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Classification of ECG signals 
using multi‑cumulants based 
evolutionary hybrid classifier
Sahil Dalal & Virendra P. Vishwakarma*

Every human being has a different electro-cardio-graphy (ECG) waveform that provides information 
about the well being of a human heart. Therefore, ECG waveform can be used as an effective 
identification measure in biometrics and many such applications of human identification. To achieve 
fast and accurate identification of human beings using ECG signals, a novel robust approach has 
been introduced here. The databases of ECG utilized during the experimentation are MLII, UCI 
repository arrhythmia and PTBDB databases. All these databases are imbalanced; hence, resampling 
techniques are helpful in making the databases balanced. Noise removal is performed with discrete 
wavelet transform (DWT) and features are obtained with multi-cumulants. This approach is mainly 
based on features extracted from the ECG data in terms of multi-cumulants. The multi-cumulants 
feature based ECG data is classified using kernel extreme learning machine (KELM). The parameters 
of multi-cumulants and KELM are optimized using genetic algorithm (GA). Excellent classification 
rate is achieved with 100% accuracy on MLII and UCI repository arrhythmia databases, and 99.57% on 
PTBDB database. Comparison with existing state-of-art approaches has also been performed to prove 
the efficacy of the proposed approach. Here, the process of classification in the proposed approach is 
named as evolutionary hybrid classifier.

Among non-linear signal analysis, Electro-Cardio-Graphy (ECG) is a signal of quite an interest for the researchers 
since last many decades. This is because ECG is quite common in modelling the biometric systems. Authentica-
tion methods utilized traditionally were based on fingerprints and face recognition. These methods have become 
susceptible to falsification. ECG can be a best-fit for biometric systems because of its advantages like uniqueness 
of ECG for every person. Moreover, ECG recording can only be possible in living things and hence, it is difficult 
to forge. Therefore, differentiating one ECG from the other can be very helpful. Also, it plays an important role 
in the prevention of cardiovascular diseases by providing a diagnostic measure. A standard ECG waveform is a 
recording of the electrical activity of the heart consisting of P, Q, R, S and T wave as shown in Fig. 1. Since ECG 
has many applications in various fields like medical1, Internet of Things, cryptography, wearable sensors2,3 etc., 
thus, researchers have done enormous amount of research work on ECG as given in a comparative analysis on 
ECG by Ikenna Odinaka et al.4.

It all started in 1981 when Leif Sörnmo et al. introduced a method to evaluate the QRS-complex features 
using the mathematical modelling of Euclidean distance of similar complex class5. This can also be performed 
using linear prediction as proven by Lin and Chang6. Then, in 1996, a non-deterministic and continuous probabil-
ity density function model is introduced for this non-linear signal recognition. The hidden markov model was 
earlier used in DNA modelling and speech recognition which are also non-linear signals and hence, were best 
suited for ECG signals7. Giovanni Bortolan et al. gave the possibilities of using neural networks in classifying 
the ECG signals8. Neural network was further implemented in the next year by Zümray Dokur et al. for ECG 
signals recognition when peaks of QRS complex in the ECG waveform were utilized as feature vectors obtained 
from the DFT spectrum9. This work of feature extractor is extended when Botter et al. exploited the asymmetric 
basis functions for extracting features from peaks of M shaped P waves in ECG signals10. Neural network is a 
learn and train network and widely used in ECG signals analysis. In 1998, Ischemia detection was introduced 
in ECG investigation, by T. Stamkopoulos et al., when principal component analysis (PCA) was used with neural 
network. Ischemia is an ECG waveform having a small positive J peak between ST segments. The method was 
trained with 1000 samples of ST-T database and achieved 90% of recognition rate in detecting ischemia11. Also, 
in 1999, Z. Dokur et al. gave a comparison on Fourier transform and discrete wavelet transform while classifying 
ECG beats12. The concept of designing a mathematical modelling relatable to the real world applications is also 
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helpful in interpreting an ECG Signal. It came into existence when M. Kundu et al. introduced the concept of 
fuzzy logic in ECG interpretation13. This concept of fuzzy logic was again utilized when extended version i.e. 
type-2 fuzzy clustering was implemented with wavelet transform and neural network for the classification of 
ECG signals14. In 2001, Lena Biel et al. experimented and concluded that one lead can also be helpful in extract-
ing features from ECG and recognize a person15. Mohamed I. Owis et al. proposed and reported a model using 
features obtained from Lyapunov exponent and correlation dimension for the successful detection and classifica-
tion of ECG signals16. An ECG signal coder, having low computational complexity, was designed by applying 
N-PR cosine modulated filter banks to have low bit rate in 200417. M.G. Tsipouras et al. exploited the RR interval 
in ECG waveforms for the beat and episode classification by achieving 98% and 94% of accuracy respectively18. 
ECG is also helpful in identifying an individual. It was done in 2005 when Steven A. Israel et al. computed the 
features using the fiducial points obtained from filtered data of ECG and characterize the uniqueness of an 
individual19. The work of knowledge-based ECG interpretation was further extended and rule-based rough-set 
based ECG classification was generated by S. Mitra in 2006. They had introduced an offline system for ECG data 
acquisition which produced noisy data. Therefore, proper noise removal and baseline correction was performed 
before applying the proposed method. Respective peaks in the ECG waveforms were detected for the 
classification20. A method for noise removal was also proposed by B. N. Singh and A. K. Tiwari in 2006 which 
utilized mother wavelet basis function for denoising of ECG signals while retaining the ECG peaks to the same 
as in noisy data21. In the same year, a comparative study was also proposed on ECG descriptors for the heartbeats 
classification. This was between morphological and time frequency descriptors. Morphological features include 
QRS pattern recognition while computing expansion coefficients using matching pursuits algorithm gave time 
frequency correlation. The heartbeats are taken from MIT-BIH arrhythmia database and four local sets of GLS 
and classified usingk nearest neighbour classifier22,23. Very good accuracy was achieved with both the 
descriptors24. Yeong Pong Meau et al. introduced a novel technique for ECG classification in 2006. The technique 
was a hybrid of extended kalman filter and neuro fuzzy system and helpful in distinguishing various abnormal 
ECG signals. Due to the use of multi-layer perceptron network in neuro fuzzy system, the technique was iterative 
and hence, computational complexity is high25. In one more research, DWT was utilized to decompose the ECG 
into time and frequency domain to compute the wavelet coefficients and classification of ECG beats were per-
formed using multiclass support vector machine 26. Independent component analysis was also implemented to 
decompose the ECG signals into weighted sum of basic components that are statistically mutual independent. 
This feature vector was formed by combining these components with the RR interval and classified using various 
classifiers like Bayes, minimum distance and neural network classifier27,28. These features of independent com-
ponent analysis and RR interval when combined with wavelet transform features, 99.3% of accuracy was achieved 
using SVM on 16 classes of MIT-BIH databases29. In 2008, Argyro Kampouraki et al. utilized the statistical 
analysis for feature extraction of two ECG databases: young and elderly ECG signals & normal and abnormal 
ECG signals. The classification was performed using SVM with very low signal to noise ratio30. The parameters 
of SVM like Gaussian radial basis function (RBF) and penalty parameter were also optimized using genetic 
algorithm (GA) for ECG arrhythmias classification31. The authors also performed the same task by changing the 
optimization algorithm from GA to PSO giving better results than the earlier approach. PSO based optimization 
is faster as well compared to GA32. In medical applications, ECG was introduced for age classification by M. 
Wiggins et al. with the help of genetically optimized Bayesian classifier achieving 86.25% AUC which is better 
compared to other existing methods1. Turker Ince et al. proposed a method for ECG patterns recognition by 
applying wavelet transform for feature extraction and PCA for dimensionality reduction. The classification was 
performed using neural network optimized using particle swarm analysis (PSO). The method even achieved 
higher accuracy on larger databases33. PCA was also combined with linear discriminant analysis (LDA) for feature 
reduction and using probabilistic neural network classifier ECG arrhythmias were classified with 99.71% of 
accuracy34. In 2009, Walter Karlen et al. combined the fast fourier transform and artificial neural network for 
the sleep and wake states in ECG signals obtained with the help of wearable sensors. 86.7% of accuracy was 
achieved on multiclass data as satisfactory performance2. Sleep apnea was also detected by Baile Xie and Hlaing 
Minn in 2012 using saturation of peripheral oxygen ad combination of various classifiers35. Comparisons of 

