
Cooperation of the multidrug efflux pump and lipopolysaccharides
in the intrinsic antibiotic resistance of Salmonella enterica

serovar Typhimurium

Seiji Yamasaki1,2†, Saya Nagasawa2†, Aiko Fukushima1, Mitsuko Hayashi-Nishino1 and Kunihiko Nishino1*

1Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University,
8–1 Mihogaoka, Ibaraki, Osaka 567–0047, Japan; 2Graduate School of Pharmaceutical Sciences, Osaka University,

1-6 Yamadaoka, Suita 565-0871, Japan

*Corresponding author. Tel: +81-6-6879-8546; Fax: +81-6-6879-8549; E-mail: nishino@sanken.osaka-u.ac.jp
†The first two authors contributed equally to this study.

Received 10 October 2012; returned 25 October 2012; revised 5 December 2012; accepted 17 December 2012

Objectives: In Gram-negative bacteria, drug susceptibility is associated with multidrug efflux systems and an
outer membrane (OM) barrier. Previous studies revealed that Salmonella enterica serovar Typhimurium has 10
functional drug efflux pumps. Among them, AcrB is a major factor to maintain the intrinsic drug resistance in
this organism. The lipopolysaccharide (LPS) content of OM is also important for resistance to lipophilic drugs;
however, the interplay between the multidrug efflux pump and LPS in the intrinsic antibiotic resistance of
Salmonella remains to be studied in detail. The aim of this study was to investigate the relationship
between AcrB and LPS in the intrinsic drug resistance of this organism.

Methods: The genes encoding LPS core biosynthetic proteins and AcrB were disrupted from the wild-type
S. enterica strain ATCC 14028s. The plasmid carrying acrB was transformed into these mutants and then the
drug susceptibilities of the mutants and transformants were determined.

Results: Our results showed that the levels of Salmonella intrinsic antibiotic resistance were decreased when
the length and branches of core oligosaccharide were lost. Furthermore, the deletion of acrB reduced multidrug
resistance of all LPS mutants and AcrB production from the plasmid complemented this phenotype. However,
AcrB production could not completely compensate for LPS function in intrinsic resistance.

Conclusions: Both pump inactivation and shortened LPS enhanced drug susceptibility, although the maximum
susceptibility was achieved when the two were combined. Hence, these results indicated that the multidrug
efflux system and OM barrier are both essential for maintaining intrinsic antibiotic resistance in Salmonella.
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Introduction
Multidrug efflux pumps cause serious problems in cancer chemo-
therapy and in the treatment of bacterial infections. In bacteria,
drug resistance is often associated with multidrug efflux pumps,
which decrease cellular drug accumulation.1,2 In Gram-negative
bacteria, pumps belonging to the resistance–nodulation–division
family are particularly effective in generating resistance, because
they form a tripartite complex with the periplasmic proteins of
the membrane fusion protein family and the outer membrane
(OM) channels, ensuring that drugs are pumped out directly to
the external medium.3 High-level fluoroquinolone resistance in
Salmonella enterica serovar Typhimurium phage type DT204 has

been shown to be primarily due to multiple target gene mutations
and active efflux by the AcrAB-TolC efflux system belonging to the
resistance–nodulation–division family.4

S. enterica is a pathogen that causes a variety of diseases in
humans ranging from gastroenteritis to bacteraemia and
typhoid fever. Previous studies have shown that S. enterica
serovar Typhimurium has 10 functional drug efflux pumps:
AcrAB, AcrD, AcrEF, MdtABC, MdsAB, EmrAB, MdfA, MdtK, MacAB
and SmvA.5,6 Among these, AcrAB is constitutively expressed
and is the most effective in intrinsic drug resistance in Salmonella.

