before [16]. A relationship between
the cell number and resultant absorbance after the colorant
extraction, for each cell density, was accomplished and cell-
density titration-curve construction, which measured cell
adhesion.

2.5. Growth-Inhibition Assay. Cells (1.5 × 104 cells/well)
were seeded in each 100 μL of 96-well multidishes for
at least 24 hours prior to use. The cells were treated
with serial concentrations of extracts for 18 hours. After
replacing new medium, the effects on cell growth were
determined by a colorimetric tetrazolium MTS [3-(4,5-di-
methyl-thiazol-2-yl)-5-(3-carbox-ymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, inner salt] assay according to
the manufacturer’s procedure (CellTiter 96 AQ, Promega,
Madison, Wis, USA). The absor-bance at 490 nm was
measured by a spectrophotometer (Dydatech, Alexandria,
Va, USA). Values are expressed as the percentage of mean
cell viability is relative to the untreated cultures. The IC50

and IC80 were calculated from the drug concentration
that induced 50% and 80% of cell survival rate. All
determinations were performed in triplicate and statistically
analyzed by Student’s t-test.

2.6. Determination of Morphological Changes of Cells. Cells
(1.5 × 105 cells/well) were plated in 24-well plates then
treated with IC50 concentrations of extracts for 18 hours.
After incubation, the medium was removed and cells
were fixed in 4% paraformaldehyde and permeabilized in
saponin (0.1% v/v in PBS-BSA). Morphological analysis was
performed using phase contrast inverted light microscope
(Nikon, TE2000-U, Japan) at 200× magnification. To assess
specific apoptosis, Hoechst (1 μg/mL) (Sigma, USA) was
added to each well and further incubated at 37◦C for 30
minutes in the dark. Living and apoptotic cells were visual-
ized through blue filter of fluorescence inverted microscope
(Nikon, TE2000-U, Japan) at 200×magnification.

2.7. Assessment of Cell-Cycle Distribution and Apoptotic Cells
by Flow Cytometry. Cells (1.5 × 105) were seeded in 24-
well plates and incubated with or without IC50 and IC80
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Table 1: Percentage of SCC25 and HaCaT cells adhesion by different concentrations of the genus Sinularia extracts.

Cell lines Treatment (μg/mL) No. 1 2 3 4 5 6

SCC25

0 100.0± 0.9 100.0± 1.0 100.0± 0.6 100.0± 3.4 100.0± 2.2 100.0± 1.0

1 74.7± 1.0 118.5± 0.9 105.1± 8.7 94.1± 5.8 110.9± 7.7 101.7± 6.7

5 70.4± 1.9 71.3± 4.8 79.7± 2.9 94.0± 1.9 70.4± 6.7 94.9± 2.5

10 70.4± 1.9 70.4± 3.8 60.3± 3.8 81.4± 2.9 70.4± 1.9 88.2± 8.6

20 71.3± 2.9 69.6± 6.7 59.5± 6.7 99.1± 3.8 71.3± 8.6 88.1± 8.5

40 70.4± 3.8 66.2± 2.9 60.3± 3.8 81.4± 2.9 71.3± 0.9 81.6± 2.9

60 53.5± 7.3 38.3± 0.1 51.0± 2.9 51.0± 6.7 66.2± 2.9 63.7± 1.9

100 41.7± 1.9 21.5± 0.3 44.3± 0.9 53.5± 1.5 55.2± 3.8 49.3± 8.7

HaCaT

0 100.0± 1.8 100.0± 1.6 100.0± 3.4 100.0± 0.9 100.0± 6.2 100.0± 5.4

1 78.4± 1.8 89.9± 2.3 95.7± 2.5 99.3± 3.7 97.4± 4.5 100.0± 2.7

5 80.4± 0.9 91.9± 3.7 97.5± 3.4 95.9± 0.9 88.9± 7.2 84.3± 5.3

10 79.1± 0.9 83.1± 7.6 93.8± 0.1 88.6± 1.8 86.3± 9.8 74.5± 1.8

20 80.4± 8.2 83.8± 8.6 80.9± 0.8 79.9± 2.8 82.4± 1.8 69.3± 1.8

40 77.7± 2.9 81.1± 1.8 74.7± 2.5 75.2± 3.7 79.8± 1.8 69.3± 5.4

60 75.0± 4.6 44.7± 7.4 63.6± 0.9 75.9± 2.0 73.9± 1.7 70.6± 0.5

100 64.2± 8.8 43.3± 9.3 60.5± 0.2 61.8± 2.9 45.8± 4.4 51.7± 4.5

(i) Results are the average of three independent experiments.
(ii) S. grandilobata, 1; S. parva, 2; S. triangula, 3; S. scabra, 4; S. nanolobata, 5; S. gibberosa, 6.