Figure 1.   Standard ECG waveform.
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DWT, continuous wavelet transform (CWT) and discrete cosine transform (DCT) were performed on Massa-
chusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) databases36 by using neural network and SVM 
by Hamid Khorrami and Majid Moavenian in 201037. Then, Yüksel Özbay and Gülay Tezel introduced a neural 
network for ECGclassification which has adaptive activation function. The results achieved over 92 patients of 
ECGs were 98.19% which is quite good38,39. A unique way of Teager energy function was firstly utilized for ECG 
beat classification by C. Kamath in 2011. The advantage of using Teager energy function for ECG was that this 
function models the energy of the source such that the activity in the heart can easily be visible in the function40. 
ECG recordings can also be used for the recognition of emotions in a person. It was introduced by Guo Xianhai 
by utilizing radial basis function neural network and achieved an accuracy of 91.67%41. Till 2015, hybrid of clas-
sifiers was exploited. It was in this year that K. Muthuvel et al. utilized the hybrid features for the classification 
of ECG beats. Morphological based features were combined with Haar wavelet features and tri spectrum features. 
The resultant features vectors were classified using feed forward neural network with 78% of accuracy achieved 
over MIT-BIH database42. E. Alickovic and A. Subasi utilized multiscale PCA and Autoregression (AR) model-
ling for designing a recognition method using various classifiers to diagnose heart diseases. 99.93% accuracy 
was achieved on MIT-BIH database43. In the next year, the authors had used RF classifiers for ECG signals clas-
sification with the help of decomposition of ECG signals using DWT44. Concept of approximate entropy was 
combined with wavelet decomposition in 2016 by Hongqiang Li et al. for ECG signal classification using SVM 
classifier. The algorithm was fast, simple in computation and achieved 97.78% of accuracy in five beats 
classification45. The author again applied the optimization algorithm on extracted features with GA in a scientific 
report and improved the accuracy to 99.33%46. Padmavathi Kora and K. Sri Rama Krishna proposed an approach 
in the same year when extracted feature from ECG signal was optimized using Bat algorithm. The classification 
was binary i.e. two classes normal and abnormal ECG which was performed with two hidden layers neural 
network47. An analysis of ECG signals was also performed using PCA and hybrid of neural network with fuzzy 
classifier. The Neuro-Fuzzy classifier came out with 95.83% of accurate results in classifying the ECGs into their 
respective classes48. Fuzzy C- means clustering combined with Mahalanobis Distance and utilized for arrhythmic 
beats classification. It was done to improve the improper clustering that was occurring because of spherical 
clusters detected with Euclidean distance based clustering. The method improved the results to a great extent49. 
Sibasankar Padhy and S. Dandapat introduced a technique for myocardial infrection classification in ECG signals. 
The technique utilized leads, beats and samples to represent the data in third order tensor structure. Higher order 
singular value decomposition and mode-n singular values were exploited as features and finally, classified using 
SVM with 95.30% accuracy on Physikalisch-Technische Bundesanstalt Database (PTBDB) classifier50. The con-
cept of deep neural network (DNN)51 was also introduced in ECG signals classification like convolutional neural 
networks52, DNN using stacked denoising autoencoder or 1D CNN53–55. The 1-dimensional convolutional neural 
network (1D CNN) was exploited for classification of heart sound. Autoencoder was exploited for extraction of 
features and stated better results compared to back propagation neural network 55,56. In 2019, Mohamed Hammad 
et al. also utilized the concept of 12-layer CNN for the ECG signals classification with PTBDB database and 
achieved 98.37% of accuracy57. Leandro B. Marinho et al. gave an analysis based on various feature extraction 
techniques like Goertzel, structural co-occurance matrix, higher order statistics and Fourier transform. These 
individual features were classified using SVM, Bayesian, multi-layer perceptron and optimum path forest clas-
sifiers. The Combination of higher order statistics with Bayesian classifier gives the best result among these with 
94.3% accuracy in classification58. In the same year, S. Velmurugan et al. introduced the Gabor wavelet transform 
with multi linear discriminant analysis to reduce the execution time in features extraction from ECG data of 
UCI repository Arrhythmia database59,60. Giansalvo Cirrincione et al. performed a comparative analysis for the 
extraction of features from the ECG signals using the neural network classifier with promising results. PCA was 
also utilized for dimension reduction61. Chandan Kumar Jha and Maheshkumar H. Kolekar proposed a technique 
using Q-wavelet decomposed to sixth level based features of MIT-BIH database and classified using SVM clas-
sifier with very good results in classifying the ECG beats62. S. Mian Qaisar and A. Subasi introduced an event 
driven ECG signal acquisition and achieved 94.07% accuracy on MIT-BIH database using machine learning 
techniques63. Paweł Pławiak proposed a technique named as evolutionary neural system in which MLII database 
of ECG was classified into 17 classes with SVM classifier and 98.85% of accuracy was achieved64. Özal Yildirim 
et al. also gave solution for MLII ECG database with deep convolutional neural network and 91.33% of accuracy 
was reported65.

Motivation and contribution.  Approaches available in literature pose various limitations like higher time 
complexity due to iterative nature of algorithms, requirement of more analysis for specific features and unbal-
anced databases etc. So, there should be a robust method that can overcome all these limitations and perform 
the ECG signals classification more effectively and efficiently. To give solutions for the aforementioned disadvan-
tages of the existing techniques, a robust and novel approach is introduced. The approach utilizes technique for 
balancing of the ECG database used during experimentation. A technique for noise removal and baseline cor-
rection of ECG signals is also added in the approach. Feature extraction is performed with the help of a unique 
technique named as Multi-cumulants66 that has never been utilized in the ECG analysis. The features obtained 
from second-, third- and fourth-order cumulants are concatenated to form a feature vector. The feature vector 
is then used for classification. The classification is performed with a non-iterative method of machine learn-
ing. It is named as kernel extreme learning machine (KELM)67. The parameters of KELM are optimized using 
an optimization algorithm. The hybrid of KELM and optimization algorithm is termed, here, as evolutionary 
hybrid classifier.

The remaining paper is organised in the following manner: “Preliminaries” gives a brief idea about the pre-
liminaries and databases used during the experimentation of the proposed approach. “Proposed method” tells 
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about the proposed method of ECG analysis. “Experimental results and analyses” discusses the experimental 
results and analyses followed by conclusion in “Conclusion and future scope”.

Preliminaries
The proposed method for the recognition of ECG signals consists of three steps: pre-processing, feature extrac-
tion and classification. A basic overview of a general recognition system is shown in Fig. 2. Detailed block 
diagram is explained in the next section. Pre-processing step includes balancing of the ECG databases utilized 
during experimentation and noise filtering in the ECG signals which is performed with the help of resampling 
techniques and wavelet transform respectively. Feature extraction is done using cumulants and a feature vector 
is obtained as multi-cumulants features. Pre-processing and feature extraction stages have been combined and 
known as feature detection in this approach. At last, ECG signals are classified into their respective classes by 
using evolutionary hybrid classifier. A brief overview of all the preliminaries used is given as follows:

Resampling techniques.  First step towards pre-processing in the proposed approach is balancing of the 
database. Uneven number of samples in various classes of a database is quite common. However, it increases the 
chances of error during classification when the difference between numbers of samples in a class is very large 
compared to other classes. Therefore, the approach utilized for sample recognition becomes sensitive towards 
the class having major number of samples in the database. Thus, data balancing is very important in such uneven 
or unbalanced databases. Resampling techniques are those techniques which are used for the balancing of sam-
ples in each class of a database. There can be so many techniques for data balancing but commonly classified into 
over-sampling, under-sampling and hybrid of these two (known as importance resampling)68.

Random oversampling technique.  Random OverSampling Technique (ROST) is a resampling technique uti-
lized for balancing the unbalanced data in the database. It is a non recursive approach as it randomly copies the 
data of the class having less number of samples to make the samples equal in the respective class (the minor class) 
to the class (the major class) having highest number of samples in that database. It is shown in Fig. 3a for better 
understanding. As it can be seen from the figure, before applying ROST, Class 1 is the major class containing very 
large number of samples as compared to Class 2 (the minor class). ROST copies the samples of Class 2 randomly 
and makes itself equal to the Class 2. This technique of resampling is very effective in giving better results of 
recognition in machine learning because copying the same data into the classes helps in getting good training 
of the machine learning approach so that efficient model can be formed. Along with this advantage, ROST also 
results into over-fitting of the data which is a substantial drawback for the technique and is rectified at the clas-
sification stage of our proposed method.

Multiclass Classification

Feature Detection 

Databases

Pre-Processing Feature Extracion 

Figure 2.   Basic overview of a general recognition system.

   Class 1      Class 2                                   Class 2     Class 1         Class 2       Class 1                                 Class 1     Class 2

           Before ROST                    After ROST       Before RUST     After RUST 

TSUR)b(TSOR)a(

Figure 3.   A sample showing resampling techniques on two class database.
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Random undersampling technique (RUST).  In the next resampling technique, as the name states in itself, Ran-
dom Under Sampling Technique (RUST) is the opposite of ROST. It reduces the number of samples in major 
class and makes them equal to the number of samples in minor classes. This is done randomly and hence, results 
in loss of important data from the samples. RUST is also explained in Fig. 3b. Here in Fig. 3b, before applying 
RUST, Class 2 is the minor class containing very less number of samples as compared to the Class 1 (the major 
class). RUST reduces the samples of Class 1 randomly and makes it equal to the samples in Class 2. Due to this 
reduction in the number of samples, results also affect in recognizing the sample.

