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Abstract

In time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are
measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of
non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a
measured signal sequence, the parameters of the model functions are estimated. Furthermore, in order to quantitatively
analyze real measurement data and to reduce the risk of improper decisions, it is necessary to obtain the statistical
characteristics from several sequences rather than just a single sequence. In the present paper, we propose an automatic
method by which to analyze composite signals using non-negative factorization and an information criterion. The proposed
method decomposes the composite signal sequences using non-negative factorization subjected to parametric base
functions. The number of components (i.e., rank) is also estimated using Akaike’s information criterion. Experiments using
simulated and real data reveal that the proposed method automatically estimates the acceptable ranks and parameters.
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Introduction

Time-resolved spectroscopy is widely used for analysis in fields

such as chemistry and biology [1–4]. In this form of spectroscopy,

energy transfer from an excited state of fluorescence materials

[1,2] or free diffusion of materials [3,4] in thermal equilibrium is

measured as a signal sequence in order to analyze the physical

characteristics of the materials. The signal sequence (usually, a

composite physical signal) is represented as a sum of non-negative

signal components [1–4]. The signal components represent kinetic

energy distributions for each energy level, and the physical

characteristics of the materials are estimated from the parameters

of the components (such as existence ratios and energy levels),

which are usually calculated using fitting methods [1–4]. In a

signal sequence for free diffusion in particular, the energy levels for

each component are related to the diffusion times of materials

[3,4]. Thus, in order to analyze the physical characteristics of the

materials, the parameters of model functions that represent the

energy dynamics in thermal equilibrium (i.e., the Boltzmann

distribution) are usually estimated from each measured signal

sequence [1–4]. In this case, it is often necessary to obtain the

statistical characteristics from several sequences rather than just a

single sequence [1–4] in order to quantitatively analyze real

measurement data. In many such analyses, the number of

components was manually decided so as to be explainable

according to domain-specific knowledge (heuristics) obtained from

chemical, biological, and/or physical experiments [3,4]. In order

to quantitatively analyze real data, it is desirable that the number

of components is automatically decided in order to reduce the risks

of subjective decisions, because the estimated physical parameters

of the components change depending on the number of

components. As such, it is appropriate to apply statistical methods

to multiple signal sequences. Such a statistical analysis method for

spectroscopic measurement data would contribute to improved

analysis accuracy in a wide range of chemical and biological

research fields [1–4].

Signal factorization methods, such as factor analysis, principal

component analysis (PCA) [5], independent component analysis

(ICA) [6,7], and positive or non-negative matrix factorization

(PMF [8] or NMF [9,10]), have been applied to a range of fields.

In particular, NMF used together with a fitting method [11] is

effective for factorizing non-negative energy distributions, such as

the Boltzmann distribution, because the energy distribution can be

represented as a positively weighted sum of a few non-negative

components. These components are not necessarily orthogonal.

On the other hand, PCA and ICA are not suitable for this purpose

because they do not exhibit non-negativity. Actually, PCA

decomposes the signals into a sum of orthogonal basis vectors.

Non-negativity was introduced to ICA by Plumbley [12], and non-

negative ICA will be effective for the estimation of source signals

based on observed signals. However, non-negative ICA does not

consider the non-negative constraint for the mixing matrix [12].

When the mixing matrix includes negative values, the measured

signal is represented as a sum of negative and non-negative source

signal components, despite the fact that the composite physical

signal consists of a non-negative sum of non-negative components.

Boltzmann non-negative matrix factorization (BzNMF) [13] is

an effective method for analyzing composite physical signals that
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are subject to the Boltzmann distribution law. BzNMF decom-

poses an input matrix (i.e., a set of non-negative signal sequence

vectors) into non-negative basis vectors under the constraint that

the decomposed basis vectors are represented by the Boltzmann

distribution. BzNMF can be used to estimate statistical and

physical parameters from a set of input signal sequences. Physical

parameter estimation by BzNMF is more applicable to a wider

range of energy kinetics analysis than fitting methods, such as

using the Fourier transform of a time-series concentration

transition. This is because the Boltzmann distribution often

represents the basic energy kinetics distribution in chemistry and

physics. In [13], the objective function of BzNMF was defined by

the generalized Kullback-Leibler (KL) divergence. However, in

physical chemistry [14], optimization problems are usually solved

using the method of least square error (LSE).