concentrations of extracts for 18 hours. Cells were then fixed
in 70% ethanol/PBS, pelleted and resuspended in buffer
containing 200 μg/mL RNase A and 0.01 mg/mL propidium
iodide (PI). The cells were incubated in the dark for 15
minutes at room temperature and then analyzed by FACScan
Flow Cytometer (Becton Dickinson, San Jose, Calif, USA).
The cell distribution in each phase of the cell cycle was
determined using WinMDI software, including subG1-peak
of apoptotic cells.

2.8. Statistical Analysis. To evaluate the statistical signifi-
cance of the difference of all the values, statistical analysis
was performed on the means of the triplicates of at least three
independent experiments using a two-tailed Student’s t-test.
P values less than .05 were considered significant for all tests.

3. Results

3.1. Influence of the Genus Sinularia Extracts on Cells
Adhesion. To investigate six soft corals of the genus Sin-
ularia extracts (S. grandilobata, S. parva, S. triangula, S.
scabra, S. nanolobata and S. gibberosa) inhibited SCC25
and HaCaT cells adhesion, cells were treated with different
concentrations (0, 1, 5, 10, 20, 40, 60, and 100 μg/mL)
of extracts for 18 hours, and the cell adhesion assay was
performed. Cells remained firmly attached to the culture dish
at low concentrations (<40 μg/mL) of extract, and a cytotoxic
effect was not observed until almost 70% as indicated in
Table 1. The number of attached cells decreased with rising
concentrations of extracts (60–100 μg/mL). This reveals that
high concentration of extracts may affect cell adhesion on
collagen fibers, thus increasing cell cytotoxicity. The cell
adhesion assay shows that the extract of S. parva was the most

effective inhibitor of cell survival and adhesion. However,
cell adhesion alone does not indicate that a cell is alive.
An enzymatic test such as MTS assay is required to further
evaluate the effect of extracts on cell cytotoxicity.

3.2. Growth-Inhibition Assay Effect of the Genus Sinularia
Extracts. MTS assay was conducted to examine the rela-
tionship between concentrations of the genus Sinularia
extracts and the cytotoxicity of SCC25 and HaCaT cells.
Cells were treated with extracts at increasing concentrations
of 0–100 μg/mL for 18 hours, and the percentage of cell
viability was analyzed. Organism extracts were dissolved
in DMSO, and a parallel experiment demonstrated that
the final concentration of DMSO in the medium (0.1%)
did not produce any impact on SCC25 and HaCaT cell
cytotoxicity (data not shown). As revealed in Figure 1, all
of the extracts inhibited SCC25 and HaCaT cell growth in
a dose-dependent manner. The concentrations of extracts
causing 50% and 80% cell growth inhibition (IC50 and
IC80) were determined and are presented in Table 2. The
(IC50)s of S. grandilobata, S. parva, S. triangula, S. scabra,
S. nanolobata and S. gibberosa were approximately 36.7l,
34.0, 32.2, 38.9, 31.4, and 39.1 μg/mL for SCC25, and 33.6,
30.3, 49.1, 26.8, 22.6, and 32.9 μg/mL for HaCaT cells. The
(IC80)s of six extracts were about 75.9, 71.3, 68.7, 93.0, 70.7,
and 127.1 μg/mL for SCC25, and 64.7, 54.2, 80.6, 70.5, 62.5,
and 74.7 μg/mL for HaCaT cells. The cell cytotoxicity assay
demonstrates that S. parva and S. nanolobata exhibited the
highest potency in inhibiting cell growth, and the results are
corresponded to observe with cell adhesion assay.