Importance resampling technique.  Importance ReSampling Technique (IRST) is a hybrid of ROST and RUST. 
IRST overcomes the limitations of ROST and RUST by combining the advantages of both of these techniques 
into one. This technique uses important or weighted information of the data and reframes the data according to 
their importance in the database. The weight acts as the carrier to the data and the most important is assigned 
with the weights to remove the least important data only.

As there is loss of enormous amount of data in RUST (as shown in Tables 1 and 2), therefore, only ROST 
and IRST have been utilized for balancing the number of samples in the classes of databases for the proposed 
approach. After balancing the data, noise removal is performed in the ECG signals using wavelet transform.

Wavelet transform.  Wavelet transform (WT) takes its origin from Fourier transform. In Fourier trans-
form, signals are transformed into frequency domain so that analysis of the ECG signal can be done easily. This 
is because computations in time domain are difficult as compared to the computations in frequency domain. For 
example, convolution in time domain is simple multiplication in the frequency domain. A general equatorial 
representation of WT (assuming finite energy and zero mean) is as follows:

Here, WT represents the wavelet coefficients of convolution of the signal x(t) with mother wavelet function 
Φ(t). Γ is the measure of time known as translation and σ is the measure of frequency known as scaling param-
eters. By taking different combinations of Γ and σ, various mother wavelet functions can be generated. There 
can be different families of wavelet transforms and that are Haar, symmlet, coiflet, Daubechies, Mexican hat, 
B-splines, and many more.

(1)WT (Ŵ, σ) =
1

√
σ

∫

t
x(t)�∗

(

t − Ŵ

σ

)

dt

Table 1.   Comparison of number of samples in the classes in balanced MLII ECG Database with number of 
samples in the classes in unbalanced MLII ECG database.

S. No Class Unbalanced database ROST IRST RUST

1 Normal sinus rhythm (NSR) 283 283 59 10

2 Atrial premature beat (APB) 66 283 59 10

3 Atrial flutter (AFL) 20 283 59 10

4 Atrial fibrillation (AFIB) 135 283 59 10

5 Supraventricular tachyarrhythmia (SVTA) 13 283 59 10

6 Pre-excitation (WPW) 21 283 59 10

7 Premature ventricular contraction (PVC) 133 283 59 10

8 Ventricular bigeminy (BIG) 55 283 59 10

9 Ventricular trigeminy (TRI) 13 283 59 10

10 Ventricular tachycardia (VT) 10 283 59 10

11 Idioventricular rhythm (IVR) 10 283 59 10

12 Ventricular flutter (VFL) 10 283 59 10

13 Fusion of ventricular and normal beat (FUS) 11 283 59 10

14 Left bundle branch block beat (LBBBB) 103 283 59 10

15 Right bundle branch block beat (RBBBB) 62 283 59 10

16 Second-degree heart block (SDHB) 10 283 59 10

17 Pacemaker rhythm (PR) 45 283 59 10

Table 2.   Comparison of number of samples in the classes in balanced PTBDB ECG database with number of 
samples in the classes in unbalanced PTBDB ECG database.

S.No Class Unbalanced Database ROST IRST RUST

1 Normal 4046 10,506 7276 4046

2 Abnormal 10,506 10,506 7276 4046
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In discrete time domain, discrete wavelet transforms are defined as:

It is nothing but the decomposition of the signal using successive filtering with the help of low and high pass 
filters. A is the approximation coefficient and D is the detailed coefficient. A and D are obtained using dyadic 
decomposition of signal using successive low pass and high pass filters respectively. rh and rl are the high and low 
pass filters in dyadic DWT with half the cut off frequency from the previous frequency.

The scaling and wavelet functions in discrete WT are represented mathematically as:

where m,n ∈ Z. Figure 4 shows the decomposition of a signal on the basis of WT.
WT provides a multi-resolution system. Signals having discontinuity have many coefficients with large mag-

nitude using Fourier transform but WT generates few significant coefficients around the discontinuity and set 
the rest to zero. Hence, better results are achieved in non approximation with WT during reconstruction of the 
signals. Due to this advantage of WT, it is also helpful in achieving good accuracy results in compression and 
denoising of the signals. Therefore, WT is utilized here for the denoising of the ECG signals. Now, the features 
will be computed for these denoised signals and it will be performed with the help of Cumulants.

Cumulants.  Higher order statistics are stated in terms of moments (nm) and cumulants (Km). Km are stated as 
the set of components that are generated using the non-linear combinations of moments69. Generating function 
f(t) is also helpful in defining the Km and for a random variable Y, f(t) is represented as:

where E is the statistical expectation and defined for random variable Y, having probability distribution func-
tion g(y), as:

(2)A = zlow
[

p
]

=
∑

x[m].rh[2p−m]

(3)D = zhigh
[

p
]

=
∑

x[m].rl[2p−m]

(4)�m,n(t) = 2m/2.�(2mt − n)

(5)�m,n(t) = 2m/2.�(2mt − n)

(6)f (t) = logE[etY ]

(7)E[Y ] =
∫ ∞

−∞
y.g

(

y
)

dy

rh[m] rl[m] 

rh[m] rl[m] 

rh[m] rl[m] 

↓2↓2

↓2 ↓2

↓2 ↓2

x[m] σ = 0  ̴  πLevel of WT 

Decomposition 
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2 

3 

σ = π/2 ̴ π σ = 0 ̴ π/2

σ = π/4 ̴ π/2 σ = 0 ̴ π/4

σ = π/8 ̴ π/4 σ = 0 ̴ π/8

Figure 4.   Decomposition of signal x[n] on the basis of WT.
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Cumulants (Km) are obtained from the power series expansion of cumulant generating function and repre-
sented as:

Therefore, Km can be defined as MacLaurin series expansion in which mth order Cumulant is calculated at 
t = 0.

Now, Cumulants (Km) are represented using combinations of moments (nm). The moments (nm) existing for 
upto l order, say for a non-stationary signal z (m) which depends only on the time differences ǫ1, ǫ2, . . . , ǫl−1 
where m = 0, ± 1, ± 2, ± 3, ± 4, ……, in terms of E, is

Hence, using this equation, the first-order cumulant K1 is stated as

It is clearly visible that it is equal to the first-order moment and is defined as the mean value of the non-
stationary signal z (m). Similarly, the second-order cumulant K2(ǫ) is shown in the form of equation as:

Here, n2(ǫ) is the second-order moment defined as the autocorrelation and K2(ǫ) denotes the second-order 
cumulant that is called as variance. For zero mean variables, K2(ǫ) = n2(ǫ) . The third-order cumulant K3(ǫ1, ǫ2) 
is represented as

In this, n3(ǫ1, ǫ2) depicts the third-order moment. K3(ǫ1, ǫ2) explains the skewness of the signal and is equal to 
n3(ǫ1, ǫ2) for zero-mean. When there is symmetric signal, K3(ǫ1, ǫ2) becomes zero and for zero-mean variables, 
cumulants are equal to moments upto third-order i.e. K3(ǫ1, ǫ2) = n3(ǫ1, ǫ2) . Therefore, fourth-order cumulant 
K4(ǫ1, ǫ2, ǫ3) is required because under zero-mean condition also, fourth- and second-order moments are needed 
to compute K4(ǫ1, ǫ2, ǫ3) and it is represented as

where n4(ǫ1, ǫ2, ǫ3) is the fourth-order moment and if signal is having zero-mean, then,

Fourth-order cumulant describes about the kurtosis of the signal. If these cumulants are considered in fre-
quency domain then it can be obtained by taking the Fourier transform of these cumulants. Fourier transform 
of third-order cumulant is given as

where S(ϕ1,ϕ2) is the bispectrum of z(m), K3(ǫ1, ǫ2) is the third-order cumulant and Z(ϕ) is the Fourier trans-
form of x(n).

Similarly, for the fourth-order cumulant, its Fourier transform can be defined as Trispectrum and is given as

(8)f (t) =
∞
∑

m=1

Km
tm

m!

