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HarmonizR enables data harmonization across
independent proteomic datasets with appropriate
handling of missing values
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Philipp Neumann 2, Hartmut Schlüter 1, Julia E. Neumann 3,5,7✉ & Christoph Krisp 1,7✉

Dataset integration is common practice to overcome limitations in statistically underpowered

omics datasets. Proteome datasets display high technical variability and frequent missing

values. Sophisticated strategies for batch effect reduction are lacking or rely on error-prone

data imputation. Here we introduce HarmonizR, a data harmonization tool with appropriate

missing value handling. The method exploits the structure of available data and matrix

dissection for minimal data loss, without data imputation. This strategy implements two

common batch effect reduction methods—ComBat and limma (removeBatchEffect()). The

HarmonizR strategy, evaluated on four exemplarily analyzed datasets with up to 23 batches,

demonstrated successful data harmonization for different tissue preservation techniques,

LC-MS/MS instrumentation setups, and quantification approaches. Compared to data

imputation methods, HarmonizR was more efficient and performed superior regarding the

detection of significant proteins. HarmonizR is an efficient tool for missing data tolerant

experimental variance reduction and is easily adjustable for individual dataset properties and

user preferences.
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Omics experiments result in high dimensional data of
different modality, including DNA-methylation profiles,
the transcriptome, the proteome, and/or the metabolome.

Regardless of the omics type, statistical validity of individually
measured cohorts is often limited due to relatively small sample
numbers. Data integration across multiple, individually con-
ducted studies can efficiently increase cohort sizes. However, the
integration of independent experimental settings requires the
reduction of technically induced variances—so-called batch
effects.

Commonly studied omics types, such as transcriptome and
DNA-methylation data, are acquired on a limited number of
platforms and inherit a relatively high comparability and data
completeness across experiments. In these settings, batch effect
reduction is well established1,2. In contrast, emerging technologies
such as proteomics and single-cell-RNA sequencing suffer from
low data completeness and high experimental variances across
different quantification platforms and experimental setups3,4. To
our knowledge, no large-scale data integration across indepen-
dently generated proteomic datasets has been performed yet, while
the topic of batch effect reduction has been addressed frequently
for single cell RNA sequencing data5. Most of these tools are highly
specific to single-cell RNA- sequencing data and cannot easily be
adapted to other omics types (Sanorama6, scGene7, and Seurat8).
Among the algorithms which are compatible with proteomic data,
most strategies implement unsupervised non-linear dimension
reduction methods such as principal component analysis (PCA) or
t-distributed stochastic neighbor embedding (t-SNE) (Harmony9,
LIGER5, deepMNN10, MMD-resnet10). Those standard multi-
variate exploratory methods use matrix algebra to produce an
ordination of observations and require a complete data matrix by
default. In contrast, limma’s removeBatchEffect() function depends
on a linear regression model11. Finally, the most prominent tool—
ComBat—is based on an empirical Bayes framework, enabling
parametric and non-parametric batch effect reduction depending
on, whether the user expects Gaussian or non-normally distributed
data12. ComBat’s, as well as limma’s removeBatchEffect() function’s
usage context, is limited to values missing in individual samples,
whilst requiring features to be present in each batch. Hence, fea-
tures not represented in all batches are excluded and datasets are
restricted to common observations, dismissing valuable quantita-
tive information.

Therefore, a major limitation when applying established batch
effect reduction strategies to proteomic data is the inability of all
approaches described above, to deal with missing values. Missing

values are strongly represented in proteomic datasets and will be
even more pronounced when integrating multiple cohorts or
batches.

To bypass the missing value problem, data imputation may be
applied13,14. However, the imputation of unknown scores based
on existing values—frequently used in the context of batch effect
reduction for proteomic data—is highly error prone13. Only truly
missing scores, absent due to random effects can be imputed
mathematically correct15. Quantitative information for peptides
or proteins missing in an entire batch inherits a causality
regarding the experimental setting or sample cohort. As shown
for example by Cuklina et al., imputing these values for proteomic
data can skew batch effects, resulting in incorrectly adjusted
values and lead to false biological conclusions from batch-
corrected proteomic datasets16. Therefore, the group integrated
quantile and median normalization into their “probatch” package,
disregarding more advanced approaches.

To overcome the lack of applicability of complex batch effect
reduction algorithms to incomplete proteomic datasets, we
developed the HarmonizR framework. HarmonizR allows hand-
ling of missing values by matrix dissection without the need for
imputation or data reduction. In this framework, we integrated
the two most predominately used, not on PCA-based methods for
batch effect reduction—ComBat and the removeBatchEffect()
function integrated in the limma package. Thus, HarmonizR
enables missing data tolerant reduction of experimental variances
in accordance with individual dataset properties and user pre-
ferences as a post processing step after database-driven protein
identification. In the following, we show that HarmonizR-based
integration of independent proteomic datasets, acquired from
different tissue types, by different quantification strategies and
instrumental setups is possible.

Results
The HarmonizR principle. The HarmonizR framework is sket-
ched in Fig. 1 (https://github.com/SimonSchlumbohm/HarmonizR).
First, individual preprocessed datasets, which stem from different
experiments, are combined in a matrix, including all samples and all
proteins, that were detected in at least one batch. The core of Har-
monizR is the missing value-dependent matrix dissection, that
enables batch effect correction on sub-matrices. The algorithm is
executed by calling the function harmonizR() (details on execution
can be found in the HarmonizR SOP; see “Code availability” sec-
tion). Initially, HarmonizR scans the input matrix for missing values.

Fig. 1 The general HarmonizR operation principle. Schematic representation of the HarmonizR operation principle for batch effect reduction across
independent proteomic studies.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31007-x

2 NATURE COMMUNICATIONS |         (2022) 13:3523 | https://doi.org/10.1038/s41467-022-31007-x | www.nature.com/naturecommunications

https://github.com/SimonSchlumbohm/HarmonizR
www.nature.com/naturecommunications


A batch is declared as missing if there are <2 values found for the
respective protein. Sub-data frames are generated based on the batch
count distribution of proteins. In a subsequent step, the selected
batch effect correction method is executed for each sub-data frame.
Proteins found in only one batch do not undergo harmonization.
Based on the distribution of the data, the user can choose between
limma’s removeBatchEffect() function or ComBat—the latter
enabling parametric and non-parametric batch effect reduction—
with or without scale adjustment. Finally, the corrected sub-matrices
are merged to build up a ‘harmonized’, rejoined matrix (Fig. 1).
Proteins found in only one batch are then added to this rejoined
matrix.

When combining multiple datasets, missing values are
introduced with each new batch. Therefore, the number of
possible sub-matrices grows with the number of batches. For a
dataset containing only two batches, three sub-matrices are
built, of which the sub-matrix containing proteins appearing in
both batches will be batch corrected. For three batches, there
will be seven sub-matrices, of which t3 ¼ 4 sub-matrices
contain proteins appearing in two or more batches. The
maximum number of available combinations tn for batch-
corrected sub-matrix construction given n batches, thus evolves
naturally from

tn ¼ ∑
n

k¼2

n

k

� �
ð1Þ

with the usual binomial coefficient ðnkÞ. For example, when
calculating the number of possible sub-matrices for 20 batches,
the equation results in more than 106 sub-matrices. However,
this greatly exceeds the number of possible proteins/genes
within a given dataset, in practice yielding a much lower upper
limit. Moreover, in practice it is very unlikely for every batch
combination to appear in a real-world scenario. Since the
performance of HarmonizR is mostly dominated by the runtime
and corresponding complexity of many independent ComBat/
limma calls, these are executed in parallel within the
HarmonizR framework to reduce processing time. The overall
runtime and speed-up relative to the available cores can be
viewed in Fig. 6 and Supplementary Fig. 1. Finally, the R-based
HarmonizR strategy was also made available through Perseus—
one of the most used software for statistical proteome analyses
—by provisioning a Perseus plugin17 (Supplementary
Information).

