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Clear cell renal cell carcinoma (ccRCC) is a very common cancer in urology. Many evidences suggest that complex changed
pathways take a nonnegligible part in the occurrence and development of ccRCC. Nevertheless, the underlying mechanism is
not clear. In this study, the expression data between ccRCC and normal tissue samples in TCGA database were compared to
distinguish differentially expressed genes (DEGs: mRNAs, miRNAs, and lncRNAs). Afterwards, we used GO enrichment and
KEGG pathway enrichment analyses to explore the functions of these DEGs. We also found the correlation between three RNAs
and created a competing endogenous RNA (ceRNA) network. Moreover, we used univariate Cox regression analysis to select
DEGs that are connected with overall survival (OS) of ccRCC patients. We found 1652 mRNAs, 1534 lncRNAs, and 173
miRNAs that were distinguished in ccRCC compared with normal tissues. According to GO analysis, the maladjusted mRNAs
are mainly concentrated in immune cell activation and kidney development, while according to KEGG, they are mainly
concentrated in pathways related to cancer. A total of 5 mRNAs, 1 miRNA, and 4 lncRNAs were connected with patients’ OS.
In this article, a network of lncRNA-miRNA-mRNA was established; it is expected to be able to indicate possible molecular
mechanisms for initial of ccRCC and provide a new viewpoint for diagnosis of ccRCC.

1. Introduction

RCC accounts for about 3% of human cancers; in the last 20
years, morbidity has increased about 2% per year both world-
wide and in Europe, causing about 99200 RCC patients and
39100 RCC-related deaths in EU in 2018 [1]. RCC is the
commonest kidney essence lesion, accounting for approxi-
mately 90% of all renal malignances. Many patients with
renal mass have no symptoms until the terminal stage. At
present, >60% of RCC patients are discovered by ultrasound

(US) or CT performed for other disease. Flank pain, visible
haematuria, and palpable abdominal mass which are classical
signs of RCC are less now [2]. Therefore, an in-depth study of
the biomarkers of tumorigenesis and progression in RCC is
badly needed to gain the solutions and realize diagnosis goals.

In the human genome, protein-coding genes account for
less than 3 percent; however, more than 80% of our genomes
have no protein-coding capacity. Such transcription is called
noncoding RNAs (ncRNAs), which are divided into long
noncoding RNAs (lncRNAs) and small noncoding RNAs
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(sncRNAs). More and more evidences showed that lncRNAs
are connected with tumorigenesis and development through
a variety of biological processes, including transcriptional
regulation, self-renewal, and carcinogenesis [3]. The rapid
development of RNA-Seq technology allows people to dis-
cover new lncRNAs related to urologic malignancies [4].
The article analyzed the differentially expressed lncRNAs
and their function in ccRCC.

microRNAs are sncRNAs with regulatory function [5].
After binding to the 3′-UTR of mRNA, it can inhibit the pro-
cess of transcription and even induce mRNA degradation.
However, miRNAs are also influenced by other ncRNAs,
for example, lncRNAs and circular RNAs (circRNAs), which
serve as sponges for miRNAs [6, 7]. Currently, dysregulated
miRNAs are believed to be connected with the occurrence
of tumors including gastrointestinal cancer [8], colon cancer
[9], prostate cancer [10], and colorectal cancer [11]. Thus,
miRNAs may be a good biomarker for cancer diagnosis.

Competitive endogenous RNA theory indicated that
RNAs which have miRNA binding sites struggle for posttran-
scriptional control. This theory has got wide interest as a
whole function of lncRNAs and circRNAs and a substitution
function of mRNAs. Moreover, the hypothesis assumes that
specific RNAs can regulate the expression of miRNA target
gene by inhibiting miRNA activity [12]. However, there are
few studies on ceRNA of ccRCC.

We explored the interaction among three differentially
expressed RNAs from The Cancer Genome Atlas (TCGA)
database. In addition, these RNAs were annotated for possi-
ble biological functions. Then, we established a ceRNA
network in ccRCC. Besides, we used K-M and receiver oper-
ating characteristic analysis to distinguish prognostic DEGs
for predicting OS of ccRCC. Our results provide new insights
into diagnosis strategies for ccRCC.