In addition to drug efflux pumps, OM is also important for intrin-
sic antibiotic resistance. Gram-negative bacteria, which have an
OM barrier, are usually much more resistant than Gram-positive
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bacteria to a wide range of drugs.7 In particular, lipopolysacchar-
ides (LPS), located exclusively in the outer leaflet of OM, prevent
the easy entry of lipophilic agents.8 The LPS molecule comprises
three parts: lipid A, core oligosaccharides and the O-antigen
(Figure 1). Lipid A anchors the LPS molecule into the bacterial
OM. The core oligosaccharides and O-antigen are located in the
outer domain of the LPS molecule (Figure 1). LPS is only found in
the OM of Gram-negative bacteria and many genes required for
its synthesis and modification have been identified.8

LPS is important for intrinsic antibiotic resistance9 – 11 and pre-
vious studies have shown that the AcrB efflux pump is related to
both the intrinsic and the acquired multidrug resistance of
Salmonella.4,5,12 In Francisella sp., another Gram-negative bac-
terium, it has been reported that both the LPS and the AcrAB
efflux pump system play a role in azithromycin susceptibility.13

However, the synergistic interplay between AcrB and LPS of
Salmonella remains to be studied in detail. In the present
report, we examined the interplay between the AcrB efflux
pump and LPS by determining the drug susceptibilities of
mutants with varying LPS lengths and by investigating the
effect of the acrB deletion in LPS mutants.

Materials and methods

Bacterial strains, plasmids and growth conditions
The bacterial strains and plasmids used in this study are listed in Table S1
(available as Supplementary data at JAC Online). The S. enterica serovar
Typhimurium strains were derived from the wild-type strain ATCC

14028s.14 Bacterial strains were grown at 378C in lysogeny broth (1.0%
tryptone, 0.5% yeast extract, 1.0% NaCl).15

Construction of gene deletion mutants
To construct all mutants, gene disruption was performed as described by
Datsenko and Wanner.16 Primers used for the construction of the
mutants are listed in Table S2 (available as Supplementary data at JAC
Online). The chloramphenicol resistance gene cat or the kanamycin
resistance gene aph, flanked by Flp recognition sites, was PCR amplified
and the resulting products were used to transform the recipient ATCC
14028s strain harbouring plasmid pKD46, which expresses Red recombin-
ase. The chromosomal structure of the mutated loci was verified by PCR,
as described previously.16 Both cat and aph were eliminated using
plasmid pCP20, as previously described.16

Plasmid construction
acrB was PCR amplified from ATCC 14028s genomic DNA with primers
acrB-F and acrB-R (Table S2, available as Supplementary data at JAC
Online) which introduced restriction enzyme sites of BamHI and XbaI
at both ends of the amplified fragments. The PCR fragments were
cloned into the corresponding sites of the vector pTrcHis2B (Invitrogen)
to produce the plasmid pacrB.

LPS analysis
LPS was purified as described previously.17 Culture samples were adjusted
to an optical density of 1.0 at 600 nm in a final volume of 100 mL, and LPS
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Figure 1. LPS in S. enterica serovar Typhimurium. Genes encoding LPS
biosynthetic proteins are listed for each synthetic route. This figure has
been modified from EcoSal with permission.21
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Figure 2. SDS-PAGE analysis of LPS. LPSs were isolated from the wild-type
strain (ATCC 14028s), DrfaI (NKS363), DrfaB (NKS365), DrfaC (NKS366),
DrfaF (NKS367), DrfaG (NKS368), DrfaJ (NKS369), DrfaP (NKS371), DrfaY
(NKS372), DrfaK (NKS375) and Dwzz (NKS877) strains.
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samples normalized to the number of cells were separated on 12% acryl-
amide gels using Tris–Glycine/SDS buffer systems and stained using a
modification of the conventional silver staining method.18

Determination of MICs of toxic compounds
The antibacterial activities of various agents were determined on lyso-
geny broth agar plates containing oxacillin, cloxacillin, nafcillin, erythro-
mycin, rhodamine 6G, crystal violet, ethidium bromide, novobiocin,
benzalkonium chloride, SDS or deoxycholic acid (Sigma, St Louis, MO,
USA) at various concentrations. Agar plates were prepared by the
2-fold agar dilution technique, as described previously.19 To determine
MICs, bacteria were grown in lysogeny broth at 378C overnight, diluted
with the same medium and then tested at a final inoculum of 105 cfu/
mL using a multipoint inoculator (Sakuma Seisakusyo, Tokyo, Japan)
after incubation at 378C for 20 h. The MIC was the lowest compound con-
centration to inhibit cellular growth.

