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Abstract: Plant viruses can evolve towards new pathogenic entities that may eventually cause
outbreaks and become epidemics or even pandemics. Seven years ago, tomato brown rugose fruit
virus (ToBRFV) emerged, overcoming the genetic resistance that had been employed for more than
sixty years against tobamoviruses in tomato. Since then, ToBRFV has spread worldwide, producing
significant losses in tomato crops. While new resistances are deployed, the only means of control
is the implementation of effective prevention and eradication strategies. For this purpose, in this
work, we have designed, assessed, and compared an array of tests for the specific and sensitive
detection of the ToBRFV in leaf samples. First, two monoclonal antibodies were generated against a
singular peptide of the ToBRFV coat protein; antibodies were utilized to devise a double-antibody-
sandwich enzyme-linked immunosorbent assay (DAS-ELISA) test that sensitively detects this virus
and has no cross-reactivity with other related tobamoviruses. Second, a real-time quantitative PCR
(RT-qPCR) test targeting the RNA-dependent replicase open reading frame (ORF) was designed,
and its performance and specificity validated in comparison with the CaTa28 and CSP1325 tests
recommended by plant protection authorities in Europe. Third, in line with the tendency to use field-
deployable diagnostic techniques, we developed and tested two sets of loop-mediated isothermal
amplification (LAMP) primers to double-check the detection of the movement protein ORF of ToBRFV,
and one set that works as an internal control. Finally, we compared all of these methods by employing
a collection of samples with different ToBRFV loads to evaluate the overall performance of each test.
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1. Introduction

Global food security is constantly threatened by emerging pathogens, such as plant
viruses. Plant viruses cause outbreaks that reduce the yield and the quality of the crops
that sustain the food chain [1]. The globalization of the vegetable trade, together with
the limited effectiveness of monitoring and eradication measures, favor the worldwide
spread of plant viruses. In addition, the frequency and scale of plant virus outbreaks
are predicted to increase due to climate change, which may facilitate the expansion of
new or existing viruses to geographic areas in which they were not previously present
or epidemic [2]. This is the case of tomato brown rugose fruit virus (ToBRFV) (genus
Tobamovirus, family Virgaviridae). ToBRFV, as other tobamoviruses, has a particle with a
rod-shaped morphology formed by multimers of the capsid protein (CP) that encapsulate
a positive single-stranded RNA (ssRNA(+)) genome of 6.2 to 6.4 kb encoding four open
reading frames (ORFs) (Figure 1). ORF1 and ORF2 are separated by a leaky stop codon
and encode non-structural proteins that assemble the RNA-dependent RNA polymerase
(RdRP). ORF1 encodes the small subunit (124–132 kDa) and ORF2 the large subunit of
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the RdRP (181–189 kDa) which contains the polymerase domain. The downstream ORFs
encode the 28–31 kDa movement protein (MP) and the 17–18 kDa CP, which are translated
from their respective subgenomic RNAs.
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5.5% of CO2. The hybridoma was then injected intraperitoneally into pristine primed 
syngeneic BALB/c mice to produce ascites. After 7–10 days, the ascites samples were col-
lected and their titers were determined by indirect ELISA. The isotypes of the MoAbs were 
determined using an isotyping kit following the manufacturer’s instructions (Sigma-Al-
drich). The anti-CP peptide IgG was purified from ascites with an immobilized protein-G 
affinity column (GE Healthcare, Wauwatosa, WI, USA) according to the manufacturer’s 
manual. Purified antibodies were stored at −80 °C. 
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Healthy and ToBRFV-, TMV- or ToMV-infected tomato leaves were ground in liquid 
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Figure 1. Genome organization of ToBRFV and regions targeted by the different tests (RT-qPCR,
RT-LAMP, and ELISA). RT-qPCR was directed to the 3′ end of the large fragment of the RdRP (ORF1),
RT-LAMP to the start of the MP (ORF3), and ELISA against the C-terminus of the CP, which is the
gene product of ORF4.

The tobamovirus group includes well-known viruses that affect tomato and other
solanaceous species, such as tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV)
among others [3,4]. Thus far, the Tm-1, Tm-2/Tm-22 resistance genes have routinely been
used in tomato hybrid breeding to protect new varieties against TMV and ToMV [5,6].
However, the Tm-22 genetic resistance which lasted unbroken for over sixty years has
now been overcome by ToBRFV. Apparently, the MP of ToBRFV is the genetic determinant
for Tm-22 resistance-breaking [7]. Similarly, the L gene alleles have been used for the
protection of most pepper commercial cultivars against tobamoviruses. ToBRFV induces a
hypersensitive response in plants harboring these resistance genes [8], and infections of
sweet pepper lacking these resistances have been reported in Italy [9]. On the other hand,
the viral particle of ToBRFV is very stable and resilient to commonly used disinfectants [10],
which may facilitate its mechanical transmission even by pollinators [11]. Taken together,
the particular features of ToBRFV have contributed to its rapid spread worldwide [12–21]
since it was first reported in Israel and Jordan in 2014 [8,22]. In an attempt to delay or
arrest ToBRFV expansion in Europe, it has been included in the European Plant Protection
Organization (EPPO) alert list (Commission Implementing Decision EU 2019/1615) and in
the list of quarantine bodies (Commission regulation EU 2019/2072).

Detection of infected plants or seeds is critical for the success of the intervention
and eradication strategies to prevent further expansion of ToBRFV. In this matter, the
EPPO published a Standard that describes a diagnostic protocol for the detection and
identification of this virus (PM7/146(1)). This protocol distinguishes between plant and
seed materials. Thus, symptomatic plant material can be processed by enzyme-linked
immunosorbent assay (ELISA), while the recommendation for asymptomatic material
is the analysis by coupled reverse transcription-polymerase chain reaction (RT-PCR)
and real-time quantitative PCR (RT-qPCR). In contrast, seed material must be exclu-
sively analyzed by RT-qPCR. The RT-PCR should be performed using primers from
Alkowni et al., 2019 [19] or Rodriguez-Mendoza et al., 2019 [23], while the RT-qPCR
should be carried out by using a duplex real-time test with CaTa28 and CSP1325 primers
and probe proposed by the International Seed Federation (ISF) in 2020. Apart from the
EPPO’s Standards, other RT-qPCR tests have been developed for ToBRFV detection and
compared with RT-PCR tests [24]. As an alternative to these tests, isothermal amplification
techniques such as loop-mediated isothermal amplification (LAMP) [25] are gaining popu-
larity due to their simplicity and similar performance compared to RT-qPCR. Many tests
have been developed using LAMP to diagnose plant viruses, including ToBRFV [26,27].