(9)Km =
∂m

∂tm
f (t)

∣

∣

∣

∣

t=0

(10)nl
(

ǫ1, ǫ2, . . . , ǫl−1

)

= E
[

z(m).z(m+ ǫ1) . . . z
(

m+ ǫl−1

)]

(11)K1 = n1 = E[z(m)]

(12)K2(ǫ) = n2(ǫ)− (n1)
2

(13)K3(ǫ1, ǫ2) = n3(ǫ1, ǫ2)− n1[n2(ǫ1)+ n2(ǫ2)− n2(ǫ1 − ǫ2)]+ 2(n1)
3

(14)

K4(ǫ1, ǫ2, ǫ3) = n4(ǫ1, ǫ2, ǫ3)− n2(ǫ1).n2(ǫ3 − ǫ2)− n2(ǫ2).n2(ǫ3 − ǫ1)− n2(ǫ3).n2(ǫ2 − ǫ1)

− n1[n3(ǫ2 − ǫ1, ǫ3 − ǫ2)+ n3(ǫ2, ǫ3)+ n3(ǫ3, ǫ1)+ n3(ǫ1, ǫ2)]− (n1)
2

[n2(ǫ1)+ n2(ǫ2)+ n2(ǫ3)− n2(ǫ3 − ǫ1)+ n2(ǫ3 − ǫ2)+ n2(ǫ2 − ǫ1)]− 6(n1)
4

(15)K4(ǫ1, ǫ2, ǫ3) = n4(ǫ1, ǫ2, ǫ3)− n2(ǫ1).n2(ǫ3 − ǫ2)− n2(ǫ2).n2(ǫ3 − ǫ1)− n2(ǫ3).n2(ǫ2 − ǫ1)

(16)S(ϕ1,ϕ2) = Z(ϕ1)Z(ϕ2)Z
∗(ϕ1 + ϕ2) =

∞
∑

u1=−∞

∞
∑

u2=−∞
K3(ǫ1, ǫ2).e

−jπ(ϕ1u1+ϕ2u2)

Table 3.   Generalization of the cumulant parameters.

Cumulants Sample1 Sample2 Sample3

K3(ǫ1, ǫ2) −0.37 0.21 1.98

K4(ǫ1, ǫ2, ǫ3) 3.01 8.81 2.60

S(ϕ1,ϕ2) 0.94 1.33 1.45

Q(ϕ1,ϕ2,ϕ3) 2.08 1.64 0.72



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15092  | https://doi.org/10.1038/s41598-021-94363-6

www.nature.com/scientificreports/

where Q(ϕ1,ϕ2,ϕ3) represents the Trispectrum of z(m) and K4(ǫ1, ǫ2, ǫ3) as the fourth-order cumulant. Generali-
zation of the cumulant parameters, with respect to the zero maximum lag to be computed, is shown in the Table 3.

Cumulants have been never used in the classification of ECG signals. In the approach utilized by V Sharmila 
et al., 3rd-order cumulant was utilized there to obtain the symmetry in the signal which is further utilized for 
AR modelling which helps in enhancing the ECG signal70. This feature of any signal i.e. symmetry can be used 
for classification. This feature of the non-stationary signals can be useful in classifying the non-stationary beats 
in ECG signals and hence, exploited here to obtain the features from the ECG signals. Then, for the classification 
purpose, advanced version of neural network has been used and is explained in the next sub-section.

Kernel extreme learning machine.  Kernel extreme learning machine (KELM) is an extension of extreme 
learning machine (ELM). ELM was introduced by G.B. Huang in the year 200671. It is a non-linear mapping pro-
cess and was modelled for single feedforward hidden layer neural network72. Different from traditional neural 
network, ELM is a non-iterative approach and targets to minimize the training error and output weight’s norm. 
ELM has gained attention among active research topic since last one decade66,67,73–76. This is because of fusion of 
multiclass and binary classification, having ability to perform regression and classification, easy implementation 
and higher recognition rate.

An ELM model is defined for r-dimensional input vector having w number of training samples as 
Y = {

(

yw , τw
)

|w = 1, 2, 3, 4, . . . ,W} . As yw is r-dimensional, hence, input vector yw = [yw1, yw2, . . . , ywr] and 
the corresponding target class (c number of classes), τw = [τw1, τw2, . . . , τwc] . Therefore, ELM model for P num-
ber of neurons in the hidden layer is

where µp = [µp1,µp2,µp3, . . . ,µpc]T and κp
(

ωp,βp, y
)

= ωpy + βq . µp tells about the weight at the hidden node 
κp output. P,ωp and βp represent the number of neuron in the hidden layer, weight vector on the pth neuron of 
that hidden layer and bias on the pth neuron of the hidden layer respectively. The Eq. (18) can be re-written in 
the matrix form as:

where, K =







µ1(ω1,β1, y1) · · · µP(ωP ,βP , y1)
.
.
.

. . .
.
.
.

µ1(ω1,β1, yW ) · · · µP(ωP ,βP , yW )






 , µ =







µT
1

.

.

.

µT
P






 , Ŵ =







τ11 · · · τ1c
.
.
.

. . .
.
.
.

τW1 · · · τWc







Thus, the output weight µ on the hidden node is given as the pseudo inverse of K and it is represented as

This gave a model named as ELM model that can be shown as

Here, CR is the regularization coefficient which is a constant and the value of this constant is required to be 
selected properly for the generalized performance of the model. ELM model has various advantages of lower 
computational complexity as the method is non-iterative, minimum error is achieved with the help of proper 
training. The problem of local minima and over-fitting is present in ELM. These problems are overcome by using 
kernel matrix with ELM, introduced in 2016 based on Mercer’s condition74,77, as

Now, modifying the ELM model as represented using Eq. (21), gives,

and

(17)

Q(ϕ1,ϕ2,ϕ3) = Z(ϕ1)Z(ϕ2)Z(ϕ3)Z
∗(ϕ1 + ϕ2 + ϕ3) =

∞
∑

u3=−∞

∞
∑

u2=−∞

∞
∑

u1=−∞
K4(ǫ1, ǫ2, ǫ3).e

−jπ(ϕ1u1+ϕ2u2+ϕ3u3)

(18)ZELM

(

y
)

=
P
∑

p=1

µp.κp(ωp,βp, y) = κ
(

y
)

.µ

(19)K.µ = Ŵ

(20)µ = KT

(

I

CR

+ KKT

)−1

Ŵ

(21)MELM(y) = κ(y)KT

(

I

CR

+ KKT

)−1

Ŵ

(22)χj,k = ψ
(

yj , yk
)

, j, k = 1, 2, 3, . . . ,W

(23)MKELM(y) = κ(y)KT

(

I

CR

+ χ

)−1

Ŵ

(24)κ
�

y
�

KT =







ψ
�

y, y1
�

.

.

.

ψ
�

y, yW
�






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κ(y) is that hidden node output which maps the input data to the hidden layer feature space. If there are two 
samples, say γ th and δth input samples, then the kernel function can be stated as

There are various kernel functions which can be used in the kernel based ELM. They are polynomial kernel, 
Laplacian kernel, sigmoid kernel, wavelet kernel, and RBF kernel. Equations for these kernel functions are shown 
in Table 4.

Any of these kernel functions can be utilized with KELM depending upon the requirement and hence, the 
kernel based ELM model is defined as the kernel extreme learning machine (KELM). Its architecture is shown 
in Fig. 5.

KELM can be utilized for both binary as well as multiclass classification78. Here, it is used in multiclass clas-
sification of ECG signals. This classification of ECG signals is optimized for minimum percentage error rate using 
an optimization algorithm which is explained in the next sub-section. In KELM, regularization coefficient and 
kernel parameter are the two variables whose optimized values affect the recognition of ECG signals.

Optimization algorithm.  Optimization algorithm helps in selecting such values of the parameters or vari-
ables at which percentage error rate can be minimized in order to achieve good rate of ECG signals classification. 
This is performed using genetic algorithm (GA) here. GA was introduced by Holland and Goldberg using the 
concepts of genetics and Darwin’s theory79.

In GA, fitness function is used to check for the best solution. It is a function which takes the solution (chromo-
some) as input and provides solution as output. Various combinations of the parameters are formed and tested 
for the solutions to the problem. Combinations of these parameters are selected using three basic steps of GA. 
These are as follows: parent selection, crossover and mutation. A basic structure representing the algorithm of 
GA is shown in Fig. 6.

Selection.  It is a process in GA with which initial variables are selected as parent variables and they are mated 
and recombined to produce their off-spring or child. It is very important step as a good selection of the parent 

(25)ψ
(

yγ , yδ
)

= κ(yγ )κ(yδ)
T

Table 4.   Kernel functions with their equations.

Equation

Polynomial ψ
(

x, y
)

=
(

xTy + 1
)n

Laplacian ψ
(

x, y
)

= e(−�x−y�/σ)

Sigmoid ψ
(

x, y
)

= tanh(βxTy + c)

Wavelet ψ
(−→x ,−→y

)

=
∏r

ς=1

(

φ

(−→xς−−→yς
ν

))

RBF ψ
(

x, y
)

= e(−PK�x−y�2)

y1

y2

y3

y4

yw

∑ 

Input Layer 

Hidden Layer

Output Layer

μ 

Figure 5.   Architecture of KELM.
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variable helps in generating better off-springs for the better solution. Selection can be done in various ways: fit-
ness proportionate selection, tournament selection, stochastic uniform sampling, roulette wheel selection, ran-
dom selection and rank selection. An appropriate selection is must to achieve better and fit solutions. Improper 
selection will lead to premature convergence to a suboptimal solution which is because of getting stuck in local 
minima. This problem may also arise because of the small size of the population. Thus, it is necessary to have a 
good selection of initial variables so that better off-springs can be generated and lead to achieve better results.