Results and discussion

Effects of the length and branches of LPS core
oligosaccharides on intrinsic antibiotic resistance

To investigate whether the length and branches of LPS core oligo-
saccharides affect intrinsic antibiotic resistance in S. enterica
serovar Typhimurium, genes encoding LPS core biosynthetic pro-
teins (Figure 1) were deleted (Table S1, available as

Supplementary data at JAC Online). In addition to the mutants
of the genes presented in Figure 1, the deletion mutants of the
wzz gene, encoding the O-chain length determinant, were con-
structed (Table S1, available as Supplementary data at JAC
Online). The deletion mutant of the rfaY gene, which is necessary
for phosphorylating the Hep(II) heptose in the core region of the
LPS, was also constructed (Table S1, available as Supplementary
data at JAC Online). To confirm the effects of deletions of these
genes on the LPS structure, we analysed the LPS profiles in silver-
stained polyacrylamide gels. LPS profiles of the deletion mutants
were all different from that of the wild-type strain (Figure 2). For
the MIC measurement, the AcrB substrates were chosen to
compare the effect of deletion of the genes involved in the LPS
biosynthesis with the effect of deletion of the acrB gene on
drug susceptibilities. Compared with the wild-type strain, the
DrfaK, Dwzz and DrfaJ strains maintained intrinsic resistance to
all antimicrobial agents and chemical compounds tested;
however, the DrfaI, DrfaB, DrfaY, DrfaP, DrfaG, DrfaF and DrfaC
strains showed increased susceptibility to almost all drugs as
the length and branches of LPS core oligosaccharides were lost
(Table 1). Interestingly, deletion of rfaB, which encodes a
protein that adds a galactose moiety to produce one branch of
the LPS core oligosaccharide, had no impact on novobiocin resist-
ance; however, the strains that lost a core oligosaccharide phos-
phorylation gene (i.e. rfaY or rfaP) were more susceptible to
novobiocin than DrfaC. The electric charge produced by the

Table 1. Susceptibility of S. enterica serovar Typhimurium acrB and/or LPS mutants to toxic compounds

Strain

MIC (mg/L)

OXA CLO NAF ERY R6G CV EB NOV BENZ SDS DOC

Wild-type 1024 1024 2048 512 4096 256 .2048 512 512 .32768 .32768
DacrB 4 4 16 8 16 4 128 4 8 1024 .32768
DrfaK 1024 1024 2048 512 4096 256 .2048 512 512 .32768 .32768
DrfaKDacrB 4 4 16 8 16 4 128 16 8 128 .32768
Dwzz 1024 1024 2048 512 4096 256 .2048 512 512 .32768 .32768
DwzzDacrB 4 4 16 8 16 4 128 8 8 2048 .32768
DrfaJ 1024 1024 2048 512 4096 256 .2048 512 512 .32768 .32768
DrfaJDacrB 4 4 16 8 16 4 128 16 8 128 .32768
DrfaI 512 512 1024 512 4096 64 .2048 64 32 .32768 .32768
DrfaIDacrB 4 4 16 4 16 4 64 4 4 16384 .32768
DrfaB 512 512 1024 512 4096 64 .2048 512 32 .32768 .32768
DrfaBDacrB 4 4 16 4 16 4 64 8 4 64 32768
DrfaY 512 512 1024 256 4096 32 .2048 16 64 .32768 .32768
DrfaYDacrB 2 4 8 4 8 2 64 0.5 4 128 8192
DrfaP 256 256 512 128 4096 8 2048 4 8 2048 .32768
DrfaPDacrB 2 2 8 2 8 1 32 0.125 4 32 512
DrfaG 256 256 256 64 4096 8 2048 32 4 256 .32768
DrfaGDacrB 1 2 4 1 8 1 32 0.5 2 64 512
DrfaF 128 128 256 16 1024 8 2048 32 8 256 .32768
DrfaFDacrB 4 8 32 8 16 4 128 16 8 256 .32768
DrfaC 128 64 128 16 128 4 1024 32 4 128 2048
DrfaCDacrB 1 1 2 ,0.5 2 ,0.25 32 0.5 2 16 128