2. Materials and Methods

2.1. Data Download and Processing. We downloaded
ccRCC patients’ transcriptome profiling and clinical data
from TCGA database (https://tcga-data.nci.nih.gov/tcga/),
which was inputted on the Illumina HiSeq RNA-Seq plat-
form. The exclusion criteria were (i) samples without clin-
ical data and (ii) samples without complete information of
the stage and overall survival period. Finally, a total of 534
cases contain 472 clear cell renal cell carcinoma tissues
and 62 adjacent nontumor renal tissues were included in
our study. We annotated the names of RNAs through Homo
sapiens.GRCH38.84.chr.gtf.gz downloaded from Ensembl
Genome Browser 97 (http://www.ensembl.org). Both RNA
profile data and clinical characteristics of ccRCC are publicly
available and in open-access platforms. Therefore, approval
by local ethics committee was not needed.

2.2. Analysis of Differentially Expressed Genes. We used the
edgeR package to make comparisons between tumor tissues
and normal specimens to select the DEGs. DEmRNAs and
DElncRNAs were distinguished through the threshold of a
log fold change ðlogFCÞ > 2 and an adj. P value < 0.05, and

the DEmiRNAs was identified using the threshold of a
logFC > 1 and an adj. P value < 0.05.

2.3. Cluster Analysis of the DEGs. R software was used for
cluster analysis based on the expression value of each sample.
With R package “pheatmap,” hierarchical clustering analysis
was conducted. We showed the results through a cluster-
gram. The column means the samples, and the row shows
the gene expression level.

2.4. Functional Enrichment Analysis.We analyzed the DEGs’
functional enrichment with the online bioinformatics tools
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/index.php) and
DAVID (https://david.ncifcrf.gov/, version 6.8). KEGG
pathways and GO terms were considered to be statistically
significant when P value < 0.05.

2.5. Predict the Target of miRNAs. We used miRDB (http://
www.mirdb.org/), TargetScan (http://www.targetscan.org/),
and miRTarBase (http://amp.pharm.mssm.edu/Harmonizo
me/resource/MiRTarBase) to predict the possible target
genes of DEmiRNAs. The overlapped target genes were
searched by Venn overlap analysis. miRNAs’ target lncRNAs
were predicted through the miRcode dataset (http://www.
mircode.org/).

2.6. Construction of the ceRNA Network. We identified DEGs
and the relationships between miRNA-mRNA and miRNA-
lncRNA. Based upon these results, Cytoscape 3.6.1 (version
3.6.1, San Diego CA) was used to establish the ceRNA network.

2.7. Construction of the Protein-Protein Interaction (PPI)
Network. To explore the interaction between mRNAs
involved in this ceRNA network, a PPI network was con-
structed by the Search Tool for the Retrieval of Interacting
Genes (http://string.embl.de/) with a composite score greater
than 0.4 as the cut-off criterion [13].

2.8. Survival and Receiver Operating Characteristic Analyses.
We used a univariate Cox regression model to analyze the
connection between ccRCC patients’OS and ceRNA network
DEGs. P value < 0.05 was regarded as statistically significant.
Then, those DEGs were presented with the survival curve.
The cut-off point divided all samples into high and low
expression groups. In addition, sensitivity and specificity
were calculated through ROC curves and AUC values.

2.9. Statistical Analysis.We analyzed the data through R and
Cytoscape software. Data were expressed as mean ±
standard deviation. The differences between two groups were
analyzed through fold change and Student’s t-test. The
survival curves were constructed by K-M method, and
log-rank tests were used to test survival differences. When
P < 0:05, we thought the difference are significant.

3. Results

3.1. Clustering Analysis of DEGs. The number of DEGs
was 1652 (mRNA), 173 (miRNA), and 1534 (lncRNA),
respectively. Hierarchical clustering analysis was used to
analyze all the DEGs. (Figure 1). Besides, we showed the
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Figure 1: Cluster analysis of differentially expressed genes. (a) mRNAs; (b) miRNAs; (c) lncRNAs. The rows represent differentially expressed
mRNAs, miRNAs, and lncRNAs, and the columns represent every sample. Red represents high expression, and green represents low
expression. mRNAs: messenger RNA; miRNAs: microRNAs; lncRNAs: long noncoding RNAs.
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top 10 upregulated and downregulated DEGs in ccRCC
(Tables 1–3).

3.2. GO Enrichment Analysis of DEmRNAs.We used DAVID
database to analyze these dysregulated genes and perform
enrichment analysis to determine their respective functions.
The upregulated genes were mainly enriched in T cell activa-
tion and regulation of leukocyte activation (Figures 2(a) and
2(c)). The downregulated genes were mostly enriched in
renal system development and urogenital system develop-
ment (Figures 2(b) and 2(d)).