In the present paper, we propose an automatic analysis method

for composite physical signals, which are represented as the sum of

the Boltzmann distributions. The proposed method decomposes

the composite signals using BzNMF, which is optimized in LSE.

The number of components (i.e., the rank) is also estimated using

Akaike’s information criterion (AIC) [15] in order to reduce the

risk of improper rank estimation.

We confirmed the validity of the proposed method by

conducting experiments using simulation data and real data.

The simulation data were generated using the sum of the

Boltzmann distributions, and the real data are for standard

samples measured by fluorescence correlation spectroscopy (FCS)

[16–18] in [3]: Chemical particle (rhodamine 6G: Rh6G) and

fluorescence protein (enhanced green fluorescence protein: EGFP).

Methods

Composite physical signals
In time-resolved spectroscopy, when we measure energy

transfer from an excited state of fluorescence materials [1,2] or

free diffusion of materials [3,4] in thermal equilibrium, the i-th

signal intensity (1#i#N) at the j-th measurement time point

(1#j#M) I (i)(tj) = Ij obtained by approximating the sum of

exponential functions is defined as follows:

Ij&
X

r

hrexp {
tj

tr

� �
, ð1Þ

where hr denotes a non-negative coefficient of the r-th system

(component). tr (.0) is the r-th time constant, such as the energy

transfer time or the diffusion time of the materials, and tj (.0) is

the j-th measurement time point.

In physics, the energy transfer in thermal equilibrium is

expressed by the Boltzmann distribution law. The sum of the

Boltzmann distributions p(ej) is not usually expressed as in Eq. (1),

but is instead defined as

p ej

� �
~
X

r

hrexp {
ej

kBTr

� �
, ð2Þ

where the quantity ej represents the difference between the j-th

energy level and the lowest energy level. The three parameters hr,

kB, and Tr are the r-th amplitude, the Boltzmann constant, and the

absolute temperature of the r-th component, respectively.

When we measure the changes in energy using spectroscopic

methods, the quantity ej is proportional to the number of measured

photons at the j-th time point, and the number of photons per

unit time is constant. Therefore, ej is proportional to tj. The

denominator kBTr denotes the quantity of heat in the r-th

component. Therefore, kBTr must be proportional to the kinetic

energy Er in the r-th component, and Er can then be represented as

Er~
1

2
mrvr

2, ð3Þ

where mr is the mass of the measurement target of the r-th

component, and vr is the velocity of the measurement target of the

r-th component. When the measurement volume is sufficiently

small, vr can be regarded as being approximately constant, and Er

is proportional to mr. The r-th time constant tr for the energy

dynamics is also proportional to mr. Therefore, kBTr is propor-

tional to tr.

Based on the above considerations, the measured signal Ij is

expressed as a non-negative linear combination of non-negative

components, which are represented by the Boltzmann distribution

shown in Eq. (1).

Non-negative Factorization
In the factorization of composite physical signals, the M 6 N

input matrix I is constructed from N signal sequences that are

measured at M time points. The input matrix I should be

decomposed into the given R-rank inner products of non-negative

basis vectors and non-negative coefficients, because the measured

signal sequence is expected to be a non-negative linear

combination of certain signal components. NMF [9,10] was

proposed as a means of decomposing a given input matrix I into

an M6R basis matrix W = [w1, …, wR] and an R6N coefficient

matrix H = [h1, …, hN], as follows:

I&WH s:t: I,W,H§0: ð4Þ

This means that WH is an approximation of the input matrix I.

In NMF [10], there is no guarantee that a physical phenomenon

is directly reflected in the basis matrix. In order to analyze physical

phenomena, a constraint on the basis function was introduced into

BzNMF [13]. It decomposes the non-negative matrix into the

inner products of non-negative basis vectors and non-negative

coefficients, under the constraint that the decomposed basis

vectors are represented by the Boltzmann distribution. Thus,

BzNMF can directly estimate the model parameters of the target

phenomena in the framework of NMF. It decomposes I into W
and H as

I&WH s:t:wjr~exp {
tj

tr

� �
, ð5Þ

where wjr is the j-th value of the M-dimensional basis vector wr and

is expressed by the given model function in Eq. (1). BzNMF

decomposes the input signal sequences by estimating the time

constant in the r-th component (rank) tr (.0) and the coefficient hri.