In spite of the existence of a handful of resources for the detection of ToBRFV, a
comprehensive comparison that facilitates their selection is still missing. In this work, we
have designed, assessed, and compared new tests for the specific and sensitive detection
of the ToBRFV viral particle and its genome. To this end, we have targeted the CP and
two different ORFs (RdRP and MP) (Figure 1) by employing three different methods: DAS-
ELISA, RT-qPCR, and RT-LAMP. Altogether, we provide an array of new resources for
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ToBRFV testing at the protein and nucleic acid levels that are specific to this virus and show
an equivalent sensitivity to those of the EPPO-recommended tests.

2. Materials and Methods
2.1. Virus Isolates and Plant Inoculation

The Spanish ToBRFV isolate from Vicar (Almeria, Spain) [18] was provided by the
“Laboratorio de Producción y Sanidad Vegetal” (La Mojonera, Almería, Spain). Isolates of
other tobamoviruses used in this study were acquired from the DSMZ (Leibniz, Germany)
collection: TMV (PV-1252), ToMV (PV-0141), pepper mild mottle virus (PMMoV, PV-0093),
tobacco mild green mottle virus (TMGMV, PV-0124). Approximately 50 mg of dried plant
tissue was homogenized for each isolate in 2 mL of 30 mM phosphate buffer pH = 8 using a
mortar and pestle. Homogenates were used to mechanically inoculate leaves of 25–26-day-
old N. benthamiana plants (4–5-true leaves) and the first pair of true leaves of 7–10-day-old
tomato plants (cultivar M82). For this, the leaves to be inoculated were first dusted with
carborundum powder (600 mesh) and then manually rubbed with the homogenate. The
plants thus inoculated were kept separately in a confined greenhouse under controlled
conditions set with a 16/8 h photoperiod and a 26/22 ◦C day/night cycle. After 10 to
15 days, systemic leaves that showed obvious symptoms of infection were collected, cut,
mixed, and divided into samples of approximately 100 mg. The samples were frozen in
liquid nitrogen, ground with a Retsch Mixer Mill MM400 (ThermoFisher, Hampton, NH,
USA) for 1 min at 30 Hz, and stored at −80 ◦C for later analyses.

2.2. Design and Production of Monoclonal Antibodies against ToBRFV

The monoclonal antibodies (MoAbs) were produced by GenScript (Piscataway, NJ,
USA) using standard methods [28,29]. Briefly, the ToBRFV CP epitope (Figure 2) was
synthesized and used as an immunogen to be injected into five 6-week-old BALB/c mice.
Production of hybridoma-secreting MoAbs against the ToBRFV was performed according
to [30] with minor modifications. Hybridoma supernatants were screened for the presence
of anti-CP peptide antibodies by indirect ELISA in 96-well plates and Western-blotting.
Positive hybridoma clones were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
high glucose (WISENT Bioproducts, Quebec, Canada), supplemented with 10% fetal bovine
serum (WISENT Bioproducts) and 1% Penicillin-Streptomycin (Sigma-Aldrich, Saint Louis,
MO, USA). Cells were allowed to grow at 37 ◦C and supplemented with 5.5% of CO2. The
hybridoma was then injected intraperitoneally into pristine primed syngeneic BALB/c
mice to produce ascites. After 7–10 days, the ascites samples were collected and their titers
were determined by indirect ELISA. The isotypes of the MoAbs were determined using
an isotyping kit following the manufacturer’s instructions (Sigma-Aldrich). The anti-CP
peptide IgG was purified from ascites with an immobilized protein-G affinity column
(GE Healthcare, Wauwatosa, WI, USA) according to the manufacturer’s manual. Purified
antibodies were stored at −80 ◦C.

2.3. Western Blot

Healthy and ToBRFV-, TMV- or ToMV-infected tomato leaves were ground in liquid
nitrogen using a mortar and a pestle. The plant material was solubilized in 4 mL per g of
RIPA buffer (10 mM Tris-HCl pH = 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.1% SDS; 1% Triton X-
100; 1% Deoxycholate) and mixed thoroughly. The homogenate was centrifuged at 3000× g
for 15 min at 4 ◦C, then the supernatant was transferred to a new tube and centrifuged
at 12,000× g for 15 min at 4 ◦C. The extracts were kept at −20 ◦C. The proteins were
resolved in 15% SDS-PAGE gels and blotted onto nitrocellulose membranes (GE Healthcare)
using a Trans-Blot (Bio-Rad, Hercules, CA, USA). After blocking, the membranes were
incubated with a 1/250 dilution of antisera from immunized mice against the ToBRFV
CP peptide or with 1/2 hybridoma supernatant dilutions. Next, an HRP-conjugated anti-
mouse secondary antibody (Promega, Madison, WI, USA) was used at a 1/2500 dilution.
As a control, a commercial ToBRFV antibody (DSMZ, Leibniz, Germany) was used at
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1/1000 dilution and detected with an HRP-conjugated anti-rabbit secondary antibody
(Promega) at 1/2500 dilution. The membranes were developed using SuperSignal West Pico
PLUS (ThermoFisher, Hampton, NH, USA) and an Amersham Imager 600 (GE Healthcare
Life Sciences, Wauwatosa, WI, USA).