3.3. KEGG Pathway Enrichment Analysis of DEmRNAs. The
KEGG pathway enrichment method was also used to analyze
the DEmRNAs. These DEmRNAs had the strongest correla-
tion with neuroactive ligand-receptor interaction, cytokine-
cytokine receptor interaction, metabolism of xenobiotics by
cytochrome P450, cell adhesion molecules (CAMs), and
complement and coagulation cascades (Figure 3). Based on
these results, we believed that the DEmRNAs play an indis-
pensable part in the progression of ccRCC.

3.4. ceRNA Network. There were 44 DElncRNAs that may
bind to 25 DEmiRNAs.We searched for the DEmiRNAs’ tar-
get mRNAs through using miRDB, miRTarBase, and Tar-
getScan. Based on the Venn intersection analysis, 33
DEmRNAs were identified. At last, we established a ceRNA
network (Figure 4).

3.5. Protein-Protein Interaction Network. To clarify the rela-
tionships between the 33 DEmRNAs involved in this ceRNA
network, a PPI network was constructed using the STRING
database containing 32 nodes and 15 edges (Figure 5). KEGG
pathway enrichment analysis of these mRNAs was per-
formed with KOBAS 3.0 with P < 0:05 as the cut-off crite-
rion. The results showed that these mRNAs were mainly
enriched in pathways related to cancer (Table 4).

3.6. Analysis of the Survival-Associated DEGs. It is important
to screen DEGs that could predict the prognosis of ccRCC.
We used a univariate Cox proportional hazards regression
model to analyze ccRCC patients’OS. There were 4 lncRNAs,
1 miRNA, and 5 mRNAs screened out: all of the lncRNAs,
miR-144, and NETO2 positively influenced ccRCC patients’
OS, whereas OS was negatively connected with NOD2,
PAPPA, PCDH, and SPI2 (Figure 6). Compared with normal
tissues, AC011383.1, PSORS1C3, miR-144, NETO2, NOD2,
and SPI2 levels were increased in ccRCC tissues while
ALDH1L1-AS2, DNAJC3-AS1, PAPPA, and PCDH9 levels
were decreased (P < 0:05) (Figure 7). Receiver operating
characteristic analysis was performed on these DEGs; their
AUC value ranged from 0.736 to 0.976 (Figure 8, Table 5).

4. Discussion

The abnormal expression of protein-coding and protein-
noncoding transcription is one feature of the cancer tran-
scriptome [14]. The prognosis of ccRCC has been a big

Table 1: Top 10 upregulated and downregulated DEmiRNAs in ccRCC.

miRNA Log2 fold change P value FDR Regulation

hsa-mir-122 6.375971 4:90E − 79 1:80E − 77 Up

hsa-mir-875 4.236304 1:30E − 14 4:78E − 14 Up

hsa-mir-891a 4.144053 1:69E − 07 3:79E − 07 Up

hsa-mir-1293 3.96371 9:21E − 18 3:98E − 17 Up

hsa-mir-4773-2 3.781229 6:51E − 27 4:46E − 26 Up

hsa-mir-4773-1 3.717541 3:22E − 27 2:23E − 26 Up

hsa-mir-885 3.687125 2:37E − 36 2:42E − 35 Up

hsa-mir-891b 3.636965 2:34E − 05 4:25E − 05 Up

hsa-mir-599 3.590064 1:32E − 11 3:92E − 11 Up

hsa-mir-155 3.563706 2:20E − 67 4:79E − 66 Up

hsa-mir-514b -6.01247 2:85E − 151 2:28E − 149 Down

hsa-mir-934 -5.74474 1:84E − 136 1:26E − 134 Down

hsa-mir-506 -5.66184 6:75E − 171 1:62E − 168 Down

hsa-mir-514a-3 -4.44858 3:71E − 162 4:44E − 160 Down

hsa-mir-514a-1 -4.42327 2:21E − 163 3:53E − 161 Down

hsa-mir-508 -4.41308 1:66E − 194 7:97E − 192 Down

hsa-mir-514a-2 -4.39209 1:57E − 152 1:50E − 150 Down

hsa-mir-129-1 -3.81098 7:60E − 77 2:27E − 75 Down

hsa-mir-129-2 -3.58243 6:41E − 66 1:33E − 64 Down

hsa-mir-509-3 -3.34887 1:86E − 116 1:11E − 114 Down
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Table 3: Top 10 upregulated and downregulated lncRNAs in ccRCC.