3.3. Impact of the Genus Sinularia Extracts on Cell Morphology
Changes. A morphological study of SCC25 and HaCaT cells
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Figure 1: Dose-dependency effects of the genus Sinularia extracts on the cell growth inhibition of SCC25 and HaCaT cells. Percentage of
viable in cells treated with 0–100 μg/mL concentrations of Sinularia extracts for 18 hours and determined by MTS assay. Data are means ±
S.D. from three independent experiments. (•) S. grandilobata, 1; (◦) S. parva, 2; (�) S. triangula, 3; (�) S. scabra, 4; (�) S. nanolobata, 5;
and (�) S. gibberosa, 6.

Table 2: Cell viability of the genus Sinularia extracts in SCC25 and HaCaT cells.

No.
Cell lines

SCC25 HaCaT

IC50 (μg/mL) IC80 (μg/mL) IC50 (μg/mL) IC80 (μg/mL)

1 36.7± 5.6 75.9± 3.3 33.6± 3.1 64.7± 1.8

2 34.0± 2.5 71.3± 0.9 30.3± 4.2 54.2± 2.9

3 32.2± 2.9 68.7± 1.8 49.1± 2.3 80.6± 3.7

4 38.9± 1.5 93.0± 4.2 26.8± 5.0 70.5± 3.6

5 31.4± 6.8 70.7± 3.1 22.6± 2.8 62.5± 4.8

6 39.1± 1.9 127.1± 8.7 32.9± 3.7 74.7± 1.5

(i) Results are the average of three independent experiments.
(ii) S. grandilobata, 1; S. parva, 2; S. triangula, 3; S. scabra, 4; S. nanolobata, 5; S. gibberosa, 6.

was undertaken to obtain additional information about the
cytotoxicity of soft corals of the genus Sinularia extracts.
Rounding was observed following incubation with extract
under concentration of IC50 for 18 hours to observe the mor-
phological alterations in the cells. Some sensitive cells were
then detached from the surface, and membrane blebbing
was shown by using a phase-contrast-inverted microscope.
The typical nuclear condensation, nuclear fragmentation,
nuclear shrinking, and apoptotic bodies of the cells were then
demonstrated by Hoechst staining (see Figure 2). Results of
these experiments indicate that the genus Sinularia extracts
cause apoptosis of human SCC25 and HaCaT cells.

3.4. Influence of the Genus Sinularia Extracts on Cell-Cycle
Distribution and Apoptosis. The cell cycle distribution of
SCC25 and HaCaT cells was analyzed with flow cytometry
after exposure to the genus Sinularia extracts (see Figure 3).
Results of treatment of cells with IC50 and IC80 concentra-
tions of extracts reveal that the main character of apoptosis
is the cleavage of nuclear DNA into multiple fragments
and reflected G0/G1 and S-G2/M phase together with a
dose-dependent increase in sub-G1 phase (corresponding
to apoptotic cells). As shown in Table 3, the percentage of
G0/G1, S, and G2/M phases in SCC25 cells incubated with
extracts (IC80) for 18 hours was, respectively, 23.7–77.2%,
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Table 3: The changes of cell cycle distribution of the genus Sinularia extracts in SCC25 and HaCaT cells.