Crossover.  It is the next step to selection in which one of the several crossover operators is utilized on the 
selected parents and off-springs are produced using the genetic properties of the parents. These operators 
include uniform crossover, partially mapped crossover, Davis’ Order crossover, shuffle crossover, whole arithme-
tic recombination, ring crossover, order based crossover, one point crossover, and multi point crossover. Various 
combinations of parent chromosomes are performed to obtain the child chromosomes using these operators.

Mutation.  It is defined as a fine adjustment in the child chromosome to obtain a whole new chromosome. It is 
performed to have diversity in the genetic population so that search space can be explored widely. It is an essen-
tial step for the convergence of GA. It also uses some operators for their function that commonly includes swap 
mutation, inversion mutation, scramble mutation, random resetting, and bit flip mutation. These operators are 
utilized according to the requirement in the problem that need to be solved.

In GA, population is initiated either randomly or with some other heuristics and parent chromosomes are 
selected for mating. Value of the fitness function (or objective function) is computed. Now, crossover and muta-
tion operators are applied on the parent chromosomes to produce child chromosomes. Fitness function value 
is computed again for these child chromosomes. Both the values are compared and chromosomes with which 
best solution is obtained will help in generating the chromosomes for next generation. This step repeats until 
termination criterion is reached.

Termination criterion is very important in GA to end a GA running process. Some conditions that can be 
utilized to stop a GA run are, when number of iterations (or generations) reached to maximum, when popula-
tion size becomes equal to the chromosomes validated, or when best fitness function value becomes equal to the 
mean of the fitness function values of all the iterations.

Databases used.  The proposed approach is experimented over various kinds of ECG databases. These 
include MLII, UCI Repository arrhythmia and PTBDB database. All these databases are briefly explained as 
follows:

MLII database.  MLII database of ECG is obtained from MIT-BIH arrhythmia database of the PhysioNet 
services80. At PhysioNet, 48 records are present but all the records are not considered because record no. 102 
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Figure 6.   Basic structure of GA.
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and 104 do not contain the MLII lead output and record no. 232 is the Sinus bradycardia rhythm in the entire 
signal. With MIT-BIH arrhythmia database of 45 records, all the signals are obtained from one lead i.e. MLII and 
hence, named as MLII ECG database. It is having 17 classes with 1000 fragments in each signal. Normal ECG, 
pacemaker rhythm and 15 other types of cardiac disorders are the classes in MLII ECG database. Names of each 
class are given in Table 1 with respective number of samples in each class. All the samples of the ECG signals 
contain 3600 attributes recorded at 200 adu/mV gain and 360 Hz sampling frequency with 10 s non-overlapping 
fragments.

UCI repository arrhythmia database.  UCI repository arrhythmia database is one of another ECG database that 
is experimented to check the efficiency of the proposed approach. This database consists of 452 samples distrib-
uted in 13 classes. Class 1 is having the normal ECG data, classes 2 to 15 shows different cardiac disorders and 
Class 16 contains the ECGs which are not classified in any of the categories. Each sample contains 280 attributes. 
Out of all these attributes, first four attributes represents general details about the sample viz. age, sex, height and 
weight, while rest 275 attributes are the parametric details of the ECG signal including duration of QRS com-
plex, duration between onset P and Q waves, between Q and offset T waves, duration between two consecutive 
P waves etc. and 280th attribute tells about the class to which that sample belongs60. Out of all attributes, 206 are 
linear valued attributes and 73 as the nominal ones. All of these values are taken in milliseconds duration that 
represents average values. These parametric values are taken from a 12-lead recording of ECG81. Name of these 
arrhythmia classes with their respective number of samples is given in Table 5. In this ECG database, 11th to 
15th attributes in each class, contains the missing values82. These missing values are filled with some values, the 
process of that is given and explained in the next section.

PTBDB ECG database.  The Physikalisch-Technische Bundesanstalt Database or PTBDB is also taken from 
the PhysioNet’s bank. This ECG database is categorized into two classes containing the signals representing 
the shapes of ECG heartbeats. Two classes consist of normal ECG class having 4046 numbers of samples and 
abnormal ECG class with 10,506 numbers of samples. Abnormal samples are the cases affected with myocardial 
infarction and other different arrhythmias. Hence, there are total 14,552 numbers of samples present in PTBDB 
database. All the samples of the signals are already preprocessed and each sample is segmented and sampled at 
a frequency of 125 Hz to represent an individual’s heartbeat. Thus, all the signals of PTBDB ECG database are 
cropped, down-sampled and padded with zeros to make the dimension of each signal equal to 18883.

Proposed method
The proposed approach introduces a novel and robust approach of ECG signals classification. It is based on 
feature vectors obtained with the help of cumulants. 2nd-, 3rd- and 4th-order cumulants are utilized as the 
statistical approach of feature extraction. As it is already stated, 2nd-order cumulant is helpful in computing the 
autocorrelation of the signal, similarly, 3rd- and 4th-order cumulants for skewness and kurtosis of the signal 
respectively. These are very useful properties of non-stationary signals such as ECG because any small variation 
in the health of a person can be seen as variation in its ECG. Such variations can be computed statistically and 
helpful in recognizing different types of ECG signals. For the faster speed of the proposed approach, non-iterative 
method is used for classification. This non-iterative method is hybridized with optimization algorithm and hence, 
forms an evolutionary hybrid classifier. A block diagram of the proposed approach is shown in Fig. 7.

Here, three databases are utilized for checking the robustness of the proposed approach. These are explained 
in “Databases used”. MLII and PTBDB databases are the proper ECG signals having 1000 fragments in MLII and 
PTBDB cropped and down-sampled to 188 dimension sizes. UCI repository database contains ECG parameters 
as stated above in “UCI repository arrhythmia database”. In this database, as there are some missing values in 11th 

Table 5.   Comparison of number of samples in the classes in balanced UCI repository arrhythmia corrected 
database with number of samples in the classes in unbalanced UCI repository arrhythmia corrected database.

S.No Class Unbalanced database ROST IRST RUST

1 Normal 245 245 35 2

2 Ischemic changes (coronary artery disease) 44 245 35 2

3 Old anterior myocardial infarction 15 245 35 2

4 Old inferior myocardial infarction 15 245 35 2

5 Sinus tachycardia 13 245 35 2

6 Sinus bradycardia 25 245 35 2

7 Ventricular premature contraction (PVC) 3 245 35 2

8 Supraventricular premature contraction 2 245 35 2

9 Left bundle branch block 9 245 35 2

10 Right bundle branch block 50 245 35 2

11 Left ventricule hypertrophy 4 245 35 2

12 Atrial fibrillation or flutter 5 245 35 2

13 Others 22 245 35 2
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to 15th attributes, therefore, to maintain the relevance and reliability of the arrhythmia database, it is a prior need 
to fill these missing values by pre-processing the database. In some of the earlier researches, these missing values 
are tackled by directly removing the rows containing these values. Researchers also removed the 13th class which 
have uncertainty about the class containing unrecognized data. We have utilized this data as the separate class 
as 13th class. The missing values are dealt with a pre-processing step as it is shown in Fig. 8. As shown in figure, 
the missing values in 11th to 15th attributes of UCI repository arrhythmia database are replaced by the standard 
deviation of all remaining attributes of the respective class. The database containing these corrected values in the 
missing attributes is termed as the UCI repository arrhythmia corrected database. MLII & PTBDB ECG database 
do not have any such attributes or missing values, therefore, no correction is required in these two databases.

Now, there are three databases of three different types. One is the complete ECG signal having 1000 fragments 
as in MLII, second is the ECG data down-sampled to 188 size of dimension and third one having parameter 
values of ECG signals. All these three databases are unbalanced having one class as the majority in number 
compared to other classes. Therefore, all three databases are balanced using resampling techniques. ROST and 
IRST are utilized as resampling techniques here. RUST is avoided because it removes the samples from the classes 
and reduces the database to very small size. Table 6 is showing the number of samples in the classes, before and 
after applying resampling techniques, of various databases used during experimentation. After balancing the 
databases, noise removal is performed on the signals of ECG databases. It is performed utilizing DWT. ECG 
signal’s biology and shape helps in selecting the mother wavelet and the level of decomposition required84. As 
the Daubechies (db6) wavelet resembles the most with ECG signal, hence, it is used with decomposition level 
10. There are many disturbances present in a raw ECG signals. These disturbances are present due to motion 
artifacts, power line interference and skin electrode contact85. This is performed normalizing the ECG signal so 
that DC offset (125 Hz) can be reduced86 and variance of the amplitude can be eliminated.