HarmonizR versus imputation-based strategies. To test, whe-
ther technical batch effects caused by different LC-MS/MS
instrumentation setups can be successfully reduced, we used a
clearly defined setting first. Distinguishable phenotypes were
generated by combining defined amounts of human, E. coli, and
yeast cell lysates (Phenotype 1: 80% human, 10% E. coli, 10%
yeast; phenotype 2: 80% human, 15% E. coli, 5% yeast, Fig. 2a).
LC-MS/MS data on technical triplicates for each condition were
acquired with three different LC-MS/MS setups (SWATH-Triple
TOF 6600; DIA-QExactive, DDA-QExactive). To visualize the
obtained protein fold changes between phenotype 1 and 2 for
each of the three different quantification strategies, volcano plots
showing the expected protein fold changes were generated
(Fig. 2b). Combining all three datasets, only 34.62% of proteins
(n= 1880) could be identified in all batches and an additional
1094 proteins (22.9%) were identified by at least two setups.
Therefore, 2974 proteins required batch effect correction. In
addition, 2569 Proteins were found in only one of the setups. As
three different species result in a trimodal probability distribution
of protein abundances, only the application of the non-
parametric Bayes framework, implemented in the ComBat

algorithm, was found to be applicable, as it does not presume a
Gaussian probability distribution. For standard ComBat, at least
one value in each batch is required for batch effect correction.
Hence, 57.3% of the values must be omitted or imputed by
artificial values.

To initially evaluate the applicability of HarmonizR (ComBat
mode; non-parametric; L/S scaling) for missing value tolerant
batch effect correction, the new framework (Strategy 1) was
compared to

– ComBat after imputation of missing values from the normal
distribution; matrix wise (Strategy 2);

– ComBat after imputation of missing values from the normal
distribution; column wise (Strategy 3);

– ComBat after random forest (RF) imputation of missing
values (Strategy 4);

– RF-based imputation of missing values after HarmonizR—
based ComBat batch effect reduction (Strategy 5, Fig. 2a).

Hierarchical Clustering (HC) revealed a clustering according to
the LC-MS/MS setup for combined, uncorrected data. The
application of batch effect correction strategies 1–4 resulted in a
clear distinguishability of phenotypes 1 and 2 (Fig. 2c), which was
also observable after the usage of unmodified ComBat, based on
1880 proteins (Supplementary Fig. 2). RF imputation after
HarmonizR (Strategy 5) reimplemented technical variances
(Fig. 2c). To further investigate the impact of different strategies
on the protein abundance distribution in individual samples, the
correlation coefficient was calculated between similar samples
measures with the same experimental setup (Phenotype 1;
QExactive DDA vs QExactive DDA, Fig. 2d, upper panels,
Supplementary Figs. 3–8) and different experimental methods
(Phenotype 1; QExactive DDA vs Triple TOF 6600 SWATH,
Fig. 2d). Before batch effect correction 99% linear correlation
could be observed for the same setup (Fig. 2d and Supplementary
Figs. 3–8). Between DDA and SWATH, the correlation coefficient
dropped to 0.66 (Fig. 2d and Supplementary Figs. 3–8). For both
Strategy 1 and 4, correlation coefficients between the same or
different setups were higher (Fig. 2d and Supplementary
Figs. 3–8). Moreover, the linearity reduced for low abundant
proteins after batch effect correction for Strategies 2 and 3. For RF
imputation after HarmonizR (Strategy 5), a skewed linear
behavior could be observed (Fig. 2d and Supplementary Figs. 3–8).
In all cases, batch effect correction led to a higher number of
statistically significant classified yeast and E. coli proteins,
combined with an evident decrease of p-values compared to
individual experimental setups (Fig. 2b, e) and combined
unharmonized data (Fig. 2e). Independent of the used strategy,
the number of significant proteins, identifiable from DDA,
SWATH, or DIA data alone changed after data harmonization,
except for HarmonizR (Fig. 2f). In addition, more proteins could
be correctly assigned to expected p-values and foldchanges
between phenotype 1 and 2 (TN, TP) from integrated and
harmonized data, while distribution patterns and quality of the
original sub-data frames were retained. (Supplementary Fig. 10)

Log2 fold change differences between phenotype 1 and 2, on the
other hand, were not significantly impacted by data combination
and correction using Strategies 1, 3, 4 and 5 compared to DIA,
DDA and SWATH observations alone. Only matrix wise
imputation based on the normal distribution artificially increased
abundance differences (Strategy 2, Fig. 2b, e). Of all strategies, only
HarmonizR matched the expected difference of mean protein
abundance (Supplementary Figs. 9, 10).

Overall, only HarmonizR (Strategy 1) and RF imputation
prior to ComBat (Strategy 4) reduced batch effects, increased
the correlation coefficient between samples that were acquired
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with different setups (while retaining the linearity between
technical replicates) and sufficiently improved statistical metrics
for combined data. However, HarmonizR was much easier to
apply (no imputation steps and removal of artificial data
necessary) and additionally maintained statistical metrics given
in the original datasets individually for DDA, SWATH, and
DIA (Fig. 2g).

Harmonization across time points and tissue preservations. A
predominate source of variation between proteomic experiments
conducted in similar mass spectrometric setups are the tissue
preservation method and the time of analysis. In order to test the
reduction of these technical effects using limma’s removeBatch-
Effect() function or parametric ComBat in the HarmonizR fra-
mework, differently processed samples of an established Sonic
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hedgehog (Shh) medulloblastoma mouse model (hGFAP-cre::S-
moM2Fl/+)18 were analyzed. In detail, cerebellar tumors of
hGFAP-cre::SmoM2Fl/+ mice and control cerebella of littermate
SmoM2Fl+ mice were bisected. One half was snap frozen at−80 °C
(fresh frozen (FF) condition). The other half was Formalin fixated,
and paraffin-embedded (FFPE condition). Experiments were
repeated to vary the time of analysis (timepoint 1 and 2, Fig. 3a),
resulting in four technical batches. Performing separate database
searching for each batch, to mimic independently generated stu-
dies, 3530 proteins were identified, whilst only 1002 (28.4%) were
identifiable in all batches. 1374 proteins (38.9%) were additionally
identified in at two or three batches, while 1154 candidates (32.7%)
were found in one batch (Fig. 3b) exclusively. Thus, 71.6% of the
data was not subjectable to unmodified limma/Combat without
imputation. HC revealed a batch-based clustering for combined,
uncorrected data (Fig. 3c). As shown for unmodified limma and
ComBat alone, (Supplementary Fig. 11), batch effect reduction,
using HarmonizR (ComBat/limma) corrected the data and resulted
in a clear distinguishability of the phenotypes; in this case tumor
and control, while considering a significantly higher number of
proteins. At the same time no remaining separation based on tissue
type or preparation timepoint was observable (Fig. 3c). Despite
equal distribution of phenotypes across batches, the sample-specific
mean and coefficient of variance (CV) differed prior to normal-
ization (Fig. 3c, lower left panels). As activated Shh signaling is
driving Shh medulloblastoma growth, we looked at coverage of the
Shh signaling network (Fig. 3d). Only 20 out of 71 identified
proteins (28%) could be considered by standard strategies. In
contrast, HarmonizR was able to consider 100% of the Shh sig-
naling pathway-associated proteins that were found by LC-MS/MS
in at least one batch (Fig. 3d).