Cell lines No. Treatment (μg/mL)
Sub-G1 phase G0/G1 phase S phase G2/M phase

Mean % Mean % Mean % Mean %

SCC25

Control 0 1.0 100.0 52.3 100.0 19.8 100.0 27.2 100.0

1
IC50 32.5 3250.0 37.7 72.1 16.5 83.3 13.8 50.7

IC80 64.1 6410.0 21.9 41.9 7.3 36.9 6.8 25.0

2
IC50 18.7 1870.0 46.8 89.4 15.7 79.3 19.8 72.8

IC80 58.9 5890.0 24.1 46.1 8.3 41.9 8.8 32.4

3
IC50 23.6 2360.0 54.3 103.8 12.2 61.6 10.5 38.6

IC80 69.8 6980.0 18.6 35.6 6.8 34.4 4.8 17.6

4
IC50 33.4 3340.0 37.7 72.1 14.4 72.7 14.8 54.4

IC80 80.1 8010.0 13.4 25.6 3.6 18.2 3.1 11.4

5
IC50 24.3 2430.0 51.1 97.7 12.5 63.1 12.5 46.0

IC80 36.8 3680.0 40.4 77.2 12.8 64.6 10.3 37.9

6
IC50 33.7 3370.0 32.8 62.7 15.5 78.3 18.3 67.3

IC80 79.6 7960.0 12.4 23.7 4.4 22.2 3.6 13.2

HaCaT

Control 0 0.8 100.0 59.5 100.0 16.2 100 23.7 100.0

1
IC50 35.3 4412.5 34.3 57.6 13.1 80.9 16.7 70.5

IC80 69.4 8675.0 6.7 11.3 7.9 48.8 16.1 67.9

2
IC50 19.4 2425.0 42.8 71.9 17.8 109.9 20.3 85.7

IC80 52.3 6537.5 15.3 25.7 15.1 93.2 17.4 73.4

3
IC50 25.1 3137.5 45.2 76.0 16.4 101.2 13.9 58.6

IC80 56.1 7012.5 13.2 22.2 16.1 100 15.1 63.7

4
IC50 39.1 4887.5 38.2 64.2 13.1 80.9 9.6 40.5

IC80 71.3 8912.5 8.1 13.6 9.9 61.1 10.9 46.0

5
IC50 35.8 4475.0 35.4 59.5 15.4 95.1 13.8 58.2

IC80 58.9 7362.5 11.9 20.0 14.3 88.3 15.1 63.7

6
IC50 57.4 7175.0 10.2 17.1 12.8 79.0 19.7 83.1

IC80 72.9 9112.5 5.5 9.2 8.3 51.2 13.3 56.1

(i) S. grandilobata, 1; S. parva, 2; S. triangula, 3; S. scabra, 4; S. nanolobata, 5; S. gibberosa, 6.

18.2–64.6%, and 11.4–37.9% less than those in control cells.
The sub-G1 fraction of apoptotic SCC25 cells following
incubation with (IC80)-treated cells was around 36.8–79.6
times that of control cells. The percentage of sub-G1 phases
in (IC80)-treated HaCaT cells was approximately 65.3–91.1
times that in untreated control cells. The G0/G1 and G2/M
phase fractions were, respectively, about 9.2–25.7% and
46.0–76.4% less in the (IC80)-treated cells than in the control
cells, and not much change in the S phase populations. The
apoptotic cell death induced by treatment with Sinularia
extracts by flow cytometry was thus very similar to that seen
with Hoechst staining (see Figure 2). These results show that
the genus Sinularia extracts-mediated inhibition of SCC25
and HaCaT cells viability might predominantly induce cells
from the G0/G1 and G2/M phases to apoptosis.

4. Discussion

Oral cancer, which is one of the most disfiguring cancers,
may lead to facial distortion. It is also known to exhibit
field cancerization, resulting in development of second
primary tumors [12]. Consequently, the development of new