The objective function in [13] minimized the generalized KL

divergence (also referred to as I divergence), which was given by

D I jjWHð Þ~
XN

i

XM
j

Ijilog
Iji

whð Þji
{Ijiz whð Þji

 !
, ð6Þ

where Iji and (wh)ji =gr wjr hri are the j-th value of the i-th input

vector and the j-th value of the i-th approximated vector,

respectively. The objective function given by Eq. (6) represents

the divergence between Iji and (wh)ji, and the objective function of
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the fitting method is usually represented using the LSE [14]. Thus,

we propose an objective function for BzNMF to minimize LSE, as

follows:

D~
XN

i

XM
j

Iji{ whð Þji
� �2

: ð7Þ

In BzNMF, the time constants tr and the non-negative coefficients

h are optimized to estimate the approximations. From the

objective function given in Eq. (7), the derivative with respect to

tr is obtained as follows:

LD

Ltr

~{2
X

ij

Ijihri

tj

tr
2

wjrz2
X

ij

whð Þjihri

tj

tr
2

wjr: ð8Þ

We can derive the update rule for tr using the step width

parameter (acceleration coefficient) g of the gradient descent

formula tr r tr - g{hD/htr}. Similar to the original NMF, g ($0)

is as follows:

g~
tr

3

2
P
ij

whð Þjihritjwjr

: ð9Þ

The update rule for the coefficient hri in the proposed BzNMF is

the same as that for the original NMF. Thus, the update rule for

the parameters in the proposed BzNMF is given as follows:

hri
tz1/hri

t

P
j

wjrIjiP
j

wjr whð Þji

tr
tz1/tr

t

P
ij

Ijihri tjwjrP
ij

whð Þjihri tjwjr
:

8>>>>>>><
>>>>>>>:

ð10Þ

The weighted component vector of the r-th component in the i-th

signal sequence is represented as wrhri. The proof of these update

rules is the same as that for the original NMF [10].

Rank Estimation using an Information Criterion
In spectroscopic analysis, the number of basis vectors (compo-

nents), i.e., the rank, is usually determined manually based on

chemical knowledge. However, automatic estimation of the rank is

important because the rank affects the decomposition results.

Rank estimation using k-fold cross validation (CV) [19] was

presented in [13]. Cross validation is a popular model selection

technique and evaluates models more directly than other

theoretical methods, such as information criteria. However, the

given parameter k depends on the user. If the input data is

sufficiently given for statistical (theoretical) models, rank estimation

using the information criterion is less computationally expensive

than rank estimation using k-fold CV, because the information

criterion can estimate the rank from a one-time-only validation.

The computation times for AIC and k-fold CV are compared in

the Results section. In the present paper, the rank is estimated

using an information criterion.

Information criteria such as the AIC [15] and the minimum

description length (MDL) [20,21] are commonly used as model

selection methods. In particular, the AIC is a simple information

criterion and can be used to evaluate the goodness of the statistical

distribution models. Therefore, among the numerous information

criteria, we select the AIC for use in estimating the rank. The AIC

minimizes the log likelihood and is expressed as follows:

AIC~{2log Lð Þz2K , ð11Þ

where L and K are the likelihood and the degree of freedom of the

model, respectively. In the rank estimation for the proposed

BzNMF, L can be derived from the Gaussian distribution because

the objective function is expressed using the LSE. In the proposed

model (5), the degree of freedom is the rank R, which is estimated

based on the AIC as

Re~arg min
R

log min
wh

1

M

X
ij

Iji{ whð Þji
� �2

 !
z2RzC

( )
, ð12Þ

where Re is the estimated rank, and C is a constant term.

When the objective function is based on the generalized KL

divergence, the error distribution between the input signal

sequence and the approximated signal sequence is assumed to

be a Poisson distribution. In this case, rank estimation by the AIC

is derived using Stirling’s approximation,

Re~arg min
R,WH

2D I jjWHð Þz2RzCf g, ð13Þ

where D(IIWH) is the value of the objective function for each R.