To further evaluate the impact of batch effect reduction on
individual proteins, the abundance distribution of the Shh
medulloblastoma biomarker Filamin (FLNA)19 was assessed
prior to and after batch effect adjustment. While a 11-fold higher
FLNA abundance could be detected in tumor samples prior to
and after HarmonizR usage, the −log (p-value) significantly
increased (Fig. 3e).

Of note batch effect reduction was also required when datasets
were processed together from raw LC-MS/MS files, allowing.
Here, missing values are rescued by aligning and matching peaks
across different LC-MS/MS runs while non-biological variances
are reduced by chromatographic alignment. Using the Minora
Algorithm, 4786 proteins were quantified in total. While a higher
data completeness (75.8% of all proteins were found in all
batches) was obtained 24.8% of all identified proteins required
HarmonizR-based matrix dissection for batch effect reduction.
(Supplementary Fig. 12).

Comparing HarmonizR (limma) to HarmonizR (Combat),
only slight differences could be observed. Both techniques
significantly reduced technical variances. Between tumor and
control mice, 887 additional proteins showed significant t-test
differences for both algorithms compared to uncorrected data.
However, only a small number of candidates was considered
significant after using HarmonizR with a specific algorithm
(ComBat: 67 Proteins, limma: 36 proteins) (Fig. 3f).

Next, we tested the applicability of a HarmonizR-based strategy
for data harmonization across different quantification platforms.
Therefore, a dataset on “spike-in stable isotope labeling by amino
acids in cell culture” (spike-in SILAC), “Tandem Mass Tag”
(TMT), and “Data depended acquisition” (DDA) mode “Label
free quantification” (LFQ) quantified proteins, published by
Stepath et al. in 201920 was used.

The dataset contained data on HiFi cells with or without
cetuximab treatment after 0, 3, and 24 h. Data acquisition was
performed in quadruplicates. In this work, the authors describe a
distinguishability of the 24 h treated condition from all other
conditions for spike-in SILAC and LFQ quantified proteins. This
effect could not be observed based on TMT quantified proteins.
Prior to comprehensive data harmonization of TMT, spike-in
SILAC, and LFQ data, quantification technique-specific data
normalization was performed for individual datasets. Spike-in
SILAC and LFQ data were normalized by column-wise median
subtraction. TMT-based quantification of four TMT 8-plexes
required internal TMT batch adjustment prior to quantification
strategy-based adjustment. According to Stepath et al., internal
reference scaling (iRS) was carried out at the protein level, based
on two reference samples, integrated in each batch, to reduce
TMT batch effects20.

As iRS depends on the usage of internal references, TMT data
cannot be integrated independently of the conducted experiment.
Furthermore, the use of individual samples for batch effect
adjustment is very prone to experimental inaccuracies.

Therefore, the applicability of HarmonizR was evaluated for
TMT data and compared to iRS at the peptide and protein level
(Fig. 4a).

Comparing HarmonizR to iRs for TMT Batch effect reduction.
In total, 12615 peptides, corresponding to 2579 proteins, were
identified. 35% of peptides and 57.3% of the proteins were found
in all 4 TMT batches (Fig. 4b, c).

As a Gaussian probability distribution and divergent sample-
specific mean and CV could be observed at peptide and protein
level, L/S scaling within ComBat’s parametric Bayes Framework
was used as an example to be compared to iRS (Fig. 4d, e).

Fig. 2 Comparison of HarmonizR to established missing value handling strategies for batch effect reduction. Comparison of imputation (Normal
distribution -matrix wise, Normal distribution -column wise, Random Forest) to the HarmonizR framework, as missing value handling strategies for batch
effect reduction, on K562 Chronic Myelogenous Leukemia cells spiked with 10% yeast 10% E. coli (phenotype 1) and 5% yeast and 15% E. coli (phenotype 2).
Technical triplicates were measured in three different experimental setups (DDA data, acquired on a QExactive mass spectrometer, DIA data acquired
on a QExactive mass spectrometer, and SWATH data acquired on a Triple TOF 6600 mass spectrometer). a Schematic overview of executed strategies.
b Volcano plot visualization, plotting the log2 foldchange against the −log p-value for t-testing results between phenotype 1 and 2, for individual experiments
(Two-sample Student’s T-test, p-value < 0.05). c Heatmap visualization of Pearson correlation-based hierarchical clustering with Ward.D linkage for all
executed strategies. d Scatter plot visualization and corresponding correlalso made available through Persetion coefficient for phenotype 1 samples, measured
with similar (DDA, upper panels) and different (DDA; SWATH, lower panels) LC-MS/MS setups for all executed strategies. e Volcano plot visualization,
plotting the log2 foldchange against the −log p-value for t-testing results between phenotype 1 and 2 for combined data for all executed strategies proteins
(Two-sample Student’s T-test, p-value < 0.05). f Number and overlap of p-value significant proteins (Two-sample Student’s T-test, p-value < 0.05), identified
in t-testing between phenotype 1 and 2 for individual experiments and combined data for all executed strategies. g Evaluation of the suitability of executed
imputation strategies and HarmonizR as missing value handling strategies for batch effect reduction. (−): Criteria not matched; (+) small improvement
for respective criterion; (++) Improvement for respective criterion; (+++) Major improvement for respective criterion. Source data are provided as a
Source Data file.
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Missing value tolerant, “Nonlinear Iterative vertical Least
Squares (NIPALS)” PCA21 was carried out to compare dataset
variances before normalization, after iRS and after ComBat
HarmonizR considering multiple dimensions. Prior to batch
effect reduction, samples clustered in dependence of their

respective TMT batch. For iRS, batch effects were still visible in
principle components (PCs) 1 to 3 (Fig. 4d, e; Supplementary
Fig. 13). For all calculated PCs, no separation of 24 h cetuximab
treated cells was observable. According to Stepath et al., no clear
distinguishability of the divergent condition “24 h cetuximab
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treatment” could be obtained for TMT data (in contrast to spike-
in SILAC and LFQ data, see also Supplementary Fig. 14)20. Using
HarmonizR, batch effects were efficiently reduced. Additionally,
24 h cetuximab treated samples were clearly distinguishable in PC
3, for peptide and protein data. At both levels, the best possible
approximation of sample-specific means and CVs was observable
after HarmonizR usage (Fig. 4d, e).

To evaluate the effect of all applied strategies on an individual
protein, the overall and batch-specific coefficient of variation was
calculated for the protein Nuxid Hydrolase 21 (NUDT21).
NUDT21 has been described previously as a housekeeping
protein for proteomic analysis as it showed the lowest CV across
27 different tissue types (4.9%) represented in the human
proteomic database (ProteomicDB)22.

At the peptide level, the overall CV was exemplary evaluated
for 3 unique peptides of NUDT21. For all peptides, HarmonizR
reduced the CV to 6–7%, while for iRS normalized peptides, CVs
between 12 and 15% were observable (Fig. 4f). At the protein
level, an overall CV of 6% was observed prior to batch effect
reduction. After iRS, the CV across all batches decreased to 4.8%
while HarmonizR-based batch effect reduction resulted in the
lowest CV across all batches with 4.1% (Fig. 4g).

Hence, ComBat HarmonizR enabled the distinguishability of
the 24 h Cetuximab condition and revealed a low overall CV for
housekeeping proteins. Therefore, HarmonizR adjusted protein
data was used as a basis for data integration across different
quantification approaches (Fig. 5).