2.4. DAS-ELISA

Plant extracts were obtained by homogenizing ground tissue with extraction buffer
(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, 0.05% Tween-20, 20 g/L
polyvinyl pyrrolidone (K10-K40), 2g/L bovine serum albumin, pH = 7.4) in a 1:5 ratio
(µg: mL). The homogenate was centrifuged for 10 min at 13,000 rpm. The supernatant
was recovered and used in the ELISA as follows. A 96-well plate (ThermoFisher) was
coated with 50 µL/well of the capture antibody diluted in coating buffer (15 mM Na2CO3,
35 mM NaCO3, pH = 9.6) and incubated for 3 h at 37 ◦C. This was followed by four washes
with 200 µL/well of wash buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, 0.05% Tween-20, pH = 7.4). Afterwards, 50 µL/well of the plant extract were
added and incubated overnight at 4 ◦C. Once washed four times with 200 uL/well of wash
buffer, 50 µL/well of the secondary antibody (tagged with the alkaline phosphatase reporter
enzyme) was added, and the plate incubated for 3 h at 37 ◦C, after which the washing step
was repeated as above. Lastly, the enzymatic activity was measured after adding 50 µL of
the substrate solution (1 mg/mL 4-nitrophenylphosphate-di-Na-salt in substrate buffer
(1 M diethanolamine, pH = 9.8) and incubating the plate for 60 min, then the absorbance
was read at 405 nm using a TECAN Sunrise (Männedorf, Switzerland). The AbCam
Alkaline phosphatase Conjugation Kit—Lightning-Link® (AbCam, Cambridge, UK) was
used to conjugate the secondary antibody following the manufacturer´s instructions.

2.5. RNA Extraction

RNA extraction was performed using the NucleoSpin RNA plant kit (MACHEREY-
NAGEL, Düren, Germany) following the manufacturer’s instructions. The RNA extracts
were checked by electrophoresis in a 1% agarose gel, and the RNA concentration was mea-
sured with a Nanodrop ™ One (ThermoFisher), and adjusted to a working concentration
of 10 ng/µL, to be used as a template for the RT-LAMP and RT-qPCR. A healthy plant
RNA extract was used as the diluent to adjust the concentrations.

2.6. Primers and Probe Design for One-Step RT-qPCR

A total of 71 complete sequences for ToBRFV, 31 complete sequences for the ToMV,
40 complete sequences for TMV, 16 complete sequences for PMMoV and 26 partial se-
quences for TMGMV were retrieved from the NCBI database to assess inclusivity for each
RT-qPCR test. Sequence alignments were performed with the ClustalW tool [31] included
in the MEGA7 software [32]. For RT-qPCR tests, a 122 bp region within the RdRP was cho-
sen for ToBRFV, a 152 bp region of the RdRP for ToMV, a 148 bp of the RdRP for TMV, a 144
bp region of the CP for PMMoV, and a 106 bp segment of the CP for TMGMV. The Primer3
plus program was used to design the primers and probe set, and the theoretical properties
of the designed assay were analyzed with the Oligo Analyzer tool from IDT (Integrated
DNA Technologies, v3.1.1). The primers and probe exclusivity were also evaluated in silico
against the other tobamoviruses known to affect tomato plants. Both the primers and probe
were synthesized by IDT (Newark, NJ, USA) (Table S2).
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To this end, we first identified small peptides within the ToBRFV CP which harbored 
dissimilarities with ToMV, TMV and ToMMV CP sequences. We next examined the loca-
tion of dissimilar peptides in the tobamoviral CP structure. One of the selected peptides 
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be beneficial for its antibody recognition. In addition, the selected peptide (shown in deep 
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Figure 2. Design and evaluation of two monoclonal antibodies (MoAb 4B10 and MoAb 5A6) against
ToBRFV CP. (A) Clustal alignment of the CP polypeptide sequences from ToBRFV (NC_028478),
TMV (NC_001367), ToMV (NC_002692), and ToMMV (NC_022230) for the identification of a ToBRFV
peptide candidate to give rise to specific ToBRFV antibodies (squared is the best candidate). (B) On
the left, ribbon representation of the structural superposition of the TMV (blue) and the predicted
ToBRFV CPs (green). The selected peptide is highlighted in red. On the right, molecular surface
representation of the assembled virion particle of TMV with the selected peptide marked in blue.
The TMV CP structure was obtained from the protein data bank (2om3, [33]) and the ToBRFV CP
sequence from Uniprot (A0A0S2SZX3, [34]). Protein structure visualization was performed with
Pymol. (C) Western blot analyzing the exclusivity of MoAb 4B10 and MoAb 5A6. Extracts from
healthy (WT), TMV- and ToBRFV-infected plants were loaded. (D) Indirect ELISA results showing
the exclusivity of MoAb4B10 or 5A6 when using serial dilutions of synthetic peptides (squared in
(A)) for ToBRFV, ToMV, and TMV. (E) Analytical sensitivity and exclusivity of the DAS-ELISA tests
devised with the monoclonal antibodies. Each data point represents a single measurement.

2.7. In Vitro Transcription and Standard Curve

A synthetic fragment containing part of the ToBRFV ORF1 was synthetized by Gen-
Script (Piscataway, NJ, USA) and cloned in a pBluescript II KS (+) vector (Stratagene,
La Jolla, CA, USA). In vitro transcription was performed with T3 polymerase (Promega,
Madison, WI, USA) in a 20 µL reaction according to the manufacturer’s instructions. After
ethanol precipitation, the transcripts were resuspended in 20 µL of RNase-free water and
the RNA concentration was measured spectrophotometrically with a Nanodrop ™ One
(ThermoFisher). The standard curve was prepared from serial dilutions of the in vitro
transcript in a 1:10 range, diluted in healthy tomato RNA extracts to a final concentration
of 16 ng/µL.
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2.8. One-Step RT-qPCR

The one-step RT-qPCR reactions were performed using the KAPA PROBE FAST
Universal One-Step qRT-PCR kit (KAPA Biosystems, Wilmington, MA, USA) following
the manufacturer’s instructions. Two microliters of nucleic acid preparation were added
to a final volume of 10 µL. The reactions were carried out in a StepOne Plus ™ Real-Time
PCR System (Applied Biosystems, Waltham, MA, USA) thermocycler, and the reaction
conditions were a reverse transcription step of 5 min at 42 ◦C, followed by PCR with a 3 min
denaturation cycle at 95 ◦C and 40 amplification cycles of 3 s at 95 ◦C, and 30 s at 60 ◦C.
Three replicates were analyzed per plot/sample and two negative controls were included
in each experiment, which consisted of RNA extracts of healthy tomato leaf diluted to a
final concentration of 30 ng/µL, and water in the non-template control (NTC).