If the number of input signal sequences is too small for rank

estimation, the finite sample corrected AIC (AICc) [22] can

effectively estimate the rank. The AICc is defined as

AICc~{2log Lð Þz2
KN

N{K{1
, ð14Þ

where N is the number of signal sequences. When the objective

function is based on the LSE, rank estimation by AICc is defined

as follows:

Re~arg min
R

log min
wh

1

M

X
ij

Iji{ whð Þji
� �2

 !
z2

RN

N{R{1
zC

( )
:ð15Þ

Similarly, the AICc optimized in the generalized KL divergence is defined

as follows:

Re~arg min
R

2D I jjWHð Þz2
RN

N{R{1
zC

� 	
: ð16Þ

In the following experiments, we use Eq. (12) in the proposed

method.

Results

Comparative Evaluation of Factorization Methods
In this section, we use simulation data to compare decomposition

methods that are optimized in the LSE or in the generalized KL

divergence. The rank in the BzNMFs was estimated using the AIC.

The input signal sequences were synthesized by the following equation,

Fi tj

� �
~ 1:0zj {0:1, 0:1ð Þð Þ

XRs

r~1

ĥhrexp {
tj

t̂tr

� �
, ð17Þ

where j(20.1, 0.1) is random noise that ranges from 20.1 to 0.1. The

simulation rank Rs, the r-th time constant t̂tr, and the r-th existence ratio
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ĥhr were given as Rs = {2, 3, 4, 5}, t̂tr = 10r, and ĥhr = 1/Rs, respectively.

In the simulation experiments, the ranks, time constants, and existence

ratios estimated using the decomposition methods were evaluated using

the mean values for three sets of simulation data. The input simulation

matrix for each set was constructed from 50 vectors (signal sequences),

which were equally sampled as 75-, 145-, 715-, 1,430-, and 7,150-

dimensional (log sampling) vectors (1.002#tj#3,269,017.373). For rank

estimation by the AIC, the AICc, and the k-fold CV, the range of given

ranks was 1#R#20. Dataset S1 contains the source code of our

proposed method (BzNMF, AIC and AICc optimized in the LSE) and

the simulation data.

Figure 1 shows examples of the decomposition results obtained

using the NMF [10] and BzNMF (10), which were optimized in

the LSE. The open circles indicate the input signal sequences,

and the solid lines indicate the approximated sequences. The

broken lines indicate the weighted component sequences for each

rank r. The rank of simulation data was given as 2. The rank was

set to 2 in the decomposition using the NMF, which is not always

suitable for factorizing composite physical signals, as shown in

Fig. 1a, because model functions representing physical phenom-

enon are not introduced into the bases. On the other hand,

BzNMF could factorize the modeled components as shown in

Fig. 1b, and the proposed method using the AIC given by Eq.

(12) was used to estimate the correct rank (2, in this case), as

shown in Fig. 2.

Figure 2 shows the results of rank estimation using the AIC and

the AICc, which were optimized in the LSE. The estimated rank

was 2 using both the AIC and the AICc. Based on these results, the

AIC can effectively estimate the correct rank when the number of

input signal sequences is relatively small, i.e., approximately 50.

Figure 1. Decomposition results for the simulated signal sequence. Figure 1 shows examples of the decomposition results for one signal
sequence. The input matrix is rank 2 and consists of 50 vectors (signal sequences). The signal sequence is represented by a 75-dimensional vector.
The open circles, the solid line, and the broken lines show the input signal sequence, the approximated signal sequence, and the decomposed
components, respectively. (a) shows the decomposition results obtained using the NMF optimized in the LSE. The rank of (a) is assumed to be 2. (b)
shows the decomposition result obtained using BzNMF + AIC optimized in the LSE. The rank of (b) is estimated to be 2 using the AIC.
doi:10.1371/journal.pone.0032352.g001
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In order to confirm the estimation accuracy, we evaluated the

ranks, existence ratios, and time constants estimated using three sets

of input matrices, which were constructed from 50 simulated signal

sequences in one set. Figure 3 shows the results of rank estimation

obtained using the automatic decomposition methods for each Rs

and the dimension of the signal sequence (dim). The automatic

decomposition methods were BzNMF (10) and the AIC (12)

optimized in the LSE (BzNMF + AIC (LSE)), BzNMF (10) and the

AICc (15) optimized in the LSE (BzNMF + AICc (LSE)), BzNMF

[13] and the AIC (13) optimized in the generalized KL divergence

(BzNMF + AIC (KL)), and BzNMF [13] and the AICc (16)

optimized in the generalized KL divergence (BzNMF + AICc (KL)).