lncRNA Log2 fold change P value FDR Regulation

OSTM1-AS1 8.51552 6:61E − 52 2:06E − 50 Up

TTC21B-AS1 8.267223 2:84E − 77 1:83E − 75 Up

AC113410.2 7.658759 1:86E − 10 5:23E − 10 Up

AC008060.4 7.197464 1:38E − 14 5:38E − 14 Up

AL590644.1 6.998613 1:16E − 50 3:38E − 49 Up

AC090568.2 6.505535 1:94E − 15 8:03E − 15 Up

AP005233.2 6.444536 1:50E − 36 2:27E − 35 Up

AC008060.1 6.317642 3:47E − 16 1:53E − 15 Up

AC099786.2 6.188475 6:23E − 22 4:09E − 21 Up

AC073115.2 6.154044 2:60E − 43 5:43E − 42 Up

AC079310.1 -8.32279 1:06E − 170 3:50E − 168 Down

LINC02121 -8.32078 3:09E − 103 3:63E − 101 Down

LINC02437 -8.2957 2:95E − 184 1:25E − 181 Down

AC073336.1 -7.98709 3:05E − 125 5:15E − 123 Down

AC124017.1 -7.98205 7:52E − 256 9:60E − 253 Down

AC090709.1 -7.76666 1:53E − 260 2:27E − 257 Down

AC092078.2 -7.29943 7:89E − 204 4:15E − 201 Down

AC016526.1 -7.26561 6:32E − 279 1:41E − 275 Down

LINC01571 -7.03783 9:99E − 169 3:08E − 166 Down

LINC01543 -7.01222 1:10E − 152 2:72E − 150 Down

Table 2: Top 10 upregulated and downregulated DEmRNAs in ccRCC.

mRNA Log2 fold change P value FDR Regulation

GSG1L2 9.609768 7:03E − 23 4:67E − 22 Up

PAEP 8.674918 8:78E − 20 4:75E − 19 Up

CFHR5 8.510239 1:31E − 11 3:93E − 11 Up

HP 6.917233 6:19E − 19 3:17E − 18 Up

APOA4 6.896697 2:82E − 09 7:07E − 09 Up

RTL1 6.881453 1:18E − 12 3:83E − 12 Up

CRP 6.872065 2:01E − 20 1:13E − 19 Up

HHATL 6.715614 2:96E − 15 1:15E − 14 Up

ITIH1 6.707717 4:37E − 22 2:76E − 21 Up

CYP2A6 6.391803 5:14E − 20 2:83E − 19 Up

AQP2 -9.11281 1:07E − 112 1:96E − 110 Down

UMOD -8.6196 4:97E − 101 6:96E − 99 Down

TMEM207 -8.47875 6:30E − 112 1:11E − 109 Down

ELF5 -7.71615 2:82E − 203 3:40E − 200 Down

MUC15 -7.38378 1:29E − 106 1:96E − 104 Down

ATP12A -7.32714 3:14E − 178 2:18E − 175 Down

SEMG2 -7.27744 5:40E − 115 1:02E − 112 Down

NPHS2 -7.16242 1:65E − 77 1:25E − 75 Down

SOST -7.10563 6:66E − 165 3:89E − 162 Down

PRR35 -6.98296 7:70E − 110 1:28E − 107 Down
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Figure 2: Significantly enriched Gene Ontology (GO) terms of DEmRNAs. (a, c) Upregulated genes. (b, d) Downregulated genes.
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Figure 3: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEmRNAs.
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challenge due to the difficultly of diagnosis. So, it is signifi-
cant to find effective biomarkers of ccRCC. In these years,
dysregulated mRNAs [15], miRNAs [16], and lncRNAs
[17] have been reported in ccRCC. There have been many
reports of these RNAs on kidney tumor alone, but the inter-
action among mRNA, miRNA, and lncRNA is still unclear.
Many of the genes with known ceRNA interactors have been

found to be associated with liver cancer, leukaemias, lympho-
mas, and so on [18]. It is necessary to study the ceRNA net-
work in ccRCC systematically.

In this study, 4 prognostic DElncRNAs (AC011383.1,
ALDH1L1-AS2, DNAJC3-AS1, and PSORS1C3) were
included in the ceRNA network. They may be independent
prognostic factors of ccRCC patients’ OS. Liang et al.
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reported that DNAJC3-AS1 plays a positive role in osteosar-
coma evolvement by regulating DNAJC3. Moreover, it is a
possible marker and treatment point for osteosarcoma [19].

Besides, we identified one independent prognostic
DEmiRNA (miR-144). The upregulated miR-144 could
enhance ccRCC malignancy and resistance to sunitinib by
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Figure 5: PPI network.