Harmonization across different quantification techniques.
Combining TMT, spike-in SILAC and LFQ data resulted in 6754
quantified protein groups, with 1998 (29.6%) being detected by all
techniques (Fig. 5a, b). Focusing on the Cetuximab impacted
EGFR signaling network defined by Stepath et al.20, 26 out of 34
factors were quantified in total, while only 9 proteins were found
in DDA, spike-in SILAC, and TMT data at the same time
(Fig. 5c).

For spike-in SILAC data, relative protein quantities are
displayed as ratios between each individual sample and a labeled
reference. To align TMT and DDA data to spike-in SILAC data,
individual ratios between a respective protein and its mean
abundance across all samples were calculated (“SILAC ratio
adjustment”, Fig. 5a, d). Based on sample-specific mean and CV
values as well as a Gaussian probability distribution of protein
abundances, L/S scaling within ComBat’s parametric Bayes
framework was exemplarily applied within HarmonizR (Fig. 5a,
d). NIPALS PCA (Fig. 5d) revealed, that prior to SILAC ratio-
based data alignment, differences between TMT, DDA and spike-
in SILAC were obvious (67% of all differences explained in PC1),
suppressing phenotypical differences. After DDA and TMT data
alignment to spike-in SILAC-like ratios, PCA revealed a general

distinguishability of 24 h Cetuximab treated samples, while
quantification technique dependent effects were still observable.
After additional ComBat HarmonizR-based data harmonization,
the technical batch effect was efficiently reduced, while 24 h
Cetuximab treated samples formed a distinct cluster (Fig. 5c).
Unsupervised hierarchical clustering confirmed these results
(Supplementary Fig. 14). Prior to data harmonization, different
sample-specific mean and CV values were observed for each
quantification platform (Fig. 5d). Spike-in SILAC samples showed
the lowest sample-specific CV. However, the highest variance
among sample specific CVs could be observed. After SILAC ratio
adjustment, sample specific CV and mean values were signifi-
cantly reduced for TMT and DDA data. HarmonizR-based batch
effect reduction resulted in comparable values across all
quantification platforms, while a slightly higher variance across
sample-specific CV values within the spike-in SILAC data set
remained (Fig. 5d).

Furthermore, the intra-quantification platform and overall CV
for the housekeeping protein NUDT21 were calculated. Prior to
inter-quantification platform normalization, the overall CV was
50.5% (Fig. 5e). TMT samples and spike-in SILAC samples
showed a CV of 4.1 and 4.7%, respectively. The highest intra-
study CV was observable for DDA data with 10.6%. SILAC ratio
adjustment of TMT and DDA data reduced the overall CV to
7.6%, while quantification technique specific CVs were retained.
ComBat HarmonizR-based data harmonization reduced the
overall and quantification technique-specific CV for NUDT21
to 6.9–7.0% (Fig. 5e).

Run time optimization for large datasets. Finally, we analyzed
the applicability of the HarmonizR framework for datasets, with a
higher number of batches. Therefore, a dataset published by
Petralia et al. in 2021, comparing proteomic profiles across eight
different pediatric brain tumor entities, measured in 23 TMT
eleven-plexes was used (Fig. 6a)23. In total, 9156 proteins were
quantified, and 3886 proteins were found in all batches (Fig. 6b).
As a Gaussian probability distribution and divergent sample-
specific mean and CV could be observed, L/S scaling within
ComBat’s parametric Bayes framework was used as an example
(Fig. 6d). Pearson correlation-based HC showed the high simi-
larity between respective batches prior to HarmonizR usage
(Fig. 6c). HC after HarmonizR-based batch effect reduction
revealed a clear differentiability of medulloblastoma and epen-
dymoma, while more mixed clusters are obtained for example for
low grade glioma (LGG), high grade glioma (HGG), and gang-
lioglioma (Fig. 6c). To further compare the findings proposed by
Petralia et al. to HarmonizR batch-corrected data, we evaluated
the mean abundance of proteins associated with predominant
cancer pathways (MYC, E2F, and WNT). Especially MYC and
E2F associated proteins showed a significantly higher abundance

Fig. 3 Limma and ComBat-based HarmonizR application for batch effect reduction across different experimental time points and tissue preservations.
a Scheme of the experimental design. b Batch count distribution of all 3530 proteins quantified at least 2 times in a batch. c Heatmap visualization of
Pearson correlation-based hierarchical clustering with Ward.D linkage for each tissue type and timepoint for unharmonized combined data, after ComBat-
and limma- based HarmonizR execution. Sample specific CV and mean are shown on lower panels. (Batch 1 (green): n= 6 biologically independent animals
(Tumor: n= 3; Control: n= 3); Batch 2 (blue): n= 5 biologically independent animals (Tumor: n= 2; Control: n= 3); Batch 3 (pink): n= 7 biologically
independent animals (Tumor: n= 5; Control: n= 2); Batch 4 (turquoise): n= 7 biologically independent animals (Tumor: n= 5; Control: n= 2)). In
boxplots, 50% of the data points are inside the box (Q1 (Quartile 1) being the lower bound of the box (25%), Q3 being the upper bound of the box (75%)).
Whiskers show all values beyond the box without outliers. Outliners were defined as Q3+ 1.5 * IQR (Interquartile range) (upper outlier) and Q1-1.5 * IQR
(lower outlier). IQR being Q1–Q3. d Batch specific coverage of proteins, associated with the “REACTOME-Signaling by Hedgehog” gene set. e Abundance
distribution of the Sonic Hedgehog medulloblastoma Marker Filamin A in unnormalized data and after ComBat and limma- based HarmonizR execution.
f Overlap of p-value significant proteins (p-value < 0.05), identified in t-testing between cerebellar tumors of hGFAP-cre::SmoM2Fl/+ mice and control
cerebella in unnormalized data and after ComBat- and limma- based HarmonizR execution (Two-sample Student’s T-test, p-value < 0.05). Source data are
provided as a Source Data file.
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in ATRT and medulloblastoma. These results go in line with the
findings, proposed by Petralia et al.23 (Fig. 6e).

Matrix dissection of 23 batches may potentially result in
4194281 combinations of submatrices for batch correction (see
equation above), however, 3654 submatrices occurred in the
experiment. The measured speedup is shown for both the entire
HarmonizR execution (with visualization of Amdahl’s law24) and

the parallelized part only. Both HarmonizR variants (limma and
ComBat) are considered (Fig. 6f). The study reveals that
parallelizing the execution of ComBat and limma is sufficient to
improve the performance of the program by a factor 2 (limma)/
factor 3 (ComBat) at workstation level. This behavior is in line
with strong scaling theory as indicated by the trend predicted
with Amdahl’s law.
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Discussion
With the HarmonizR framework, we present a tool capable of
handling omics datasets with missing values of random and not
random type, that is flexibly applicable in a variety of settings at
the post protein identification level, independent of the avail-
ability of spectral data.

The tool enables data harmonization across batches without
the need for data reduction or imputation, as it performs data
dissection into batch distribution-specific sub-data frames for
batch effect adjustment. Integrating HarmonizR with ComBat
and limma11,25, the strategy can equally be applied to Gaussian or
non-normally distributed data. However, in principle the Har-
monizR framework can be combined with any algorithm with
batch effect reduction capabilities, having a potential to be sui-
table for any data modalities and diverse scientific questions.