As indicated in Fig. 3, BzNMF + AIC (LSE) is the most stable

method of rank estimation, because this method estimates the

correct ranks, excluding one of the three trials in the case of the

(Rs, dim) = (4, 75) simulation data set. Unfortunately, BzNMF +
AICc (LSE) could not estimate the correct ranks when Rs = 5

(145#dim#7,150) and (Rs, dim) = (4, 75). The false results for the

AICc may arise from the effect of the finite sample correction

term. BzNMF + AIC (KL) and BzNMF + AICc (KL) show the

correct results when dim$715, excluding Rs = 4. In the case of (Rs,

dim) = (4, 7,150), the automatic decomposition methods optimized

in the generalized KL divergence could not estimate the correct

rank. These results suggest that the proposed method (BzNMF +

Figure 2. Rank estimation results by AIC and AICc. The input matrix setting is the same as Figure 1. The experimental results are obtained from
one set of input matrices (50 signal sequences). The AIC and AICc are optimized in the LSE. The solid line and the broken line show the results
obtained by the AIC and the AICc, respectively.
doi:10.1371/journal.pone.0032352.g002

Figure 3. Rank estimation results for different ranks and sample dimensions. The simulation rank Rs and the dimension of the signal
sequence (dim) are set to Rs = {2, 3, 4, 5} and dim = {75, 145, 715, 1,430, 7,150}, respectively. The input matrix is constructed from 50 signal sequences
in a set. The ranks are estimated by three sets of input matrices. The blue, yellow, green, and purple bars show the mean of estimated ranks in Rs = 2,
Rs = 3, Rs = 4, and Rs = 5, respectively. The red error bars show the maximum and minimum estimated ranks.
doi:10.1371/journal.pone.0032352.g003
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AIC (LSE)) is better than the other methods for automatic rank

estimation.

For evaluating the estimated parameters by BzNMF, the

estimated tr and the coefficients (existence ratios) of the

components hr are listed in Table 1. These are the results for

(Rs, dim) = (3, 145) shown in Fig. 3. When the input matrices in

Table 1 were decomposed, the methods shown in Fig. 3 could

correctly estimate the multiple ranks in the lower-dimensionality

signal sequences. The parameters estimated by BzNMF + AICc

were identical to those obtained by BzNMF + AIC, which were

optimized by the same method. The decomposition results for the

proposed method (BzNMF + AIC (LSE)) were similar to those for

BzNMF + AIC (KL). The time constants tr, in particular, t1 and

t2, of BzNMF + AIC (KL) were slightly smaller (faster) than those

of the correct values. On the other hand, the proposed method

estimates the parameters with sufficient accuracy, indicating that

the estimated parameters exist within the error range due to

random noise shown in Table 1.

In order to evaluate the influence of the input signal

dimensionality on the decomposition parameters, the error rates

of the estimated parameters by BzNMF + AIC (LSE) are shown in

Fig. 4. The simulation parameters in Fig. 4 are the same as those

in Fig. 3, where the ranks were correctly estimated using BzNMF +
AIC (LSE). The error rates were calculated as

Table 1. Estimated parameters.