2.9. RT-LAMP

LAMP primers were designed using PrimerExplorer v.5 (https://primerexplorer.jp/
e/, accessed on 22 May 2020). Two sets of primers against the MP of ToBRFV were designed
(MP1 and MP2, Table S2). An additional set of primers targeting the tomato ribosomal
RNA 25S subunit was also designed as an internal control (rRNA 25S, Table S2). RT-LAMP
reactions were performed using the WarmStart LAMP Kit (NEB, Ipswich, MA, USA) at a
final volume of 10 µL. Primers were added at a final concentration of 0.2 µM for F3 and
B3, 1.6 µM for FIP and BIP primers, and 0.8 µM for LF and LB primers. Reactions were
performed independently for each set of primers (MP1, MP2, and rRNA 25S) using 2 µL
of input RNA. The amplification was performed at a constant temperature of 62 ◦C for
25–30 min (50–60 cycles of 30 s each) in an Applied Biosystems StepOnePlus Real-Time PCR
System (Waltham, MA, USA), and tracked with a DNA-intercalating green fluorophore
provided with the WarmStart LAMP Kit (NEB).

2.10. ToBRFV Timecourse Experiment

In total, twenty-one 5-week-old tomato plants cv. M82 (3–4 pairs of leaves approxi-
mately) were mechanically inoculated (see above). Three plants per data point (1, 2, 3, 4,
6, 8, 12 days post-inoculation) were sampled, collecting the first pair of newly emerged
leaves in which the virus has replicated systemically. Then, samples were finely sliced and
two subsamples prepared, one containing 100 mg for RNA extraction, and another with
200 mg for protein extraction. These subsamples were frozen in liquid nitrogen, ground
with a Retsch Mixer Mill MM400 (ThermoFisher) for 1 min at 30 Hz, and stored at −80 ◦C
for later analyses.

3. Results
3.1. Development of Monoclonal Antibodies and Two DAS-ELISA Tests to Detect ToBRFV

Given the relatedness of the ToBRFV CP to other tobamoviral CPs (Figure 2A), we
aimed at producing MoAbs able to recognize a specific ToBRFV CP epitope.

To this end, we first identified small peptides within the ToBRFV CP which harbored
dissimilarities with ToMV, TMV and ToMMV CP sequences. We next examined the loca-
tion of dissimilar peptides in the tobamoviral CP structure. One of the selected peptides
(squared in Figure 2A and shown in red in Figure 2B) had an α-helix shape, which may be
beneficial for its antibody recognition. In addition, the selected peptide (shown in deep
blue in Figure 2B) was displayed on the surface of the virion particle. Altogether, these
data suggested that this peptide was a good candidate for the production of monoclonal
antibodies exclusive to ToBRFV. Inclusivity of this immunization epitope was also corrobo-
rated aligning CPs of different ToBRFV isolates (Figure S3). After peptide expression, mice
immunization, antisera immunogenicity characterization, and hybridoma production and
selection (Figure S1), we used two hybridoma lines to produce MoAbs, herein referred to
as MoAb 4B10 and MoAb 5A6. The exclusivity of these MoAbs was evaluated by Western
blotting (Figure 2C) and ELISA (Figure 2D). Western blot results using protein extracts from
tomato plants infected with TMV or ToBRFV showed that both antibodies were exclusive

https://primerexplorer.jp/e/
https://primerexplorer.jp/e/
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to ToBRFV. The same was found when the antibodies were subjected to indirect ELISA,
coating the plate with serial dilutions of TMV, ToMV or ToBRFV synthetic peptides; only
the ToBRFV peptide was recognized by both antibodies. We next focused on developing
a DAS-ELISA test with MoAb 4B10 or 5A6. In both cases, the same antibody was used
for capturing and detecting the antigen, with the only difference being the alkaline phos-
phatase conjugated to the detection antibody. Once the best concentrations of primary and
secondary antibodies were defined for each pair of antibodies, the resulting combinations
were used in a DAS-ELISA test (Figure 2E). Serial dilutions of protein extracts from infected
N. benthamiana and tomato plants were used to assess the analytical sensitivity and exclusiv-
ity of the antibodies. The results indicated that only the extract from the ToBRFV-infected
plants produced detectable signals for both MoAbs confirming their exclusivity for this
virus. The tests with both MoAbs exhibited very low background levels, with cut-off
values estimated at 0.055 and 0.086 for MoAb 4B10 and 5A6, respectively. ToBRFV was
still detected at 1:10,240 dilution when using 4B10 antibody, while 5A6 antibody allowed
ToBRFV detection up to a 1:5120 dilution, delimitating the analytical sensitivity of both
tests. In summary, we produced a pair of monoclonal antibodies that could be used in
specific and sensitive DAS-ELISA tests, Western-blot and possibly other applications.

3.2. Development of an RT-qPCR Test to Detect the RdRP of ToBRFV

Next, we sought to develop a new set of primers and probe that could be able to
complement the existing CaTa28 and CSP1325 set. Thus, we designed the two specific
oligonucleotides AB-620 Fw and AB-621 Rev for the exclusive and inclusive amplification
of a 144 pb segment of the ToBRFV ORF1 from different isolates of this virus, and the
TaqMan probe AB-622 Pr for its detection of the same (Figure 3A and Figure S3).