antioral cancer drugs, and study of their medicinal value,
has become highly significant. The marine environment is a
major reservoir of bioactive natural products with potential
biomedical application; several marine natural products
are seen as potential sources of therapeutic agents for the
treatment of multiple disease categories. The majority of
marine natural products and their derivatives are formed
from invertebrates including soft corals, sponges, tunicates,
mollusks, or bryozoans and are currently in advanced
preclinical evaluation [1]. However, relatively few attempts
have been made to explore resources of structurally unique
chemistry for cytotoxic mechanism. This study presents
the action mechanism of soft corals of the genus Sinularia
extracts (S. grandilobata, S. parva, S. triangula, S. scabra,
S. nanolobata and S. gibberosa) in the most common type
of human oral squamous cell carcinomas SCC25 cells and
human premalignant keratinocytes HaCaT cells. The cell
adhesion and cell viability assays demonstrate the cytotox-
icity effects of six extracts on both cells. Extracts induced
morphological changes of chromatin condensation, DNA
fragmentation, and sub-G1 peak in a DNA histogram of
SCC25 and HaCaT cells, indicating cell death by apoptosis.
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Figure 3: Effect of the genus Sinularia extracts on SCC25 and HaCaT cells apoptosis. Flow cytometric analysis of the cell cycle distribution
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The previously characterized genus Sinularia of sec-
ondary metabolites is mainly chemicals that are structurally
related to terpenoids. Previous studies have indicated that
sinugrandisterols A-D, trihydroxysteroids, and oxygenated
terpenoids from the S. grandilobata impede the proliferation
of different cancer cell lines, such as human liver carci-
noma (HepG2 and Hepa59T/VGH), human breast cancer
cells (MCF-7 and MDA-MB-231), human oral epidermoid
carcinoma (KB), and human lung cancer cells (A549) [16].
Three norcembrane-base diterpenoids, leptocladolide A, 1-
epi-leptocladolide A, 7E-leptocladolide A and ineleganoid
were isolated from Taiwanese soft coral S. parva, and
these compounds have been revealed to exhibit significant
cytotoxic activity against KB and Hepa59T/VGH cancer cell
line [17]. Four amphilectane-type diterpenoids, sinulobatins
A-D [18], two norsesquiterpenoids, nanonorcaryophyllenes
A-B, two diterpenoids, nanolobatins A-B, nordoterpenoids
nanolobatin C, (+)-5-hydroxymethyl-5-methylfuran-2-one,
and (+)-5-acetoxymethyl-5-methylfuran-2-one were iso-
lated from the S. nanolobata. Sinulobatins A-D and nanolo-
batins A-B exhibited moderate cytotoxicity against KB
cancer cells. Nanonorcaryophyllenes A-B and nanolobatin C
demonstrated no significant cytotoxicity against the tested
cell lines, such as KB cells [19]. Additionally, previous
reports have shown that polyoxygenated sterols from the for-
mosan soft coral Sinularia gibberosa significantly inhibit the
upregulation of the proinflammatory inducible nitric oxide
synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins of
LPS (lipopolysaccharide)-stimulated RAW264.7 macrophage
cells and cytotoxic activity against HepG2 (human liver car-
cinoma), MCF-7, MDA-MB-23 (human breast carcinoma),
and A549 (human lung carcinoma) cells [20]. Extracts of soft
corals Sinularia compressa have been adopted to explore the
antibacterial potential of Bacillus pumilus and Pseudomonas
vesicularis [21]. In this work, cell adhesion and cytotoxicity
assay indicated that soft corals of the genus Sinularia extracts
prevented SCC25 and HaCaT cell growth in a concentration-
dependent manner. Moreover, the extracts of S. parva and S.
nanolobata were found to be more effective inhibitors of cell
viability than S. grandilobata, S. triangula, S. scabra, and S.
gibberosa, suggesting the S. parva and S. nanolobata extracts
could be investigated in the further to forage for a potential
antioral cancer compounds. In the previous research, it was
found that cembranoids extracted from S. parva and S.
nanolobata showed cytotoxicity in some cell lines [17–19].
Nevertheless, the intrinsic structure and properties of these
six soft corals are still not to be clarified. Additionally, the
relation yield of compounds purified form soft corals is
too few to carry out apoptosis experiments. This study is
a preliminary test for cytotoxic activity of soft corals, and
very few correlated researches could be found. At least, these
results could provide the useful information to determine
whether it is worthy to further isolate the natural product
or not.

As previously reported, acylspermidines from the soft
coral, Sinularia Sp. showed potent cytotoxicity against A431
cells [22] and NAKATA cells [23], and induced apoptotic
DNA fragmentation and condensation of chromatin in A431
cells obtained from SCC [24]. In this study, morphologic

alterations, nuclear chromatin condensation, and formation
of apoptotic bodies indicate that extracts of soft corals of
the genus Sinularia are cytotoxic. The cell cycle distribution
demonstrates that extracts sensitized the cells in the G0/G1

and G2/M phases with a concomitant significant increase
in the sub-G1fraction. Experimental results of this work
indicate that extracts from soft corals of the genus Sinularia
kill not only SCC25, but also HaCaT cells through apop-
tosis. In summary, these studies demonstrate that the soft
corals of the genus Sinularia extracts could be a warrant
further research investigating the possible antioral cancer
compounds in these medicinal marine organisms of soft
corals.
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