Simulation parameters BzNMF + AIC (LSE) BzNMF + AIC (KL)

t1 [st. dev.] 10 10.3700 [60.3355] 8.9300 [61.8650]

h1 [st. dev.] 0.33 0.3312 [60.0176] 0.3331 [60.0029]

t2 [st. dev.] 100 99.1267 [63.0792] 87.9633 [62.2115]

h2 [st. dev.] 0.33 0.3335[60.0167] 0.3364[60.0017]

t3 [st. dev.] 1000 998.5633 [64.5576] 998.3933 [621.5003]

h3 [st. dev.] 0.33 0.3352 [60.0078] 0.3305 [60.0034]

The estimated time constant (tr) and existence ratio (hr) are shown as the mean of the results shown in Fig. 3 (Rs, dim) = (3, 145). The results obtained by BzNMF + AIC
and BzNMF + AICc are the same when the optimization criterion is the same.
doi:10.1371/journal.pone.0032352.t001

Figure 4. Error rates of parameters estimated by BzNMF + AIC optimized in the LSE. The simulation rank Rs and the dimension of signal
sequence (dim) are set to Rs = {2, 3, 4, 5} and dim = {145, 715, 1,430, 7,150}, respectively. The input matrix is constructed from 50 signal sequences in a
set. The parameters (existence rate and time constant) are estimated from the three sets of input matrices. The error rates of the parameters are
calculated from 5063 signal sequences (error rate of existence rate) and three sets of input matrices (error rate of the time constant). The blue, yellow,
green, and purple bars show the averaged error rates for dim = 145, dim = 715, dim = 1,430, and dim = 7,150, respectively.
doi:10.1371/journal.pone.0032352.g004
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where Dt and Dh are the error rates for the time constant and the

existence ratio, respectively, S is the number of input matrix sets,

N̂N = N6S is the number of total input signal sequences, t̂tr, t
sð Þ

r , ĥhr,

and hri represent the r-th given simulation time constant, the r-th

estimated time constant in the s-th input matrix, the r-th given

simulation existence ratio, and the r-th estimated existence ratio in

the i-th signal sequence, respectively. These results reveal that the

parameter estimation accuracies increased in proportion to the

number of dimensions.

Thus, BzNMF + AIC (LSE) can correctly decompose composite

physical signals expressed by the Boltzmann distribution law and

can automatically estimate the correct rank when the dimension of

the signal sequence is sufficiently large (dim$75).

Finally, we compared the computation time (CPU time) and the

rank estimation results for BzNMF + AIC (LSE) and BzNMF (10)

and k-fold CV optimized in the LSE (BzNMF + k CV (LSE)), as

shown in Table 2. The parameter k in CV was set to 3. The CPU

times and the estimated ranks were evaluated by the mean values

of the three sets of input matrices, similar to Fig. 3, for dim = 145.

The CPU times were measured using an Intel Core i7

9806(3.33 GHz) processor. Based on the results, BzNMF + AIC

(LSE) was approximately twice as fast as BzNMF + k CV (LSE)

and could estimate the correct rank even when BzNMF + kCV

(LSE) failed, as shown in Table 2 (simulation rank: 3, 4, 5). Rank

estimation by k-fold CV becomes increasingly difficult because the

number of decomposed signal sequences in the matrix decreases

with k. When k is set to be greater than 3, the rank estimation

accuracy by k-fold CV may be improved, because the number of

decomposed signal sequences increases. However, the CPU times

for CV are likely to increase with k. Thus, rank estimation using

the AIC is better than that using k-fold CV.

Application to Real Data
We next applied the proposed method to real signal sequences,

which were measured based on chemical particle dynamics in an

aqueous solution (Rh6G) and protein dynamics in living cells

(EGFP). These signals were measured using FCS [3] and were

fitted using an FCS model function [23]. The model function (Eq.

(23) in [23]) was constructed using terms for free diffusion of

particles and a chemical reaction such as unimolecular isomeri-

zation or energy transfer from a higher excited state. The free

diffusion term was determined from the time-series deviation of

the particle concentration, which was obtained by taking the

Fourier transform, and the chemical reaction term was expressed

using the Boltzmann distribution, as shown in Eq. (1). We

Table 2. Comparison of computation times and estimated ranks.