We named the new primers and probe set as “Abiopep”. Oligonucleotides were
first assessed using serial dilutions of an internal control (IC, a synthetic RNA fragment
encoding part of ORF1), showing an estimated amplification efficiency of 93% (Figure 3B).
We further examined Abiopep´s analytical sensitivity using serial dilutions of an RNA
extract from ToBRFV-infected tomato plants (Figure 3C) and compared it with the CSP1325
(Figure 3D) and the CaTa28 (Figure 3E) sets (see Table S1 for detailed values for each
replicate). The three tests showed different Ct values throughout the range of RNA dilutions
analyzed. In general, CaTa28 and Abiopep detected ToBRFV at lower Cts than CSP1325.
At a 1E-5 ng/reaction (rxn) dilution, CSP1325 failed to detect one technical replicate. The
same took place with CaTa28 but in the next dilution (1E-6 ng/rxn). In contrast, Abiopep
still showed signals, reaching a plateau at Ct values beyond 1E-5 ng/rxn. This plateau
was also observed for CaTa28 and CSP1325. To rationally define a Ct cut-off value to our
test, we performed a meta-analysis using all the data generated by our diagnostic service
during 2020. Thus, out of the 214 negative samples analyzed (WT and NTC), the 85 which
showed detectable signals were considered (Figure S2). We found that almost all of the
samples grouped on a median Ct value of approximately 38. Only two of these samples
displayed a Ct value very close to 35 (34.7 and 35.9, respectively). Altogether, these data
suggested that under our particular conditions of equipment, materials, and reagents,
the Ct cut-off value may be set at a Ct <35. On the other hand, no cross-reactivity was
detected when testing four related tobamoviruses. TMV, ToMV, TMGMV, and PMMoV,
were included in the assay (Figure 3F–I). In these experiments, we used four dilutions
of the RNA extracts from N. benthamiana plants infected with each virus and a sample
infected with ToBRFV. All the samples were analyzed with both a specific set of primers and
probe to the virus of interest (TMV, ToMV, TMGMV, or PMMoV), and Abiopep to detect
ToBRFV. In every case, the detection of the target virus was only observed when using its
corresponding set of primers and probe. The ToBRFV detection signal was only observed
for the ToBRFV-infected sample, but not in the samples infected with the other viruses.
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Figure 3. Design and evaluation of an RT-qPCR test for the detection of the ToBRFV RdRP. (A) Alignment of the large frag-
ment of the ToBRFV RdRP 3′ end and other closely related tobamoviruses to examine the exclusivity of the oligonucleotides.
Mismatches are shown in red and the selected oligonucleotides (AB-620 Fwd, AB-621 Rev, and AB-622 Pr) are indicated
with rectangles. We have given the name of “Abiopep” to this set of oligonucleotides. The NCBI accession numbers for
each virus sequence are shown together with the virus acronym. (B) Assessment of the Abiopep test sensitivity using
serial dilutions of a synthetic transcript of an RdRP fragment. The Ct values versus the number of copies per reaction are
plotted. (C–E) Evaluation of the analytical sensitivity of Abiopep, CaTa28 and CSP1325 tests using serial dilutions of total
RNA extracted from tomato leaves infected with ToBRFV. (F–I) Analytical specificity of the Abiopep test checked using
dilutions of RNA extracted from infected N. benthamiana leaves with related tobamoviruses. Each RNA extract was assessed
with both a specific set of oligonucleotides designed for the amplification of that virus in particular (TMV (F), ToMV (G),
TMGMV (H), or PMMoV(I)), and with the Abiopep test. As a positive control, ToBRFV RNA was used. For all the graphs,
Ct values from three technical replicates are represented versus the nanograms of RNA per reaction (rxn). NTC and healthy
plant RNA extract (WT) were used as negative controls. All the dilutions were made using a healthy plant RNA extract as
diluent. Experiments in (B) and (C) were repeated three times.
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3.3. Development of a LAMP Test to Detect the ToBRFV MP

We also designed a LAMP test for the amplification of ToBRFV MP segments (Figure 4).
Specific sequences were identified and used to design a pair of oligonucleotides sets named
MP1 and MP2 for the exclusive and inclusive amplification of two segments of the MP
(Figure 4A and Figure S3). As an IC, we also designed a set of oligonucleotides to detect the
25S subunit of the ribosomal RNA from solanaceous species. Figure 4B shows the results
for the analytical specificity assays of MP1, MP2, and rRNA 25S oligonucleotide sets using
RNA extracts from infected N. benthamiana (TMV), tomato (ToMV or ToBRFV), and pepper
(TMGMV or PMMoV) plants. Each sample was subjected to the three tests (MP1, MP2, and
25S). An amplification signal for ToBRFV was only observed in the sample from a plant
infected with this virus when using MP1 and MP2, while the ribosomal RNA was detected
in all the samples, indicating that ToBRFV-negative results were due to the absence of
ToBRFV rather than a failure in the testing process. Finally, we assessed the analytical
sensitivity of MP1 and MP2 sets using serial dilutions of total RNA from a ToBRFV-infected
tomato plant diluted in healthy plant RNA (Figure 4C). The results indicated that the
MP1 set was the most sensitive, consistently detecting up to 1E-5 ng RNA/rxn, although
one technical replicate of the next dilution was also positive. In contrast, the last positive
dilution for the MP2 set was 1E-4 ng RNA/rxn, in general showing higher Ct values for
all the dilutions as compared to MP1. In conclusion, our LAMP test exclusively detected
ToBRFV, and included an IC to discard false negatives. While both primer sets worked
efficiently, MP1 detected ToBRFV in an RNA dilution one order of magnitude higher
than MP2.