After that signal is denoised using Daubechies wavelet of vanishing moments six and ten level of decomposi-
tion. WT decomposes the ECG signal into detailed and approximation coefficients as shown in Fig. 4. Then, high 
frequency noise is removed from the signal by removing the detailed coefficients D1-D2 and low frequency noise 
is removed by eliminating the low frequency coefficient A10. It is done with the help of automatic soft computing 
technique. ECG signal is regenerated by combining the rest of the coefficients. One more noise is still present 
in the signal i.e. Baseline wander noise at the range of 0.15–0.8 Hz. This noise is due to the electrode impedance 
and respiration in the human body86. It is removed with the help of moving average filter and signal has been 
smoothed. This step of pre-processing in the proposed approach is shown in Fig. 7.

These smoothened ECG data is then utilized for extracting the features. These features are statistical measures 
in terms of cumulants. 2nd-, 3rd- and 4th-order cumulants are computed of the smoothened ECG data means 
the features are extracted from noise removed ECG signals. If any noise or disturbance is still present then these 
features will be helpful in such conditions. This is because results the 3rd- and 4th-order cumulants are insensi-
tive towards noise. Pre-processing step of noise removal with these higher order cumulants makes the proposed 
method more robust towards the ECG signals used. Also, 2nd-, 3rd- and 4th-order cumulants are applied in this 
proposed method because 2nd-order cumulant tells about the autocorrelation of the signal, 3rd-order cumulant 
tells about the skewness and 4th-order cumulant tells about the kurtosis of the ECG signal. 2nd-order cumulant 
or autocorrelation does not contain any information about phase70. With this advantage of minimum phase, 
2nd-order cumulants are greatly helpful in identifying the non-linear signals like ECG signals. There are some 
types of phase coupling associated with nonlinear signals that are not correctly identified with the help of 2nd-
order cumulants. In such conditions, higher order cumulants are useful. 3rd-order cumulant or skewness is a 
measure of asymmetry of any distribution about its mean70. It can have positive and zero values only. Positive 
value of skewness tells that the tail of the ECG signal is longer and thinner towards right side as compared to the 
left side. Zero value of skewness depicts the case of symmetric signal about the mean. It is also true in asymmetric 
signals in which asymmetry obeys, one tail being short and thin, and the other being long and thick. In the ECG 
waveforms, some kind of asymmetry is observed among four types of ECG datasets used. 4th-order cumulant 
or kurtosis of the signal which is a measure of the peakedness in the distributions and peakedness of any ECG 
waveform is defined by width of their peaks70. Higher kurtosis means more of the variance which is the result of 
infrequent extreme deviations and their Fourier transforms gives Bispectrum and Trispectrum for the signals, 
respectively, which can also be used as features for the signals. Hence, 2nd-, 3rd- and 4th-order cumulants are 
used for feature extraction to achieve better accuracy and classification results. In the following equation, size 
of the feature vector (NK) obtained using cumulant is represented87:

(26)NK = 2 ∗ml + 1

Table 6.   Total number of samples before and after applying resampling techniques in various Databases used 
for experimentation.

Technique → 

Imbalance ratio Before ROST IRST RUSTDatabases ↓

MLII 283:10 1000 4811 1003 170

UCI 245:2 452 3185 455 26

PTBDB 309:119 14,552 21,010 14,552 8092
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where, ml is the maximum number of lags of the cumulant that need to be used. The classification is performed 
with the help of evolutionary hybrid classifier. It is hybrid of optimization algorithm, GA and non-iterative 
algorithm i.e. KELM. Algorithm for the evolutionary hybrid classifier is also given.

In the evolutionary hybrid algorithm, parameters of KELM are optimized using GA. For this, population of 
the parameters ( ml , CR , PK ) are initialized, termination criterion is set with lower and upper limits of the CR 
and PK . Fitness function for the algorithm is error rate computed using the classifier KELM. It is written below 
in the form of equation:

ErrorRateKELM is defined as the total number of incorrect predictions divided by the total number of data 
samples in the database. Here, in Using confusion matrix, it is defined as

Confusion matrix:

TP FN

FP TN

where, TP is correct positive prediction, FN is incorrect positive prediction, FP is correct negative prediction, 
TN is incorrect negative prediction

The fitness function value is computed for the initial population and the best fit from that is obtained. The best 
fit is the values of parameters ( ml , CR , PK ) for the minimum Ϝ. Then these best fit chromosomes will become the 
parent for the next generation. Next generation population is obtained using crossover and mutation operations. 
Uniform crossover operator is applied in which each gene is treated separately without dividing the chromosomes 
into the segments. A representation is shown in Fig. 9 for uniform crossover.

(27)F = ErrorRateKELM

ErrorRateKELM = (FP + FN)/(TP + FN + FP + TN)

9 8 7 6 5 4 3 2 1 0 → 2 8 5 6 0 4 8 2 8 0 

2 4 5 7 0 1 8 3 8 9 9 4 7 7 5 1 3 3 1 9 

Figure 9.   Crossover operation in evolutionary hybrid classifier.

9 4 7 7 5 1 3 3 1 9 → 9 4 2 7 5 6 3 3 1 9 

Figure 10.   Mutation operation in evolutionary hybrid classifier.
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After that, the resultant chromosomes are applied with mutation operator i.e. random resetting operator here. 
In this, one or more genes are selected and there values are replaced with other random values within the given 
range. It is shown, in Fig. 10, as follows:

Again, the fitness function is computed for the new generation and best fit is computed using Ϝ. Same pro-
cess is repeated until some termination criterion is reached or the best fit (or minimum Ϝ) becomes equal to 
the mean value of the Ϝ obtained from the last generated population when the run is terminated. Hence, the 
optimized values of the parameters ml , CR and PK are obtained with corresponding percentage error rate (best 
fit or minimum Ϝ).

Experimental results and analysis
The proposed approach of ECG signals classification undergoes various steps in experimentation. For achiev-
ing better results in identifying the signal, pre-processing and feature extraction are performed which provides 
precision to the proposed approach. Experimental analysis performed on the proposed approach is explained 
as follows:

As it is already mentioned in “Databases used”, three different types of ECG signals are utilized for the analysis 
of the proposed approach. All these databases are facing a problem of large difference in number of samples in 
majority and minority classes. Imbalance ratio for each ECG database, used during experimentation, is given in 
the Table 6. Three databases MLII, UCI Repository Arrhythmia Corrected and PTBDB database have imbalance 
ratio of 283:10, 245:2 and 309:119 respectively. Imbalanced databases make the classification biased towards the 
majority class. Therefore, resampling techniques are applied on these databases to balance the number of samples 
in majority class with minority class. Comparison of number of samples in the classes in balanced database with 
number of samples in the classes in imbalanced database is represented in Tables 1 and 2.

It can be seen from the tables (Tables 1 and 2) that RUST is not an appropriate resampling technique as it 
reduces the number of samples leading to loss of data which makes the system unreliable. ROST and IRST tech-
niques do not suffer loss of data as they add samples to the classes. Therefore, ROST and IRST techniques are 
utilized in the proposed approach for balancing the number of samples in the classes of databases. ROST has a 
limitation of over-fitting because of addition of large number of samples. This problem is overcome by using the 
evolutionary hybrid classifier. After data balancing, pre-processing is performed with the help of DWT.

ECG signals are affected with many noises, as already explained in previous section (“Proposed method”). 
Therefore, noise is removed from these signals using db6 level 10 WT. DWT decomposition for an ECG signal 
is shown in Fig. 11. Detailed (D1–D10) and approximation (A1–A10) coefficients are represented in the figure. 
It is the segregation of a signal into various frequency bands so that time–frequency information of the signal 
can be extracted. As it can be seen in Fig. 11, A10 contains the lowest frequency band of the ECG signal and D1 
contains the highest frequency band. These are the noises in the signal and hence, removed by filtering these 
particular bands. A10 is targeted for low frequency noise removal.

For high frequency noise removal, D1 and D2 are removed. Baseline correction and powerline interference 
noises are also performed at 0.15–0.8 Hz and 60 Hz respectively. The ECG signal after removing all these noises 
is reconstructed as noise removed ECG signals. It is shown in Fig. 12. In this figure, five samples of original ECG 
signals are shown and correspondingly, noise removed ECG signals are represented. After filtering the noise, 
next step is to compute features from this noise free ECG signal. Therefore, 2nd-, 3rd- and 4th-order cumulants 
comes into action as feature extractors.