Table 4: KEGG pathway enrichment analysis of 33 DEmRNAs involved in the ceRNA network.

Term ID Input number P value Corrected P value

Pathways in cancer hsa05200 5 0.0000 0.0009

Rheumatoid arthritis hsa05323 3 0.0000 0.0009

EB virus infection hsa05169 3 0.0002 0.0040

Proteoglycans in cancer hsa05205 3 0.0002 0.0040

Bladder cancer hsa05219 2 0.0003 0.0040

Human cytomegalovirus infection hsa05163 3 0.0003 0.0040

Ras signaling pathway hsa04014 3 0.0004 0.0040

Cytokine-cytokine receptor interaction hsa04060 3 0.0007 0.0057

MAPK signaling pathway hsa04010 3 0.0007 0.0057

MicroRNAs in cancer hsa05206 3 0.0007 0.0057
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Figure 6: Kaplan-Meier survival curves for DEGs as independent prognostic factors associated with OS in ccRCC. ccRCC: clear cell renal cell
carcinoma; DEGs: differentially expressed genes; OS: overall survival. P < 0:05 was considered statistically significant. (a–d) DElncRNAs; (e)
DEmiRNA; (f–j) DEmRNAs.
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regulating ARID1A [20]. Nevertheless, Liu et al. believed that
miR-144 inhibited cancer cell proliferation and metastasis in
renal cell carcinoma [21]. The results in this study show that
miR-144 has a positive impaction on ccRCC patients’ OS.

We found 5 mRNAs that are connected with ccRCC
patients’ prognosis: NETO2, NOD2, PAPPA, PCDH9,
and SPI1. Oparina et al. report that NETO2’s expression

level was increased in 90% ccRCC and 50% of papillary
renal cancers. It is a possible biomarker in kidney cancer
[22]. Mey et al. found that NOD2’s expression level is
higher in tumor tissues compared to normal tissues [23].
Dalgin et al. use microarray gene expression profiling to
identify specific renal cell carcinoma markers. They identi-
fied 158 genes that dysregulated in tumor tissues; these
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Figure 7: Analysis of DEG levels in human ccRCC. The green and red dots represent cancer and paracancerous tissues, respectively. (a–d)
DElncRNAs; (e) DEmiRNA; (f–j) DEmRNAs.
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Figure 8: ROC analysis and AUC value of the ROC curve indicating the sensitivity and specificity for (a, b) DEmRNAs, (c, d) DElncRNAs,
and (e) DEmiRNA in TCGA dataset. AUC: area under the receiver operating characteristic curves; ROC: receiver operating characteristic.
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genes are related to proteolysis and cell adhesion, includ-
ing PAPPA [24].

However, there is no research about PCDH9 and SPI1 in
ccRCC. In the present work, we found the two novel mRNAs
as key predictors of ccRCC prognosis. PCDH9 is a member
of the protocadherin family. It is associated with a kind of
tumors, for example, melanoma [25], ovarian cancer [26],
and medulloblastoma [27]. Ren et al. proved that PCDH9 is
a tumor-inhibiting gene and has prognostic value in prostate
cancer [28]. SPI1 is a member of the ETS family. It is relevant
to multiple malignancies, for example, papillary thyroid car-
cinoma 30, pediatric T cell acute lymphoblastic leukemia [29],
and breast cancer [30]. SPI1 is closely related to clinical fea-
tures such as grade, metastasis, and stage, which means that
SPI1 may be a potential prognostic biomarker of ccRCC.

A PPI network was built to illustrate the relationship
between the mRNAs involved in the ceRNA network. Some
of these mRNAs are closely connected with each other, sug-
gesting that their interactions may play an important role
in the development of ccRCC, which further confirms the
significant role of this ceRNA network in ccRCC.

However, this study has some limitations. First, although
we established the ceRNA network, we have not demon-
strated other regulatory models. Besides, other studies may
draw a different conclusion due to the differences in inclusion
and exclusion criteria. Finally, there are few experimental
data explaining the mechanisms of ceRNA, and we need fur-
ther experiments to illustrate the role of ceRNA in ccRCC.

5. Conclusion

This article illustrated that lncRNAs, miRNAs, and mRNAs
involved in the ceRNA network may be possible biomarkers.
They are expected to predict the survival rate in ccRCC
patients. Nevertheless, we need more experiments to validate
these RNAs’ biological function.

Data Availability

Both RNA profiles data and clinical characteristics of ccRCC
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