OXA, oxacillin; CLO, cloxacillin; NAF, nafcillin; ERY, erythromycin; R6G, rhodamine 6G; CV, crystal violet; EB, ethidium bromide; NOV, novobiocin;
BENZ, benzalkonium chloride; DOC, deoxycholic acid.
MIC determinations were repeated at least three times.
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phosphate group seems to be effective in inhibiting the entry of
aminocoumarin antibiotics. These data indicate that the length
and branches of LPS core oligosaccharides play a role in the
maintenance of intrinsic resistance of S. enterica against multiple
drugs.

Effect of acrB deletion on multidrug resistance of the
LPS mutants

In Salmonella, the AcrAB-TolC efflux system is constitutively
expressed and effective in intrinsic drug resistance.5 To investigate
the function of multidrug efflux systems in LPS mutants, we dis-
rupted acrB from the genomic DNA (Table S1, available as Supple-
mentary data at JAC Online). The DacrB strain was more
susceptible to oxacillin, cloxacillin, nafcillin, erythromycin, rhoda-
mine 6G and ethidium bromide than any other single LPS
mutant and almost all drug susceptibilities of the DrfaKDacrB,
DwzzDacrB, DrfaJDacrB, DrfaIDacrB and DrfaBDacrB double
mutants were comparable to that of DacrB. The DrfaFDacrB
strain was more susceptible to SDS than DacrB. The DrfaYDacrB
strain was more susceptible to novobiocin, SDS and deoxycholic
acid than DacrB. The DrfaPDacrB was more susceptible to erythro-
mycin, crystal violet, ethidium bromide, novobiocin, SDS and
deoxycholic acid than DacrB. The DrfaGDacrB and DrfaCDacrB
strains were more susceptible to almost all drugs than the DacrB

strain (Table 1). These results indicate that AcrAB-TolC plays a
role in drug resistance even if the LPS function is weakened.

Effect of acrB overexpression on drug susceptibilities
of the LPS mutants

To investigate the effect of acrB overexpression on drug suscep-
tibilities of the LPS mutants, acrB in S. enterica ATCC 14028s was
cloned into the vector pTrcHis2B and then the constructed
plasmid was transformed into LPS mutants lacking acrB. Overex-
pression of acrB conferred multidrug resistance to all of the
mutants (Table 2). These data indicate that the AcrB efflux
pump can function in bacteria with imperfect LPS. However,
overexpressed acrB did not completely restore multidrug resist-
ance of some LPS mutants to the wild-type level, e.g. DrfaFDacrB
and DrfaCDacrB (Table 2). These results indicate that the multi-
drug efflux system cannot recover the loss of LPS required for
maintenance of intrinsic Salmonella resistance.

Concluding remarks

Herein, we investigated the interplay between the multidrug
efflux system and the OM barrier in intrinsic Salmonella antibiotic
resistance at the genetic level. The results showed that the
length and branches of LPS core oligosaccharides and the AcrB

Table 2. Susceptibility of S. enterica serovar Typhimurium strains to toxic compounds

Strain

MIC (mg/L)