3.4. Comparison of the ToBRFV Detection Methods

To compare the new ToBRFV detection resources, we sought to generate a set of
samples by mechanically inoculating tomato plants with ToBRFV and sampling them along
a timecourse experiment, with three biological replicates for each data point. Our purpose
was to obtain a collection of samples with diverse viral loads to interrogate our tests and
assess their analytical sensitivity and repeatability using three biological replicates per
data point. Protein extracts were used for the DAS-ELISA tests with MoAb 4B10 and 5A6,
and RNA extracts for the RT-qPCR and LAMP tests (Table 1). As expected, the results
showed that the most sensitive technique was the RT-qPCR, followed by the LAMP and the
DAS-ELISA. For all these techniques, the signals obtained correlated well with the course
of the infection, so for initial samples, the virus was more difficult to detect than for the later
ones. In the case of the DAS-ELISA tests, ToBRFV was not detected roughly until 4 days
post-inoculation (dpi). Only plant 11 (P11) gave rise to a positive signal slightly above the
cut-off value for both antibodies (4B10 and 5A6), while P10 and P12 were negative at 4 dpi.
Beyond this point, all of the following data points provided strongly positive readings for
both immunoassays. In contrast, the nucleic acid amplification tests allowed the detection
of the virus even at 1 dpi, at least for one plant. Thus, P1 showed clear positive signal with
both methods, RT-qPCR and LAMP. At this time, P2 and P3 provided doubtful results,
since the Ct values for the RT-qPCR test were very close to the cut-off (Ct cut-off <35) on
P2, and slightly higher on P3. Neither P2 nor P3 were positive in the LAMP tests, while
the IC 25S was positive, ruling out false negatives. Samples of the next data point, 2 dpi,
provided more clear results for both nucleic acid amplification techniques. P4 and P5 were
clearly positive with the Abiopep RT-qPCR test, but Ct values for P6 were close to the
cut-off. The LAMP tests aligned well with these results, so the virus was detected in P4
and P5 by MP1 and MP2 primers but in P6, it was only barely detected with MP2 in just
one technical replicate. From this time point on, for the next samples (P7-P21), the virus
was readily detected by both genetic tests and Ct values decreased with the timecourse,
perhaps in association with an increase in the virus titer. The results strongly suggested
that the new testing methods aligned well with the likely viral load of each sample and
the corresponding sensitivity of each method: Early samples with putatively very low
(P1-P6) or low/intermediate viral loads (e.g., P7-P12) were only positive with the RT-qPCR
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and LAMP tests, although with some doubts for the second method; late samples with
putative higher viral loads were positive according to all the tests, DAS-ELISA, RT-qPCR,
and LAMP.
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each (F3, B3, FIP, BIP, LF, and LB) named MP1 and MP2, were designed for the amplification of two segments of the ToBRFV
MP. Black rectangles show the MP1 set and blue rectangles the MP2 oligonucleotides. An additional set of primers was
designed to amplify the ribosomal RNA (rRNA) 25S (not shown) as an IC. (B) Assessment of the analytical specificity of all
the LAMP primer sets using total RNA extracts from healthy or PMMoV-, TMGMV-, ToMV-, TMV- or ToBRFV-infected
leaves. (C) Analytical sensitivity of the RT-LAMP primer sets MP1, MP2, and rRNA 25S. Individual Ct values for three
technical replicates are shown. NTC and healthy plant RNA extract (WT) were used as negative controls. All the dilutions
were made using a healthy plant RNA extract as diluent.
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Table 1. Comparison of ToBRFV detection methods.

DAS-ELISA RT-PCR LAMP
MoAb 4B10 MoAb 5A6 Abiopep MP1 MP2 rRNA 25S

1 dpi
P1 0.068 ± 0.022 † 0.066 ± 0.023 † 31,75 ± 0.25 ‡ 43.45 ± 1.14 ‡ 49.30 ± 0.86 ‡ 23.26 ± 0.48 ‡

P2 0.058 ± 0.023 † 0.042 ± 0.005 † 34.33 ± 0.43 § 39.81 §* N.D. § 19.94 ± 0.26 §

P3 0.068 ± 0.020 † 0.041 ± 0.006 † 35.95 ± 0.94 † N.D. † 46.97 *† 18.36 ± 0.32 †

2 dpi
P4 0.071 ± 0.012 † 0.044 ± 0.003 † 30.69 ± 0.13 ‡ 39.02 ± 0.86 ‡ 47.94 ± 1.78 ‡** 21.10 ± 0.24 ‡

P5 0.075 ± 0.014 † 0.044 ± 0.006 † 29.82 ± 0.14 ‡ 38.05 ± 1.68 ‡ 47.81 ± 2.31 ‡** 18.93 ± 0.01 ‡

P6 0.068 ± 0.015 † 0.039 ± 0.003 † 34.78 ± 0.46 § N.D. § 49.74 §* 22.17 ± 0.48 §

3 dpi
P7 0.068 ± 0.028 † 0.042 ± 0.008 † 30.30 ± 0.62 ‡ 39.19 ± 0.81 ‡ 47.81 ± 0.80 ‡ 18.53 ± 0.22 ‡

P8 0.062 ± 0.020 † 0.045 ± 0.003 † 25.93 ± 0.13 ‡ 33.67 ± 0.76 ‡ 43.18 ± 1.18 ‡ 18.81 ± 0.17 ‡

P9 0.051 ± 0.028 † 0.052 ± 0.023 † 26.79 ± 0.02 ‡ 35.71 ± 1.00 ‡ 45.53 ± 2.76 ‡ 18.10 ± 0.16 ‡

4 dpi
P10 0.09 ± 0.01 † 0.1 ± 0.004 † 22.34 ± 0.07 ‡ 22.60 ± 0.24 ‡ 31.57 ± 0.43 ‡ 15.02 ± 0.41 ‡

P11 0.18 ± 0.01 § 0.22 ± 0.04 § 10.35 ± 0.03 ‡ 21.86 ± 0.21 ‡ 30.63 ± 0.063 ‡ 17.23 ± 0.79 ‡

P12 0.07 ± 0.01 † 0.10 ± 0.02 † 10.04 ± 0.14 ‡ 22.67 ± 0.2 ‡ 32.64 ± 1.16 ‡ 16.24 ± 0.36 ‡

6 dpi
P13 2.49 ± 0.11 ‡ 3.34 ± 0.02 ‡ 11.37 ± 0.48 ‡ 13.23 ± 1.22 ‡ 20.81 ± 0.47 ‡ 16.14 ± 0.15 ‡