BzNMF + AIC (LSE) BzNMF + kCV (LSE)

Simulation rank CPU time [st. dev.] (sec.) Mean of estimated rank CPU time [st. dev.] (sec.) Mean of estimated rank

rank2 397.00 [±12.37] 2 854.90 [638.84] 2

rank3 419.43 [±18.72] 3 867.96 [644.42] 9.33

rank4 422.25 [±67.05] 4 832.85 [623.87] 9.33

rank5 380.38 [±17.65] 5 855.02 [628.34] 9.67

The computation times (CPU times) and the estimated ranks are evaluated using three sets of input matrices, similar to the case for Fig. 3 (dim = 145). Parameter k in CV
is set to 3.
doi:10.1371/journal.pone.0032352.t002

Figure 5. Decomposition results for the Rh6G signal sequence. Figure 5 shows an example of the decomposition results for one signal
sequence. The input matrix is the Rh6G measurement data in aqueous solution and consists of 54 signal sequences. The signal sequence is
represented by a 92-dimensional vector. The rank was estimated to be 3 using the AIC. The open circles, the solid line, and the broken lines show the
input signal sequence, the approximated signal sequence, and the decomposed components, respectively.
doi:10.1371/journal.pone.0032352.g005
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compared the results obtained by BzNMF + AIC (LSE) (proposed

method) and those obtained by the fitting method [23]. The input

signal sequences were normalized by linear regression when the

signal sequences were decomposed using the proposed method.

The Rh6G signal is assumed to consist of two components,

based on chemical knowledge. The main component is derived

from free diffusion in the aqueous solution, and the other

component represents energy transfer from a higher excited state.

In the present study, the concentration of the Rh6G aqueous

solution was 1027 mol/,. The input matrix consisted of 54 signal

sequences, each being represented by a 92-dimensional vector

(1.6#tj#4505.6). Similar to the case for the Rh6G signal, based on

chemical knowledge, the EGFP signal is theoretically assumed to

consist of two components. However, based on biological

knowledge concerning living cells, the EGFP signal is conjectured

to consist of three or more components, because free diffusion of

EGFP can be self-inhibited and/or inhibited by intracellular

structures [24]. The concentrations of EGFP in living cells are

uncontrollable and exhibit a wide range of variation. The input

matrix consisted of 44 signal sequences, each represented by a

101-dimensional vector (6.0#tj#36044.8). In chemical and

biological fields, when signal sequences are decomposed using

the fitting method, the ranks are usually determined as the

minimum values from the heuristics [1–4]. In EGFP in particular,

the estimated time constant in the main component was

approximately the same when the given ranks of the fitting

method were changed [3]. Therefore, the ranks of the fitting

method were determined to be 2 for decomposition of signals from

Rh6G and EGFP. For rank estimation using the proposed

method, the range of given ranks R was the same as that in the

previous section, 1#R#20.

Figure 5 shows an example of decomposition results for Rh6G

obtained using the proposed method. The open circles, solid lines,

and broken lines are as described in Fig. 1. The rank was estimated

to be 3 using the AIC. Note that the proposed method could

clearly decompose the basis vectors (components) and the

approximated vector was a reasonable fit to the noisy input data,

as shown in Fig. 5.

Decomposed parameters such as the time constants and the

existence ratios for Rh6G are shown in Table 3. The parameters

obtained using the fitting method [23] were fitted assuming two

components that represent the energy dynamics in the high

excitation state (1st component) and the free diffusion of particles

(2nd component). The results of rank estimation obtained by the

AICc were the same as those obtained by the AIC. The estimated

time constant and existence ratio of the 1st component obtained by

the proposed method are the same as those obtained by the fitting

method. The 2nd component is the primary component, and the

time constant of the proposed method exists in the error margin of

the 2nd component of the fitting method. The 3rd component of the

proposed method may correspond to the slow diffusion of particles

in the aqueous solution, because the time constant and the existence

ratio were sufficiently slow and low, respectively, compared to the

2nd component. These results indicate that the estimated rank and

parameters are reasonable values based on chemical knowledge.

The obtained parameters for EGFP are listed in Table 4. The

parameters for the fitting method [23] were obtained by assuming

two components, for the same reasons as in the case of Rh6G. The

rank obtained by the proposed method was estimated to be 4 using

the AIC. The rank estimation results for the AICc were the same as

those for the AIC. The parameters of the 1st component estimated

using the proposed method are the same as those obtained using the

fitting method. However, the 2nd time constant obtained by the

proposed method is faster than that obtained by the fitting method.

The reasons for the faster time constant in the 2nd component may

be as follows. The proposed method assumes non-negative signal

Table 3. Estimated parameters for the Rh6G input matrix.