2nd-, 3rd- and 4th-order cumulants are used here for obtaining the statistical features from the ECG signals. 
These are shown as samples in Fig. 13. Five sample of noised free ECG signals are shown with their corresponding 
2nd-, 3rd- and 4th-order cumulants. As it can be seen from the figure, there are variations in the curves obtained 
by applying these multi-cumulants. These variations are because of variations in the ECG signal due to various 
types of arrhythmia problems. These arrhythmia problems creates disturbances in the ECG of a subject which 
are reflected in 2nd-, 3rd- and 4th-order cumulants. It also represents that using a single type of cumulant is not 
sufficient as a feature vector as it is unable to differentiate between different types of ECG signals. 3rd- and 4th-
order cumulants work better in non-linear signals like ECG. Therefore, concatenating 2nd-, 3rd- and 4th-order 
cumulants will give the feature vector of size, computed by multiplying Eq. (26), by 3 (for concatenation of three 
cumulant’s features) for various ECG signals in the databases. These feature vectors are then utilised to classify 
the ECG signals with the help of an evolutionary hybrid classifier. This classifier uses KELM which is a non-
iterative algorithm and overcomes the problem of overfitting that is generated because of ROST. Kernel function 
selected for the experimentation is RBF kernel. Its equation is shown in Table 4. Evolutionary algorithm helps in 
optimization of the parameters ml ,  CR and PK with the help of GA. Now, based on this proposed approach, clas-
sification of different types of ECG signals is represented according to the databases used for the experimentation.

MLII ECG database.  After applying balancing, pre-processing and feature extraction to the MLII ECG 
Database, classification of the ECG signals is performed based on the feature vectors obtained with vector size 
(2703 units) using Eq. (26). Size of the original signal (size 3600 units) is reduced to 2703 units; hence, dimen-
sion reduction is also obtained with the proposed approach. As shown in Table 1, after balancing using IRST 
technique each class of the MLII database have 59 samples in each class owing to a total of 1003 samples. These 
are divided into Train-Test ratio. Combination of ratios taken for this database are as follows: 20–80, 30–70, 
40–60, 50–50, 60–40, 70–30, 90–10 and 95–05. Taking one by one each of these ratios, KELM is trained, follow-
ing which testing is performed on the test samples. Values of KELM parameters ( CR , PK ) and feature vector 
parameter, ml are obtained by optimizing KELM using GA. All the results obtained for this database (for IRST 
based balancing of database) are shown in Table 7. Values of ml , CR and PK are also shown in the table. It can 
be seen in the table as well that as the training data is increasing, percentage error rate is getting reduced and 
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Figure 11.   Decomposition for d1–d10 and a1–a10 of ECG Signal using db6 level 10 DWT.
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Figure 12.   Raw ECG signals and noise removed ECG signals.
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best value is achieved with 1.96% error rate indication 1 ECG signal misclassification out of 50 ECG signals. If 
taking 70–30 Train Test ratio case, 3.59% error rate is obtained. It means only 11 ECG signals are misclassified 
out of 301 ECG signals.

Similarly, experiment is performed on MLII ECG Database when data balancing is performed using ROST. 
In that case, 283 ECG signals are present in each class with 4811 signals in total. Same sequence of Train-Test 
Ratio is taken here as well and results are computed by training of KELM and optimizing ml ,  CR and PK using 
GA. Percentage error rate with their corresponding values of optimized ml , CR and PK are shown in Table 7. 
Results obtained in this case are excellent as zero error rate is achieved on MLII ECG Database for this case. 
Zero error rate is achieved for 50–50 Train-Test ratio or when the training data is more than 50%. For 40–60 
Train-Test ratio, 2.63% error rate is achieved. It means 16 ECG signals are misclassified out of 602 ECG signals.

UCI repository arrhythmia database.  The UCI repository arrhythmia database is different from MLII 
ECG database. As discussed in “Databases used”, UCI repository arrhythmia database is containing the para-
metric observations like P, Q, R, S, T peak values, their time durations, distance between various peaks etc. of 
the ECG signals. After performing same operations of the proposed approach on this database, two databases 

Figure 13.   Noise removed ECG and corresponding 2nd-, 3rd- and 4th-order cumulants.
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are selected in UCI repository arrhythmia corrected database i.e. balanced through IRST and ROST. In the first 
case, with IRST, 35 samples of ECG signals are there in each class of the database owing to 455 samples in total. 
The feature vector of each sample is 153 units (Eq. 26). Dimension reduction is achieved as 279 features of a 
sample are reduced to 153 features here. Train-Test ratio is again selected sequentially like 10–90, 20–80, 30–70, 
40–60, 50–50, 60–40, 70–30, 80–20 and 90–10. In this also, KELM is trained with each training set and corre-
spondingly testing is performed with remaining test set. Results are shown in terms of percentage error rate in 
Table 8. The values of the KELM parameters ( CR , PK ) and the feature extraction parameter, ml are also obtained 
by optimizing GA to achieve minimum error rate. As with increasing training data, error rate reduces, therefore, 
90–10 Train-Test ratio provides best result with 10.96% error rate in classifying the UCI repository arrhythmia 
corrected database when IRST is used for data balancing. It means 5 arrhythmias are misclassified out of 46. 
Similarly, for 70–30 Train-Test ratio, 16.92% error rate is achieved.

While, in the second case, when ROST is utilized for resampling the database, results achieved are excellent. 
In this, 3185 samples are present in this database with 245 samples of each class. Zero error rate is achieved 
when training data 30% or more is used. It means with only 30% of training data, zero error rate is achieved on 

Table 7.   Percentage error rate with values of ml ,  CR and PK obtained using proposed approach on MLII ECG 
database.

Train-test ml CR PK Percentage error rate (%)

MLII ECG Database with IRST balancing

20–80 450 0.2104 23.645 11.14

30–70 450 −2.984 5.634 9.33

40–60 450 −44.584 83.677 6.55

50–50 450 3.231 45.454 5.27

60–40 450 4.364 35.442 3.68

70–30 450 9.655 50.412 3.59

90–10 450 −28.033 76.213 2.94

95–05 450 −22.353 64.570 1.96

MLII ECG Database with ROST balancing

20–80 450 35.241 0.0567 11.43

30–70 450 1.000 0.001 7.90

40–60 450 0.222 0.0413 2.63

50–50 450 14.622 0.001 0.00

60–40 450 23.515 0.001 0.00

70–30 450 51.232 0.001 0.00

90–10 450 5.277 0.01 0.00

95–05 450 1.595 0.1 0.00

Table 8.   Percentage error rate with values of ml , CR and PK obtained using proposed approach on UCI 
repository arrhythmia corrected database.

Train-test ml CR PK Percentage error rate (%)

UCI repository arrhythmia corrected database with IRST balancing

10–90 25 52.582 40.278 39.70

20–80 25 15.560 3.732 30.77

30–70 25 30.370 73.041 27.88

40–60 25 16.852 4.578 20.15

50–50 25 12.230 5.353 19.91

60–40 25 8.285 8.253 18.68

70–30 25 20.220 0.567 16.92

80–20 25 −5.810 0.059 13.19

90–10 25 −1.623 0.0225 10.26

UCI repository arrhythmia corrected database with ROST balancing

10–90 25 10.623 0.00008 8.25

20–80 25 18.776 0.00008 0.12

30–70 25 5.428 0.00008 0.00

40–60 25 38.124 0.00008 0.00

50–50 25 7.694 0.00008 0.00

60–40 25 3.555 0.00008 0.00

70–30 25 4.778 0.00008 0.00

80–20 25 60.667 0.0001 0.00

90–10 25 8.354 0.0001 0.00
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70% test data. For 20–80 Train Test ratio, 0.12% error rate is obtained that means 3 arrhythmias are misclassi-
fied out of 2548 arrhythmias. Table 8 is representing the percentage error rate with their corresponding values 
of ml ,  CR and PK.

PTBDB ECG database.  PTBDB ECG Database is somewhat different from MLII and UCI databases as 
already discussed in detail in “Databases used”. It is cropped and down-sampled to 187 units of size. It means the 
size of a sample in this database is 187. This size further reduced by applying the proposed approach operations 
of pre-processing and feature extraction and the resultant size of the feature vector for each sample of PTBDB 
database is reduced to 153 units (Eq. 26). This database also undergoes with resampling techniques to maintain 
the imbalance ratio. After applying the resampling techniques, databases obtained from IRST and ROST are only 
utilized for further processing. Therefore, in IRST based balanced PTBDB database have 14,552 samples of ECG 
signal with 7276 samples in each class. In this database, there are only two classes i.e. normal and abnormal. Here 
also, Train-Test ratio is varied sequentially from 10–90 to 90–10. Results obtained on with this database are very 
good as 0.76% error rate is achieved with 90–10 Train-Test ratio. It means 11 ECGs are misclassified out of 1455. 
With Train-Test ratio 70–30, 0.73% error rate is achieved means 32 ECGs are misclassified out of 4366 ECGs. 
Results on PTBDB ECG Database are shown in Table 9. The values of the parameters ml , CR and PK are also 
shown in the table with each Train-Test ratio for corresponding percentage error rate.