P14 2.46 ± 0.18 ‡ 3.38 ± 0.04 ‡ 21.63 ± 0.07 ‡ 12.08 ± 0.6 ‡ 19.8 ± 0.30 ‡ 16.23 ± 0.29 ‡

P15 2.41 ± 0.08 ‡ 3.26 ± 0.02 ‡ 22.79 ± 0.12 ‡ 13.77 ± 0.97 ‡ 20.86 ± 0.19 ‡ 17.3 ± 0.48 ‡

8 dpi
P16 2.54 ± 0.2 ‡ 3.34 ± 0.05 ‡ 12.96 ± 0.53 ‡ 11 ± 0.64 ‡ 19.89 ± 0.21 ‡ 17.02 ± 3.33 ‡

P17 2.52 ± 0.28 ‡ 3.42 ± 0.12 ‡ 12.00 ± 0.67 ‡ 10.04 ± 0.28 ‡ 17.78 ± 0.77 ‡ 19.72 ± 3.16 ‡

P18 2.21 ± 0.56 ‡ 3.20 ± 0.05 ‡ 13.22 ± 0.08 ‡ 10.46 ± 0.22 ‡ 18.12 ± 1.15 ‡ 17.80 ± 0.11 ‡

12 dpi
P19 2.49 ± 0.06 ‡ 3.38 ± 0.01 ‡ 13.29 ± 0.06 ‡ 10.42 ± 0.41 ‡ 17.30 ± 0.19 ‡ 17.57 ± 0.28 ‡

P20 2.34 ± 0.2 ‡ 3.32 ± 0.02 ‡ 10.83 ± 0.12 ‡ 10.39 ± 0.62 ‡ 17.66 ± 0.30 ‡ 18.92 ± 1.20 ‡

P21 2.53 ± 0.28 ‡ 3.35 ± 0.03 ‡ 10.15 ± 0.03 ‡ 11.23 ± 0.19 ‡ 18.61 ± 0.29 ‡ 19.15 ± 1.30 ‡

Twenty-one tomato plants were infected with ToBRFV and systemic leaves were individually sampled into subgroups of three plants at 1, 2,
3, 4, 6, 8, and 12 days post-inoculation (dpi). Samples were analyzed using the DAS-ELISA, RT-qPCR, and LAMP tests described in the text.
Columns represent the detection methods and rows the three plants analyzed per time point. Data are shown as the mean ± S.D. of three
technical replicates. Symbols: † Negative result; ‡ Positive result; § Doubtful result; * One technical replicate; ** Two technical replicates.

4. Discussion

Emergent plant viruses are a constant threat that need to be addressed quickly to
avoid or limit the expansion of the new pathogens. Thus, specific testing methods that
allow the identification of emergent viruses among their relatives are crucial for monitoring
the progression of epidemics and implementing effective eradication measures. ToBRFV
is an example of an emergent plant virus which has expanded from the Mediterranean
basin to practically all the continents. Therefore, in this work, we developed an array of
techniques aimed at detecting the CP and several regions of the ToBRFV genome (Figure 1):
two DAS-ELISA tests against the CP, a RT-qPCR test for the RdRP, and a RT-LAMP test for
the MP.

The tobamovirus virion particle is composed of thousands of CP subunits that are
helicoidally arranged, wrapping the ssRNA(+), and forming a rod-shaped structure [35].
The repetition of the CP in the virion particle makes it an attractive candidate for obtaining
antisera against this virus, particularly if targeting externally localized peptides. This is the
most straightforward approach and the one that most of the commercial antisera follow.
However, the immunization with the whole virion or CP protein yields polyclonal antisera
that are likely to have cross-reactivity with other tobamoviruses, especially in the case
of ToBRFV, which shares a high degree of similarity with ToMV and TMV. In contrast,
MoAbs are directed against singular epitopes and are less likely to cross-react, a feature
of great interest when an emergent virus is very similar to other widespread viruses. The
drawback though, is that MoAbs are more difficult to obtain, and the process takes more
time at a higher cost. Nevertheless, we reasoned that the extra effort and time for the
development of a MoAb was justified in this case. Thus, we identified a peptide at the
C-terminus of the ToBRFV CP exposed to the outer surface of the virion particle, which



Viruses 2021, 13, 1680 12 of 15

potentially bore enough dissimilarities with ToMV and TMV to produce specific antibodies.
We used this peptide to immunize mice, and after three rounds of cloning and selection,
we obtained two MoAbs which showed no cross-reactivity with the TMV CP nor with
the equivalent peptides from TMV or ToMV. Next, we formulated two DAS-ELISA tests
which were exclusive to ToBRFV, and which did not show cross-reactivity with TMGMV,
PMMoV, ToMV, or TMV. The DAS-ELISA test formulated with the MoAb 4B10 was more
sensitive than the MoAB5A6, detecting ToBRFV at least at one dilution higher. However,
this difference in the analytical sensitivity was not noticed during a timecourse infection
experiment, as both tests performed similarly, detecting ToBRFV after 6 dpi. From 6 to
12 dpi, the signal from both tests remained steady, perhaps indicating detection saturation.
In comparison, nucleic acid amplification tests showed lower Ct values during the course
of the infection, suggesting that the virus was still accumulating in the plant tissue despite
the DAS-ELISA being unable to sense this increase in the viral load.