For technical highly variable proteome data, we specifically
showed for the first time that efficient batch effect reduction
without data imputation or massive data loss is feasible. More-
over, we established a HarmonizR plugin for the most frequently
used software for proteome analyses—Perseus17—which facil-
itates the usage of this tool for a broad spectrum of users. All
packages as well as the plugin are publicly available (see data
availability). Based on four analyzed datasets we show that effi-
cient reduction of batch effects is possible at the peptide as well as
the protein level. This applies to technical variations across dif-
ferent tissue preservation techniques, different LC-MS/MS
instrumentation setups, and quantification approaches, including
batch effect reduction across Tandem Mass Tag (TMT)-plexes.

Here, HarmonizR was found to be beneficial for the identifier-
based combination of protein abundances after individual data-
base searching for individual studies as well as for combined
database searching of LC-MS/MS data from different cohorts,
aiming to rescue missing values and reduce technical variances by
chromatographical alignment. (Fig. 3; Supplementary Fig. 12).

The matrix dissection approach comes with an increasing
amount of function calls as the number of batches within the data
rises. As the number of created sub-data frames grows rather
quickly, we parallelized ComBat/limma removeBatchEffect()
function calls, supporting their simultaneous execution on both
shared-memory (i.e., personal computers/notebooks) and
distributed-memory (i.e., cluster computer) systems. Never-
theless, the upper limit of created sub-data frames described by
the binomial coefficient is not expected to occur, as several
housekeeping proteins are likely to occur in all batches, and
submatrices are limited by absolute number of proteins detected.
This leads to significantly shorter execution times than theoreti-
cally expected. The parallel execution calls improve the perfor-
mance of the HarmonizR algorithm and allow computation of

larger datasets if provided with the appropriate computational
power.

To date, there are only few proteome data-specific tools that
allow for batch effect reduction. Most tools addressing this pro-
blem—such as ProNorM—require negative controls or internal
standards to reduce unwanted technical variations26. Thus, they
are not compatible with the integration of independently gener-
ated proteomic datasets stored at online repositories that do not
contain similar samples.

Recently, a first step to adjust for batch effects in these pro-
teomic datasets was made, implementing basic quantile and
median normalization in tools like “proBatch”16. As a limitation,
more advanced strategies, routinely used for other types of omics
studies would be more beneficial but are highly limited due to the
high number of missing values in proteomic datasets16.

Most RNA sequencing/transcriptome-based strategies for batch
effect reduction, compatible with the structure of proteomic data,
rely on unsupervised non-linear dimension reduction methods
such as PCA or t-distributed stochastic neighbor embedding (t-
SNE), that require a complete data matrix by default (Harmony9,
LIGER5, deepMNN10, MMD-resnet10). Hence, these algorithms
are not suitable for datasets with missing values.

Modified versions of t-SNE and PCA, such as InDaPCa are
applicable but are currently not implemented in the respective
batch effect reduction algorithm structure27.

The most prominent approaches, limma’s removeBatchEffect()
function that implements a linear regression model11, and ComBat,
which is based on an empirical Bayes framework25, can deal with
missing at random data but are not applicable when a protein is
missing in an entire batch. Of note, in the four datasets examined in
this study, we found, that between 42.7 and 71.6% of all proteins
were missing in at least one of the included batches. Thus, reducing
these datasets to proteins compatible with existing batch effect
reduction strategies is associated with a significant loss of relevant
biological information. This was exemplarily shown for an Shh-
signaling network28 in a mouse medulloblastoma dataset and
EGFR network for Cetuximab stimulated DiFi cells20.

Incomplete proteomic data is especially evident when the data-
dependent acquisition (DDA) principle is used, where the iden-
tification of peptides is determined by their experimental setup
dependent peptide environment29. Hence, we found that this
problem became more evident the more different the experi-
mental setups of individual batches were. When combining four
TMT 8-plexes (Stepath et al. 2020), 42.7% of proteins were found
missing in at least one of the four batches. In comparison to that,
combining different experimental setups, a significant smaller
proportion of proteins was found in all batches (Mixed organism
proteome measured with DDA-QExactive, DIA-QExactive, and

Fig. 4 Comparison of HarmonizR and iRS for the batch effect reduction in Multiplex TMT experiments at the peptide and protein level. a Experimental
design. b Batch count distribution of 12615 peptides quantified. c Batch count distribution of 2579 proteins quantified. d Scatter plot distribution of samples
across PC1 and PC3 in NIPALS-PCA, based on 8877 peptides found in 50% of all samples and corresponding sample specific CV/means for each TMT
batch for unnormalized data, after iRS normalization and after HarmonizR (ComBat). (All batches represented n= 8 biologically independent samples.
(Control: n= 3; Cetuximab 24 h: n= 1; Cetuximab 0–3 h: n= 3; Internal reference: n= 2). In boxplots, 50% of the data points are inside the box (Q1
(Quartile 1) being the lower bound of the box (25%), Q3 being the upper bound of the box (75%)). Whiskers show all values beyond the box without
outliers. Outliners were defined as Q3+ 1.5 * IQR (Interquartile range) (upper outlier) and Q1-1.5 * IQR (lower outlier). IQR being Q1–Q3. e Scatter plot
distribution of samples across PC1 and PC3 in NIPALS-PCA, based on 2152 proteins found in 50% of all samples and corresponding; sample specific CV/
means for each TMT batch for unnormalized data, after iRS normalization and after HarmonizR (ComBat). (All batches represented n= 8 biologically
independent samples. (Control: n= 3; Cetuximab 24 h: n= 1; Cetuximab 0–3 h: n= 3; Internal reference: n= 2). In boxplots, 50% of the data points are
inside the box (Q1 (Quartile 1) being the lower bound of the box (25%), Q3 being the upper bound of the box (75%)). Whiskers show all values beyond the
box without outliers. Outliners were defined as Q3+ 1.5 * IQR (Interquartile range) (upper outlier) and Q1-1.5 * IQR (lower outlier). IQR being Q1–Q3.
f Overall and batch-specific variation of specific peptides for the housekeeping protein NUDT21 for unnormalized data, after iRS normalization, and after
HarmonizR (ComBat). g Overall and batch-specific variation of NUDT21 for unnormalized data, after iRS normalization and after HarmonizR (ComBat) at
protein level. Source data are provided as a Source Data file.
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SWATH-Triple TOF 6600 data: 34.62%; murine medulloblastoma
samples (FFPE and FF tissue) at two different experimental time-
points: 28.4%; Cetuximab stimulated DiFi cells and controls,
quantified by DDA-LFQ, spike-in SILAC or TMT: 29.6%).

To tackle these problems, we linked the HarmonizR framework
to limma’s removeBatchEffect() function as well as the ComBat
algorithm to enable advanced batch effect reduction resulting in
minimal data loss.

For all analyzed types of technical variances, limma’s remove-
BatchEffect() or ComBat based HarmonizR, successfully reduced

batch effects (different mass spectrometers; different quantifica-
tion approaches; different tissue types). This was evident since
samples that previously clustered according to the technical setup
formed phenotype- based clusters after the application of Har-
monizR in all cases. These results were comparable to the
application of unmodified ComBat (Supplementary Figure 2) but
considered a significantly higher number of proteins. Further-
more, expected biological characteristics were correctly repre-
sented after batch effect reduction. This is for example indicated
by the protein abundance distribution of the well-known cancer
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signaling pathways MYC and E2F30, which is in line with the
findings described by Petralia et al.23. In addition to the
increasing correlation between similar samples measured with
different techniques, HarmonizR was also able to sustain simi-
larity metrics within individual batches. Hence, the number of p-
value significant proteins in the mixed organism proteome dataset
increased from 369 to 1094 (Fig. 2). At the same time, the number
of p-value significant proteins between both conditions remained
constant, when testing each batch separately.