Fitting Method [23] (Given rank is 2) Our proposed method (Estimated rank is 3)

tr Existence ratio tr Existence ratio

7.23±13.95 0.328±0.285 7.24 0.292±0.046

24.89±11.49 1.0 34.84 0.54760.047

279.80 0.16160.012

The results are evaluated using the Rh6G input matrix, which consists of 54 signal sequences, each of which is represented by a 92-dimensional vector. The rank of the
fitting method [23] is set to 2 based on chemical knowledge, and the rank of the proposed method is automatically estimated using the AIC (12). In the fitting method
[23], the time constants and the existence ratios are the mean values of 54 signal sequences.
doi:10.1371/journal.pone.0032352.t003

Table 4. Estimated parameters of the EGFP input matrix.

Fitting method [23] (Given rank is 2) Our proposed method (Estimated rank is 4)

tr Existence ratio tr Existence ratio

32.70±26.73 0.169±0.075 30.38 0.149±0.038

243.57653.44 1.0 165.06 0.46960.034

846.44 0.32160.042

11429.07 0.06160.016

The results are evaluated using the EGFP input matrix, which consists of 44 signal sequences. The signal sequence is represented by a 101-dimensional vector. The rank
of the fitting method [23] is set to 2 based on previous biological knowledge, and the rank of the proposed method is estimated automatically using the AIC (12). In the
fitting method [23], the time constants and the existence ratios are the mean values of 44 signal sequences.
doi:10.1371/journal.pone.0032352.t004
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sequences that are represented as sums of Boltzmann distributions.

The fitting method [23] is derived from the spectroscopic model,

which is not the same as the Boltzmann distribution (2). Thus, the

parameters estimated by the proposed method are not necessarily

the same as those estimated by the fitting method. Moreover, the

free diffusion of EGFP may not follow the ideal Boltzmann

distribution law, because EGFP has a tendency to aggregate

depending on the pH of the aqueous solution and the concentration

of EGFP [24]. In biological experiments, the concentration of

EGFP is very difficult to control in living cells. The 3rd and 4th

components obtained using the proposed method may also

represent inhibited diffusion of proteins resulting from self-binding

and/or interactions between EGFP and intracellular structures.

The proposed method (BzNMF + AIC) and the fitting method

[23] both estimate reasonable parameters for the real data by

referring to heuristics. In particular, the proposed method

statistically decomposes the signal sequence into physical compo-

nents, because the parameters of physical model functions and the

number of components (rank) are automatically estimated from

numerous signal sequences. Thus, the proposed method is widely

applicable to data analysis in the case of unknown rank.

Discussion

We proposed an automatic decomposition method for analyzing

composite physical signals. This novel method uses non-negative

factorization and includes a model function that follows the

Boltzmann distribution law. Furthermore, the proposed method

can automatically estimate the rank using the AIC.

In the analysis accuracy verification using simulation data, the

proposed method provided better factorization results than the

original NMF [9,10] and better results compared with BzNMF, in

which the objective function was based on the generalized KL

divergence. In addition, the proposed method automatically

estimates the rank using the AIC, which has a lower computa-

tional cost than the rank estimation method for k-fold CV.

In the analysis of real data, the most important thing is that the

automatically estimated parameters are reasonable in terms of

heuristics such as the results of biological and/or chemical

experiments. The proposed method automatically and statistically

decides the rank and the parameters of the model functions. The

rank in the fitting method [23] is set manually as a minimal value

from the heuristics in order to simplify and explain the meaning of

the decomposed components. However, manual rank decision is

difficult for unknown samples and does not necessarily guarantee

the true rank. In the case of unknown samples, the rank should be

decided based on the statistics of the input samples without a

manual rank decision so as to ensure the repeatability of the

analytical results.

As shown by the experimental results for the real data, the

proposed method achieves acceptable results for the Rh6G

samples, as compared with the fitting method [23], and

automatically estimates reasonable parameters based on chemical

and biological knowledge, as in the case of the EGFP samples.

Thus, the proposed method is useful for automatic analysis of

composite physical signals that follow the Boltzmann distribution

law.

Supporting Information

Dataset S1 CodeAndSample.zip. CodeAndSample.zip con-

tains the source code of our proposed method and the simulation

data in this article.
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