ERY R6G CV EB NOV BENZ SDS DOC

Wild-type 512 4096 256 .2048 256 512 .32768 .32768
DacrB/pTrcHis2B 4 8 2 32 4 4 256 32786
DacrB/pacrB 256 4096 128 2048 256 64 >32786 >32786
DrfaKDacrB/pTrcHis2B 4 16 2 64 8 4 128 .32786
DrfaKDacrB/pacrB 256 4096 128 4096 512 128 >32786 .32786
DwzzDacrB/pTrcHis2B 4 8 2 32 8 4 256 .32786
DwzzDacrB/pacrB 128 4096 128 4096 512 128 >32786 .32786
DrfaJDacrB/pTrcHis2B 4 16 2 64 8 4 128 32786
DrfaJDacrB/pacrB 256 4096 128 4096 512 64 >32786 >32786
DrfaIDacrB/pTrcHis2B 4 8 2 32 4 4 256 .32786
DrfaIDacrB/pacrB 128 4096 128 4096 128 64 >32786 .32786
DrfaBDacrB/pTrcHis2B 4 16 1 64 4 4 64 32786
DrfaBDacrB/pacrB 128 4096 32 4096 256 16 >32786 >32786
DrfaYDacrB/pTrcHis2B 2 4 1 32 1 4 128 4096
DrfaYDacrB/pacrB 128 4096 64 2048 32 32 >32786 >32786
DrfaPDacrB/pTrcHis2B 1 4 1 32 0.25 4 32 512
DrfaPDacrB/pacrB 64 2048 16 2048 8 8 256 >32786
DrfaGDacrB/pTrcHis2B 1 8 1 32 4 2 32 256
DrfaGDacrB/pacrB 32 2048 8 1024 16 4 128 >32786
DrfaFDacrB/pTrcHis2B 4 16 2 64 16 4 128 .32786
DrfaFDacrB/pacrB 16 256 4 512 16 4 128 .32786
DrfaCDacrB/pTrcHis2B 0.25 2 0.5 64 0.5 4 16 128
DrfaCDacrB/pacrB 8 64 2 1024 8 4 128 2048

ERY, erythromycin; R6G, rhodamine 6G; CV, crystal violet; EB, ethidium bromide; NOV, novobiocin; BENZ, benzalkonium chloride; DOC, deoxycholic acid.
MIC determinations were repeated at least three times.
Values in bold are larger than those of the corresponding strains harbouring the vector only.
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efflux pump are necessary for the maintenance of the intrinsic
resistance of S. enterica serovar Typhimurium. The maximal sus-
ceptibility was achieved when deletions of acrB and genes
related to LPS synthesis were combined. Additive synergistic
effects were especially observed in the DrfaGDacrB and DrfaC-
DacrB mutants. Compared with DacrB, DrfaGDacrB was suscep-
tible to oxacillin (4-fold), nafcillin (4-fold), erythromycin (8-fold),
crystal violet (4-fold), ethidium bromide (4-fold), novobiocin
(8-fold), benzalkonium chloride (4-fold), SDS (16-fold) and deoxy-
cholic acid (.64-fold). DrfaCDacrB was also susceptible to oxacil-
lin (4-fold), cloxacillin (4-fold), nafcillin (8-fold), erythromycin
(.16-fold), rhodamine 6G (8-fold), crystal violet (.16-fold), eth-
idium bromide (4-fold), novobiocin (8-fold), benzalkonium chlor-
ide (4-fold), SDS (64-fold) and deoxycholic acid (.256-fold)
when compared with DacrB. These data indicate that the AcrAB-
TolC efflux system is important for maintaining the intrinsic anti-
biotic resistance even when most of the core region of LPS is lost.
The overexpression of acrB cannot completely compensate the
function of LPS in the maintenance of intrinsic resistance, al-
though functional AcrB was present in all of the LPS mutants.
Interestingly, Giraud et al.20 reported that there was an increased
density of the long O-polysaccharide chains and an increased
level of the AcrAB pump in in vitro-selected quinolone-resistant
mutants of S. enterica serovar Typhimurium, suggesting that
both efflux pump and LPS are also important for the acquired
resistance. Our results support the notion that both pump inhib-
ition and OM disruption could constitute an effective approach to
increasing the drug susceptibility of multidrug-resistant
strains.9,10 In summary, we genetically determined that the
AcrB multidrug efflux pump and bulkiness of LPS core oligosac-
charides are essential for intrinsic antibiotic resistance in
S. enterica.
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