As an alternative to data reduction, imputation may be applied
to bypass missing values prior to the usage of ComBat or limma23.
Depending on the used strategy, the imputation of values is highly
error-prone15. This is especially evident when missing at random
(MAR = proteins, missing in individual samples) and missing not
at random (MNAR = proteins, missing in entire batches) type
missing values are present at the same time31.

In this case, we compared HarmonizR implemented ComBat to
the usage of ComBat after executing different missing value
imputation techniques frequently used in literature23, such as
“imputation from the normal distribution”17 or “random forest
imputation”32.

When applying imputation strategies, we found random forest-
based imputation superior to normal distribution-based imputa-
tion, which is well in line with the literature32 (Fig. 2). For both,
random forest imputation and HarmonizR, batch effects were
successfully reduced, correlation coefficients between biological
replicates within the same batch were retained and the correlation
between phenotypical replicates of different batches increased
after batch effect reduction. However, only the HarmonizR
strategy retained significant differential abundant proteins within
individual batches whereas this piece of information is partially
lost when using the random forest-based strategy. These findings
agree with previous studies. The imputation, of MNAR type
missing values resulted in incorrectly adjusted values that altered
the number and identity p-value of significant proteins and thus
lead to false biological assumptions16. This is particularly pro-
blematic when the number of missing values of the “not at ran-
dom” type for a protein was greater than 8.5%13, which is given
for all proteins missing in only one batch in this study.

HarmonizR was found to be superior to the imputation-based
handling of missing values (prior to batch effect reduction). In
case, a complete data matrix is mandatory for subsequent sta-
tistical data analysis steps—despite the danger that artificially
introduced values distort biological statements—imputation fol-
lowed by batch effect adjustment is preferable to imputation after
batch effect correction. We saw that the latter reimplemented
batch effects and skewed protein abundances as well as statistical
metrics among and within different batches.

Removing technical variances between proteomic experiments,
the experimental setup, and the type of variance has a large
impact on how data should be preprocessed. This was especially

important when integrating different label-free and isotope label-
based quantification techniques.

We demonstrated for example, that spike-in SILAC data could
only be integrated with TMT and LFQ quantification strategies
after quantitative values for each protein from TMT and LFQ
data were normalized to their mean abundance across all samples,
mimicking the ratio between a sample set representative labeled
control and a respective sample. Following this procedure, a
successful batch effect reduction was demonstrated for the
combined dataset of Stepath et al.20 with distinguishability of the
24 h Cetuximab treated samples. The latter could previously be
shown for individual datasets20.

Furthermore, the evident decrease of the overall CV for the
housekeeping protein Nuxid Hydrolase 21 (NUDT21) after data
harmonization to an expected value < 10%22 underlined a suc-
cessful batch effect reduction.

Thus, ComBat HarmonizR successfully enabled data harmo-
nization across different mass spectrometric setups and quanti-
fication platforms and therefore allows for a combined analysis of
independently generated proteomic datasets for biomarker dis-
covery research.

The HarmonizR principle was also shown as an effective batch
effect reduction strategy across different TMT plexes and outper-
forms the internal reference scaling (iRS) approach commonly used
for TMT batch effects. HarmonizR-based data harmonization
outperformed iRS as the reduction of technical biases at the peptide
and protein level was more efficient. In contrast to iRS it accounted
for varying mean sample specific CVs in phenotypically equal
distributed TMT batches (Variance scaling) and did not require
identical internal reference standards to reduce batch effects. This
facilitates experimental design and makes it possible to integrate
independently generated TMT batches. While ComBat has been
used previously to compensate for TMT batch effects in single
studies23,33,34, the ComBat HarmonizR strategy now allows inte-
gration of different TMT-plexes without imputation and data
reduction. This is especially important for large patient cohorts, as
with each integrated TMT batch data completeness, concordance
and reproducibility is significantly reduced35.

In summary, the matrix dissection approach of the HarmonizR
algorithm and its fundamental idea to abstain from calculating or
imputing any missing values itself, can be adapted for the
adjustment of any type of omics data while assuring minimal data
loss. This will make integration of proteomic LC-MS/MS data sets
in online repositories or previously generated in-house datasets
possible and can overcome sample number limitations in
proteome-based discovery studies.

Methods
Publicly available datasets. To test the applicability of HarmonizR for the batch
effect reduction between different quantification approaches, a dataset published in
2021 by Stepath et al. was used20. In brief, 0, 3, and 24 h Cetuximab treated DiFi

Fig. 5 Data harmonization across different quantification approaches (DDA, TMT, and SILAC) for Cetuximab treated HiFi cells. a Scheme of the
experimental design. b Batch count distribution of 6754 proteins quantified. c Batch-specific coverage of proteins, associated with the EGFR signaling
network (Stepath et al., 2020). d Scatter plot distribution of samples across the top two principal components (PC) in NIPALS-PCA, based on 2368
proteins, found in 50% of all samples for unnormalized data after SILAC ratio adjustment and data after HarmonizR (ComBat). Lower panels show
corresponding sample-specific CV and mean values. (DDA: n= 24 biologically independent samples (Control: n= 12; Cetuximab 24 h: n= 4; Cetuximab
0–3 h: n= 8); TMT: n= 24 biologically independent samples (Control: n= 12; Cetuximab 24 h: n= 4; Cetuximab 0–3 h: n= 8); SILAC: n= 23 biologically
independent samples (Control: n= 12; Cetuximab 24 h: n= 4; Cetuximab 0–3 h: n= 7); TMT: 32 biologically independent samples (Control: n= 12;
Cetuximab 24 h: n= 4; Cetuximab 0–3 h: n= 7; Internal reference: n= 8)). In boxplots, 50% of the data points are inside the box (Q1 (Quartile 1) being the
lower bound of the box (25%), Q3 being the upper bound of the box (75%)). Whiskers show all values beyond the box without outliers. Outliners were
defined as Q3+ 1.5 * IQR (Interquartile range) (upper outlier) and Q1-1.5 * IQR (lower outlier). IQR being Q1–Q3. e Overall and batch specific variation of
the housekeeping protein NUDT21 for unnormalized data, after SILAC ratio adjustment and after HarmonizR (ComBat) usage. Source data are provided as
a Source Data file.
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cells and untreated controls were measured using spike-in stable isotope labeling by
amino acids in cell culture (spike-in SILAC); Tandem Mass Tag (TMT) and DDA
-based Label Free Quantification (LFQ), respectively, on a Quadrupole—Orbitrap
Hybrid mass spectrometer (QExactive, Thermo Fisher Scientific). The dataset can
be accessed via the PRIDE archive (PXD014565).

The usability of HarmonizR for bigger datasets, including multi-threaded
runtime optimization, was tested on a dataset measured by Petralia et al. in 202123.
Concisely seven different brain tumor entities were distributed over twenty-three
TMT 10-plex batches and measured using a Orbitrap-Iontrap-Quadrupol Tribrid

mass spectrometer (Orbitrap Fusion, Thermo Fisher Scientific)23. The dataset is
available through the Clinical Proteomic Tumor Analysis Consortium Data Portal
(https://cptac-data-portal.georgetown.edu/cptacPublic/) and the Proteomics Data
Commons (https://pdc.cancer.gov/pdc/).