Similar operation is performed with ROST based balanced PTBDB ECG Database. After processing through 
pre-processing step and features extraction, the database is fed to evolutionary hybrid classifier. In this case, 
21,010 samples are present with 10,505 in each class. The database becomes quite large still excellent results are 
achieved on this database when it is experimented with proposed approach. Sequentially dividing the Train-Test 
ratio from 10–90 to 90–10, the database is divided into train and test set. The results are shown in Table 9. Best 
value of result achieved is with 90–10 Train-Test ratio i.e. 0.43% error rate. It means nine signals are misclassi-
fied from 2101 signals of PTBDB Database. Similarly, with 70–30 ratio, 0.35% error rate is achieved giving 22 
misclassifications out of 6303. According to the size of this database, the results achieved are excellent with the 
proposed approach of evolutionary hybrid classifier.

Comparison with other approaches.  The results obtained on MLII, UCI and PTBDB ECG databases 
using proposed approach are compared with the existing state-of-art approaches. It is represented in Table 10. 
The performance measure selected for showing the ECG classification is percentage accuracy and it can be seen 
that excellent results have been achieved over these utilized databases.

On MLII ECG database, 100% accuracy is obtained with the proposed approach of evolutionary hybrid 
classifier with multi-cumulants as feature extraction step. Proposed method outperforms the other state-of-art 
approaches viz. KICA + LIBSVM88, 1-D CNN65, PCAnet + SVM89, CNN + LSTM90, Evolutionary-Neural System 
based on SVM64, WT-HMM model 91, Ensemble SVM92. All these approaches used MLII database with 4 or 5 
classes. They have merged the samples depending upon their category of cardiac disorders88–92. Only64,65 have 
utilized the MLII database with 17 classes and achieved the accuracies of 90% and 91.33% respectively. They 
have obtained these results with Train-Test ratio 70–30. However, in our proposed approach, 100% accuracy is 
achieved with MLII database (with ROST balancing) with 50–50 Train-Test ratio. It also signifies that with lesser 

Table 9.   Percentage error rate with values of ml , CR and PK obtained using proposed approach on PTBDB 
ECG database.

Train-test ml CR PK Percentage error rate (%)

PTBDB ECG database with IRST balancing

10–90 25 64.079 4.098 3.83

20–80 25 28.729 4.296 2.59

30–70 25 52.603 4.931 2.03

40–60 25 95.160 6.369 1.35

50–50 25 64.269 5.179 1.17

60–40 25 71.480 4.190 0.96

70–30 25 108.520 3.394 0.73

80–20 25 9.428 3.476 0.72

90–10 25 86.198 4.672 0.76

PTBDB ECG database with ROST balancing

10–90 25 188.257 4.854 3.14

20–80 25 157.087 6.998 1.65

30–70 25 67.544 5.023 1.06

40–60 25 199.869 4.163 0.63

50–50 25 189.643 5.130 0.57

60–40 25 178.320 5.052 0.43

70–30 25 92.776 4.767 0.35

80–20 25 129.147 3.264 0.33

90–10 25 190.023 3.286 0.43
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amount of training data only, excellent results are obtained. If MLII database (with IRST balancing) is considered, 
then also, 96.41% accuracy (Table 7) is achieved with 70–30 Train-Test ratio with the proposed approach which 
is also better than the existing state-of-art approaches.

On UCI repository arrhythmia database as well, results of various existing techniques are compared with the 
proposed approach. Existing approaches like Kernel Difference Weighted KNN93, Modular Neural Network81, 
Wrapper method97, Kernel Extreme Learning Machine67, GWMD-DE technique59, KELM with GA66, Ensemble 
SVM with GA-SVM features selection 101 have achieved quite promising results over this database as shown 
in Table 10 except GWMD-DE technique59. In59, With 50–50 Train-Test ratio only, they have achieved 96% 
of accuracy in classifying the ECG signals of UCI arrhythmia database. With the proposed approach, we have 
attained 100% accuracy on this database as well with 30–70 or more Train-Test ratio as shown in  Table 8. This 
result is using ROST for balancing of UCI database. With IRST as balancing technique, proposed approach 
outperforms the results of all other techniques in Table 10 except 59 as 80.19% accuracy is achieved with 50–50 
Train-Test ratio over this database.

At last, proposed approach is compared on PTBDB ECG database having 13 classes with some of the lat-
est state-of-art works on ECG classification. These includes Naïve Bayes94, RBF SVM95, Convolutional Neu-
ral Network96, Third-order tensor based analysis50, Deep Neural Network98, CNN with and without feature 
extraction57, Wavelet KELM99, DEA-ELM100. All the researchers have considered 2 classes in PTBDB ECG classes 
viz. normal ECG and abnormal ECG (i.e. with some cardiac disorder). Proposed approach outperforms all these 
techniques by achieving 99.43% of accuracy is classifying the ECG signals.

The reason behind achieving excellent results for the proposed approach is the use of pre-processing and 
feature extraction steps before classification. All the three databases of ECG utilized during experimentation face 
the problem of imbalance (Table 6) which is overcome by ROST and IRST. Noise removal is performed using 

Table 10.   Comparison of the proposed approach with existing state-of-art approaches. KNN K nearest 
neighbour, RBF radial basis function, SVM support vector machine, KICA + LIBSVM kernel independent 
component analysis + library for SVM, CNN convolutional neural network, PCAnet principal component 
analysis network, LSTM long short-term memory, GWMD-DE Gabor wavelet multi-linear discriminant based 
data extraction, WT-HMM wavelet transform-hidden Markov model, DEA-ELM extreme learning machine 
using differential evolution algorithm.

Approach Year Database No. of classes Train-test ratio Accuracy (%)

Kernel difference weighted KNN93 2008 UCI 13 90–10 70.66

Modular neural network81 2011 UCI 13 90–10 82.22

Naïve Bayes94 2014 PTBDB 2 80–20 94.70

RBF SVM95 2015 PTBDB 2 90–10 96.00

KICA + LIBSVM88 2016 MLII 5 50–50 97.78

CNN96 2017 PTBDB 2 90–10 93.50

Third-order tensor based analysis 50 2017 PTBDB 2 80–20 95.30

Wrapper method97 2017 UCI 13 80–20 74.47

1-D CNN65 2018 MLII
17
15
13

70–30
91.33
92.51
95.20

PCAnet + SVM89 2018 MLII 5 90–10 97.77

CNN + LSTM90 2018 MLII 5 90–10 98.10

Evolutionary-neural system based on SVM64 2018 MLII
17
15
13

70–30
90.00
91.00
95.00

Deep neural network98 2018 PTBDB 2 90–10 95.90

Kernel extreme learning machine67 2018 UCI 13 90–10 78.26

Without feature extraction + CNN
With feature extraction + CNN57 2019 PTBDB 2 90–10 94.03

98.37

GWMD-DE technique59 2019 UCI 13 50–50 96.00

Wavelet KELM99 2019 PTBDB 2 90–10 95.00

KELM with GA66 2020 UCI 13 90–10 86.67

WT-HMM mode 91 2020 MLII 5 90–10 99.80

DEA-ELM100 2020 PTBDB 2 90–10 97.50

Ensemble SVM92 2020 MLII 4 60–40 94.40

Ensemble SVM with GA-SVM features selection101 2020 UCI 13 90–10 88.72

Proposed approach using multi-cumulants and evolutionary 
hybrid classifier (with ROST balancing)

MLII
UCI
PTBDB

17
13
2

50–50
100
100
99.43

Proposed approach using multi-cumulants and evolutionary 
hybrid classifier (with IRST balancing)

MLII
UCI
PTBDB

17
13
2

90–10
98.04
89.74
99.24
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Daubechies (db6) with level of decomposition 10. Features are extracted in terms of statistical parameters using 
higher order cumulants. In the classification step as well, evolutionary hybrid classifier optimizes the various 
parameters to achieve preciseness in the results using the proposed approach.

Conclusion and future scope.  For the classification of ECG signals, a novel and robust approach has 
been introduced. ECG signals refinement using pre-processing techniques and feature extraction using sta-
tistical measures is proved to be a precise and efficient approach for classification of ECG signals. The pro-
posed approach provides excellent results irrespective of signal type whether complete ECG signals, parameters 
obtained from signals based ECG data or down-sampled ECG signals. Use of evolutionary hybrid classifier 
also helps in computing the results more precisely. This proposed approach based on feature extraction using 
multi-cumulants gives 100% accurate results for complete ECG signals of MLII and UCI repository arrhythmia 
database in which data is parameters obtained from ECG signals. The results obtained on PTBDB database are 
also very good with maximum percentage accuracy achieved are 99.24% (with IRST) and 99.57% (with ROST). 
Even the use of ROS techniques for balancing of database makes the processing slow by increasing the execution 
as the size of database becomes very large. Here, this problem of speed is compensated using the non-iterative 
classifier (KELM). The results obtained are better than the existing state-of-art approaches as it is already shown 
in previous section.

As future work, the proposed method can be tested over some live ECG databases. More resampling tech-
niques can further be tested for data balancing as the size of database becomes very large in ROST and creates 
an issue of slow processing. More refinement can be done in the down-sampled ECG database like PTBDDB 
database to achieve more accurate results.
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