RT-qPCR is the gold standard when discussing sensitivity in virus detection. This is
especially important when the virus titer is low, as may occur in infected seed stocks [36].
The EPPO recommendation is to use the CaTa28 and CSP1325 ISF-ISHI-Veg RT-qPCRs tests.
The first test targets the MP, whereas the second is directed to the CP. In addition to this,
Panno et al., 2019 [24] reported a RT-qPCR test targeting the MP of ToBRFV. Therefore, we
decided to target the RdRP ORF which was still untargeted. The results showed that our
test could be useful for detecting ToBRFV per se, or it could be complementarily used with
the aforementioned tests which target different regions of the ToBRFV genome. Under our
particular conditions of reagents, equipment, and operators, the CaTa28 test was the most
sensitive of either ISHI-veg tests, detecting ToBRFV in a 1E-5 ng/rxn dilution, one order
of magnitude lower than CSP1325. Beyond these dilutions, the stability of the Ct mea-
surements decreased, as reflected by some replicates which failed to amplify or produced
high Ct values. In contrast, the Abiopep test continued to produce a clear signal in the
rest of the dilutions, stabilizing the Ct values to around 39, which, in fact, may complicate
the selection of a Ct threshold. To solve this, we collected all the Ct values coming from
negative samples, including NTC, WT, and samples infected with other tobamoviruses,
and observed that the lower value was close to 35. Following this cut-off value of <35,
the last dilution detected by the Abiopep test was 10E-4 ng/rxn, the same as the CSP1325
test and one dilution less than the CaTa28 test. Nevertheless, it is important to remark
that this threshold needs to be adjusted for each laboratory. For instance, the ISF-ISHI-Veg
protocol sets a threshold at Ct <32 for the positive amplification control, whereas Botermans’
group, which followed this protocol for tracking ToBRFV outbreaks in the Netherlands,
established a lower Ct threshold of <30 [21]. Importantly, aside from the in silico analysis
of the primers and probe specificity, we evaluated the exclusivity of the Abiopep RT-qPCR
test by using RNA extracts from plants infected with different tobamoviruses and a specific
pair of primers for each one. This assay experimentally confirmed the exclusivity of our
Abiopep test, which only showed amplification for ToBRFV-positive samples, while the
samples infected with the other viruses were positive with their particular set of primers
and probe.

Genetic testing methods are shifting from the laboratory to the field, accelerating the
decision-making process while reducing costs. To date, point-of-care testing approaches are
mainly reserved for antibody tests such as immunochromatographic strips. However, these
testing methods are less sensitive and specific compared with the nucleic acid amplification
methods. As a result, isothermal amplification methods that do not require sophisticated
equipment are gradually gaining popularity. To our knowledge, two works have been
published describing LAMP tests to detect ToBRFV [26,27]. Both protocols consisted of
one set of primers targeting the RdRP ORF, and were compared with published RT-PCR
tests [14,19], confirming that the LAMP method had a higher sensitivity as had been
previously demonstrated for other LAMP tests targeting different plant viruses [37,38].
Conversely, in this work, we targeted two different segments of the MP ORF (MP1 and
MP2), adding an IC (25S) and thus facilitating the interpretation of the results. In our
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LAMP test, a (i) positive sample should provide a clear amplification for all three targets
(MP1, MP2 and 25S), a (ii) negative sample should fail to amplify MP1 and MP2 targets
while amplifying 25S, a (iii) doubtful situation would be when only one MP target (MP1
or MP2) amplified in conjunction with 25S. Examples of these outputs can be found in
Table 1. Unlike Sarkes et al., 2020 [26] which tested the exclusivity using synthetic gene
fragments of TMV and ToMV, Rizzo et al., 2021 [27] used plant RNA extracts obtained
from plants infected with different tobamoviruses. We confirmed the exclusivity of our
test following the same strategy as the second study, showing that the MP1 and MP2
sets only amplified samples infected with ToBRFV, whereas the 25S set amplified all the
samples except NTC. We used the same RNA extracts from ToBRFV-infected tomato plants
to evaluate the sensitivity of the Abiopep RT-qPCR test and the MP1 and MP2 LAMP
tests, thus allowing the comparison between both methods. Both primer sets displayed
sensitivities equal to RT-qPCR tests, with a limit of detection of 10E-5 ng/rxn for the MP1
set and 10E-4 ng/rxn for the MP2 set.

Altogether, with the experiments discussed above, we evaluated fundamental pa-
rameters such as analytical sensitivity, specificity (including inclusivity and exclusivity),
repeatability and reproducibility of our tests, although, like for most analyses described in
the literature, with some limitations. The analytical sensitivity was evaluated for all the
tests by assaying serial dilutions of an extract from an infected plant in a healthy plant
tissue extract, and also in an infection timecourse experiment. Regarding the analytical
specificity, only the Spanish ToBRFV isolate was evaluated to test the inclusivity since this
virus is included in the EPPO’s A2 list of quarantine pests, and access to overseas isolates
is restricted. Nevertheless, the relatively short evolutionary history of ToBRFV should
guarantee the inclusivity of our tests as in silico analysis of the sequences showed. To
ensure the exclusivity of our tests, relevant non-target tobamoviruses which are known
to infect tomato and pepper (TMV, ToMV, PMMoV, TMGMV) were tested. As happened
with the inclusivity analyses, the evaluation of the alignments that we performed when
designing our tests should also ensure the exclusivity of our tests. Selectivity was evaluated
using tomato and N. benthamiana matrices with no noticeable impact on the performance of
our tests. Finally, the repeatability of the tests was shown with the twenty-one plants with
different viral titers that we evaluated in the timecourse experiment. Each time point was
represented by three biological replicates, each one assessed by three technical replicates.

In conclusion, we successfully achieved the goal of this work, which consisted of
providing new tools for the specific and sensitive detection of ToBRFV. To our knowledge,
this is the first report that gathers and describes the development, evaluation, and com-
parison of three testing methods with different foundations to detect ToBRFV in infected
N. benthamiana and tomato leaves. Remarkably, these methods were compared using the
same set of samples to provide clues about their selection. In the future, more tobamovirus
isolates as well as matrices (e.g., pepper leaves, pepper and tomato seeds) need to be tested
to expand our set of data referring the inclusivity, exclusivity, and selectivity of the tests.
Additionally, more RT-qPCR amplification reagents need to be assessed to delimitate which
one gives the best diagnostic performance. Meeting all standards of supra-national plant
health authorities (e.g., the EPPO standards in Commission Implementing Regulation
1191/2020) will help in the generalization of the use of our methods.

5. Patents

Both monoclonal antibodies reported in this manuscript are included in the Spanish
Patent Application 202130416.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13091680/s1, Figure S1: Antisera immunogenicity characterization and hybridoma pro-
duction and selection; Figure S2: Estimation of the Abiopep RT-qPCR test threshold; Figure S3:
Evaluation of the analytical inclusivity of the tests. Table S1: Detailed Ct values of the RT-qPCR tests
shown in Figure 3; Table S2: Oligonucleotides used in this study.
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