Experimental setup for in house generated datasets. For the comparison of
HarmonizR to established missing value handling strategies, an artificial mixed
organism proteome with expected foldchange differences was generated by
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combining defined amounts of human K562 Chronic Myelogenous Leukemia cell
digests (Promega), Escherichia Coli (donated by Prof. Holger Rohde, University
Medical Center Hamburg Eppendorf, Institute of Microbiology) and Sacchar-
omyces Cerevisiae (Promega) digests. Three technical replicates of 80% human cell
digests; 10% E. Coli; 10% yeast and 80% human; 15% E. Coli; 5% yeast were
measured using three different mass spectrometric setups (DDA- nano-UPLC
(nano-Acquity, Waters) coupled to an Orbitrap Hybrid mass spectrometer
(QExactive, Thermo Fisher Scientific); Data independent acquisition (DIA)- nano-
UPLC (nano-Acquity, Waters) coupled to an Orbitrap Hybrid mass spectrometer
(QExactive, Thermo Fisher Scientific); SWATH- UPLC (Dionex UltiMate 3000,
Thermo Fisher Scientific) coupled to an Quadrupole time of flight MS (TripleTOF
6600, SCIEX)). For further details on protein extraction, tryptic digestion, and LC-
MS/MS setups, please refer to the PRIDE archive (PXD027467).

To evaluate HarmonizR-based batch effect reduction between different tissue
types (Formalin fixated paraffin-embedded (FFPE); fresh frozen (FF)) and
experimental timepoints, a medulloblastoma mouse model was used. hGFAP-
cre::SmoM2Fl/+ tumors and cerebella of SmoM2Fl+ littermate controls at postnatal
day 13 were analyzed. Both male and female mice were used. hGFAP-cre mice36

and SmoM2Fl/Fl mice37 were purchased from The Jackson Laboratories (Bar
Harbor, ME, USA). Transgenic mice were bred with a C57BL/6J background. All
experiments using animals were approved by the local animal care committee
(Behörde für Justiz und Verbraucherschutz in Hamburg, TVA N99/2019) and
handling was conducted in accordance with local governmental and institutional
animal care regulations. Cerebellar tumors of hGFAP-cre::SmoM2Fl/+ and cerebella
of SmoM2Fll+ littermate controls were bisected. One half was snap frozen and
stored at −80 °C degrees until further processing (fresh frozen (FF) condition). The
other half was fixed in 4% paraformaldehyde/PBS overnight at room temperature.
Tissue for paraffin-embedded sections was dehydrated, embedded, and sectioned at
4 μm according to standard protocols (FFPE condition). Histomorphology of
tumor or cerebellar tissue was verified by H&E-staining.

For proteomic measurements, DDA-based LFQ was used on a nano-UPLC
(Dionex UltiMate 3000, Thermo Fisher Scientific), coupled to an Orbitrap-Iontrap-
Quadrupol Tribrid mass spectrometer (Orbitrap Fusion). For further details on
protein extraction, tryptic digestion, and LC-MS/MS setups, please refer to the
PRIDE archive (PXD027467).

Raw data processing. DDA raw spectra, from mixed proteome and medullo-
blastoma mice samples were processed with the Andromeda algorithm, imple-
mented in the MaxQuant software (Max Plank Institute for Biochemistry, Version
1.6.2.10). All batches were searched separately to mimic independently generated
datasets. For the mixed organism proteome, spectra were searched against the
reviewed human database (Downloaded from Uniprot December 2017, 26559
entries), yeast (Saccharomyces cerevisiae strain ATCC 204508, downloaded from
Uniprot December 2017, 6721 entries), and Escherichia Coli (Strain K12, down-
loaded from Uniprot December 2017, 31400 entries). Mouse tissue samples were
searched against a reviewed murine database (downloaded from Uniprot December
2020, 17015 entries). Trypsin was selected as enzyme used to generate peptides,
allowing a maximum of two missed cleavages. A minimal peptide length of 6
amino acids and maximal peptide mass of 6000 Da was defined. Oxidation of
methionine, phosphorylation of serine, threonine and tyrosine, acetylation of
protein N-termini, and the conversion of glutamine to pyro-glutamic acid was set
as variable modification. The carbamidomethylation of cysteines was selected as
fixed modification.

For mixed proteome samples, the error tolerance for the first precursor search
was 20 ppm. 10 ppm was applied for mouse samples. For the following main
search, 4.5 ppm was used in all experiments. Fragment spectra were matched with
20 ppm error tolerance. A false discovery rate (FDR) value threshold <0.01, using
a reverted decoy peptide database approach was set for peptide identification.

Label-free quantification was performed with an LFQ minimum ratio count of 1.
Matching between commonly searched runs was applied to increase data
completeness.

HarmonizR is designed as a post-processing tool for the integration and
harmonization of independently generated datasets, independent of the availability
of LC-MS/MS raw data. To highlight the advantage of combined raw data
processing of different batches, prior to HarmonizR usage, additional combined
database searching was performed for medulloblastoma mice samples. Here,
Sequest combined with the Minora algorithm38, implemented in Proteome
Discoverer 2.4 (Thermo Fisher Scientific) was used to rescue missing values and
reduce non biological variances across LC-MS/MS runs, by chromatographic
alignment.

For DIA data, acquired DDA LC-MS/MS data of mixed proteomes as well as
DDA runs of human yeast and E. coli digests only were used to generate a reference
peptide spectra library for data extraction and searched against the reviewed
human, yeast, and E. coli protein database, using the Sequest algorithm integrated
in the Proteome Discoverer software version 2.0 (Thermo Fisher Scientific). Mass
tolerances for precursors were set to 10 ppm and 0.02 Da for fragments.
Carbamidomethylation was set as a fixed modification for cysteine residues and the
oxidation of methionine, pyro-glutamate formation at glutamine residues at the
peptide N-terminus as well as acetylation of the protein N-terminus, methionine
loss at the protein N-terminus and the acetylation after methionine loss at the
protein N-terminus were allowed as variable modifications. Only peptide with a
high confidence (FDR <1% using a decoy data base approach) were accepted as
identified. Proteome Discoverer search results were imported into Skyline software
version 4.2, allowing only high confidence peptides with more than 4 fragment
ions. A maximum of 5 fragment ions per peptide were used for information
extraction from DIA files for peptides with a dot product of >0.85. Peptide peak
areas were summed to generate protein areas which were then used for relative
abundance comparison.

Normalization and combination of individual datasets. Obtained relative
intensities for protein groups were loaded into the Perseus software (Max Plank
Institute for Biochemistry, Version 1.5.8.5) for each experiment and batch sepa-
rately for preparative normalization prior to HarmonizR usage. Processed data
from individual batches was combined based on the UniProt identifier. The
resulting combined datasets were subjected to HarmonizR-based batch effect
reduction.

For the mixed organism proteome dataset, prior to batch effect reduction
between data SWATH, DIA and DDA data, relative protein abundance values were
log2 transformed. Due to the trimodal probability distribution of E. coli and yeast
spiked K562 Chronic Myelogenous Leukemia cell lines, no further normalization
was performed.

For medulloblastoma mouse models, relative protein abundances were log2
transformed and median normalized across columns, prior to batch effect
reduction between FFPE and FF data acquired at different experimental timepoints.

For Cetuximab treated DiFi cells (Stepath et al. 2021) TMT, spike-in SILAC,
and DDA data was handled differently. Initially, batch effects were reduced
between TMT eight plex batches. Therefore, TMT reporter intensities were log2
transformed and median normalized across columns. Normalized TMT reporter
intensities were subjected to HarmonizR. For performance comparison to internal
reference scaling (iRS), the adjustment of TMT batches was additionally performed
by dividing reporter ion intensities by the arithmetic means of the two channels
representing the reference mix, as described by Stepath & Zülich et al.20. Based on
the results, only HarmonizR adjusted data was subjected to further processing
steps. DDA and SILAC datasets were log2 transformed and median normalized
across columns. To mimic spike-in SILAC ratios, normalized DDA and TMT
datasets, mean subtraction was applied across rows prior to data combination.

Fig. 6 Application and performance optimization of HarmonizR for large datasets based on different Brain Tumor entities, measured in 23 TMT
batches23. a Schematic representation of the experimental design. b Batch count distribution of 9156 proteins quantified. c Pearson correlation-based
hierarchical clustering with Ward.D linkage prior to and after HarmonizR (ComBat) usage. d Sample specific CV and mean for uncorrected data and after
HarmonizR (ComBat) execution. (All batches consisted of n= 11 biologically independent samples, details on the assignment of tumor types to batches can
be obtained from Supplementary Table 5). In boxplots, 50% of the data points are inside the box (Q1 (Quartile 1) being the lower bound of the box (25%),
Q3 being the upper bound of the box (75%)). Whiskers show all values beyond the box without outliers. Outliners were defined as Q3+ 1.5 * IQR
(Interquartile range) (upper outlier) and Q1-1.5 * IQR (lower outlier). IQR being Q1–Q3. e Heatmap visualization of tumor type specific abundance
distribution of proteins, associated with the tumor relevant gene sets “Hallmark-MYC Targets; Hallmark-E2FTargets and REACTOME -Signaling by WNT”
after HarmonizR (ComBat) execution. f Performance analysis of multi-threaded HarmonizR algorithm. 1.: Visualization of the speedup of the HarmonizR
implementation for ComBat (blue) and limma (orange) alongside Amdahl’s law (dashed lines) with respect to the number of processors. Tests have been
made for 1, 2, 4, 8, 12, and 24 processors. Code corresponding to 78.48% of the sequential run time has been parallelized for ComBat and 66.82% for
limma. Amdahl’s law has therefore been calculated using these percentages. 2.: Speedup visualization for the parallelized part of the HarmonizR
implementation only with respect to the number of processors. Speedup while using the ComBat algorithm is shown in blue. Speedup while using the
limma algorithm is shown in orange. Tests have been made for 1, 2, 4, 8, 12, and 24 processors. The potential maximum speedup is shown as a linear,
proportional behavior. Computed on an Intel Xeon Gold 6226, 2.70 GHz, 2 × 12 compute cores, 96 GB RAM. Source data are provided as a Source Data file.
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For brain tumor samples (Petralia et al. 2021), TMT reporter intensities were
log2 transformed and median normalized across columns prior to batch effect
reduction between TMT 11-plexes.

Usage of the HarmonizR algorithm. HarmonizR was built as a framework to
enable the handling of missing values without the need for imputation, using the
ComBat algorithm or the “removeBatchEffect()” function implemented in the
limma package in the R software environment.

The algorithm is executed by calling the function “harmonizR()”. After reading
the input, HarmonizR sorts every feature into its corresponding sub-data frame
based on the number of existing numerical values within each batch. A feature is
discarded for a certain batch if there are <2 values present, based on the chosen
parameters. Each sub-data frame is then individually batch effect adjusted by the
chosen adjustment algorithm. The “removeBatchEffect()” function from limma
(https://rdrr.io/bioc/limma/man/removeBatchEffect.html)11 fits a linear model to
the data, including both batches and regular treatments, then removes the
component due to the batch effects. ComBat (https://rdrr.io/bioc/sva/man/
ComBat.html)12 enables the usage of parametric or nonparametric empirical Bayes
framework models for batch effect reduction. Batch effect reduced sub-data frames
are rejoined and an output file is generated. HarmonizR optionally visualizes the
sample-specific mean, feature specific mean or Coefficient of variation (CV) for
each batch prior to and after data adjustment to enable direct visual evaluation of
the executed batch effect reduction. For further information about the application
of HarmonizR, please refer to https://github.com/SimonSchlumbohm/HarmonizR.

Application of the HarmonizR framework for batch effect reduction on dif-
ferent datasets. All datasets, excluding the mixed organism proteome dataset,
were processed in the HarmonizR framework using the parametric Bayes frame-
work with L/S adjustment, integrated in the ComBat algorithm and the “remove-
BatchEffect()” function in limma, assuming a Gaussian probability distribution.

For mixed organism proteome samples, a trimodal probability distribution is
given. Therefore, the non-parametric empirical Bayes framework with L/S
adjustment, integrated in the ComBat algorithm, was applied for the reduction of
batch effects across different mass spectrometric setups.

Data imputation for mixed organism proteome samples. For the comparison of
HarmonizR to established missing value handling strategies, three different
imputation strategies were applied to the mixed organism proteome dataset prior
to batch effect reduction. 1. Matrix and 2. Column wise imputation from the
normal distribution: was carried out in Perseus with a width of 0.3 and a value
downshift of 1.8. Random Forest imputation was performed using the “Random-
Forest”package implemented in the R software environment. Imputation was
performed in an unsupervised mode, using 1000 trees in 10 iterations. Similar
settings for Random Forest imputation were used to evaluate the applicability of
imputation after HarmonizR usage.

In line with the HarmonizR-based strategy, the non-parametric Bayes
framework, implemented in the Combat algorithm was used for batch effect
reduction after missing value imputation.

Statistical data analysis and visualization. All t-tests, integrated in this study
were carried out using the Perseus software (Max Plank Institute for Biochemistry,
Version 1.5.8.5). Proteins, identified with a p-value < 0.05 between respective
testing conditions, were considered as statistically significant differentially abun-
dant. Pearson correlation-based hierarchical clustering with Ward.D linkage was
performed using the “pheatmap” package (Version 1.0.12) in the R software
environment (Version 4.0.4) Missing value tolerant Non-Linear Iterative Square
(NIPALS) PCA was performed using the NIPALS-PCA function integrated in the
“mixomics” package39 (Version 6.20.0). Scatter plot distributions of samples across
principal components were visualized in PRISM (GraphPad, Version 5). Venn
diagrams were generated using Venny (BioinfoGP, Version 2.1.0). Abundance
distributions of individual proteins were visualized using Microsoft Excel (Version
16.5.).The genesets “REACTOME – SHH Signaling”; “REACTOME -WNT Targets
Hallmark -MYC Targets” and “Hallmark -E2F Targets” were obtained from the
Molecular Signature Database (https://www.gsea-msigdb.org/gsea/msigdb/). To
support the visualization of the EGFR and Shh signaling Network the STRING
Protein–Protein interaction database was used (https://string-db.org). Boxplots
were been created using the R built-in function boxplot(). The visualization of the
speedup has been done in the Python programming language (Version 3.8.) using
the “matplotlib” package (Version 3.5.2.)40.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw and processed proteomic data generated in this study has been deposited to
ProteomeXchange Consortium via PRIDE, under the accession code PXD027467.
Publicly available datasets, used in this study, can be accessed via PRIDE, under the

accession code PXD014565 (Stepath et al.20 (https://pubs.acs.org/doi/full/10.1021/acs.
jproteome.9b00701)) (https://www.ebi.ac.uk/pride/archive/projects/PXD014565) or
through the Clinical Proteomic Tumor Analysis Consortium Data Portal (https://cptac-
data-portal.georgetown.edu/cptacPublic/) under the accession code PDC000204 (Petralia
et al.23 (https://pubmed.ncbi.nlm.nih.gov/33242424/)), respectively. Source data are
provided with this paper.

Code availability
The HarmonizR package and the Perseus plugin, including detailed descriptions can be
accessed via GitHub: https://github.com/SimonSchlumbohm/HarmonizR (https://doi.
org/10.5281/zenodo.6553171. Additionally, the HarmonizR package will also be available
on Bioconda.
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