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Abstract

Intraoperative diagnosis is essential for providing safe and effective care during cancer surgery1. 

The existing workflow for intraoperative diagnosis based on hematoxylin and eosin-staining of 

processed tissue is time-, resource-, and labor-intensive2,3. Moreover, interpretation of 

intraoperative histologic images is dependent on a contracting, unevenly distributed pathology 

workforce4. Here, we report a parallel workflow that combines stimulated Raman histology 

(SRH)5–7, a label-free optical imaging method, and deep convolutional neural networks (CNN) to 

predict diagnosis at the bedside in near real-time in an automated fashion. Specifically, our CNN, 

trained on over 2.5 million SRH images, predicts brain tumor diagnosis in the operating room in 

under 150 seconds, an order of magnitude faster than conventional techniques (e.g., 20–30 

minutes)2. In a multicenter, prospective clinical trial (n = 278) we demonstrated that CNN-based 

diagnosis of SRH images was non-inferior to pathologist-based interpretation of conventional 

histologic images (overall accuracy, 94.6% vs. 93.9%). Our CNN learned a hierarchy of 

recognizable histologic feature representations to classify the major histopathologic classes of 

brain tumors. Additionally, we implemented a semantic segmentation method to identify tumor 

infiltrated, diagnostic regions within SRH images. These results demonstrate how intraoperative 

cancer diagnosis can be streamlined, creating a complimentary pathway for tissue diagnosis that is 

independent of a traditional pathology laboratory.

Approximately 15.2 million people are diagnosed with cancer across the world yearly and 

greater than 80% will undergo surgery1. In many cases, a portion of the excised tumor is 

analyzed during surgery to provide preliminary diagnosis, ensure the specimen is adequate 

for rendering final diagnosis and guide operative management. In the US, there are over 1.1 

million biopsy specimens annually8, all of which must be interpreted by a contracting 

pathology workforce9. The conventional workflow for intraoperative histology, dating back 

over a century3, necessitates tissue transport to a laboratory, specimen processing, slide 

preparation by highly-trained technicians, and interpretation by a pathologist, with each step 

representing a potential barrier to delivering timely and effective surgical care.

Harnessing advances in optics5 and artificial intelligence (AI) we developed a streamlined 

workflow for microscopic imaging and diagnosis that ameliorates each of these barriers. 

Stimulated Raman histology (SRH) is an optical imaging method that provides rapid, label-

free, sub-micron resolution, images of unprocessed biological tissues5. SRH utilizes the 

intrinsic vibrational properties of lipids, proteins, nucleic acids to generate image contrast, 

revealing diagnostic microscopic features and histologic findings poorly visualized with 

hematoxylin and eosin-stain (H&E) images, such as axons and lipid droplets7, while 

eliminating the artifacts inherent in frozen or smear tissue preparations6.
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Advances in fiber-laser technology have enabled the development of an FDA-registered 

system for generating SRH images that can be used in the operating room. We have 

demonstrated that SRH images reveal microscopic architectural features comparable to 

conventional H&E images6. Given this finding, we recently deployed clinical SRH imagers 

in our operating rooms, making histologic data readily available during surgery6,10.

Whether histologic images are obtained via SRH or frozen sectioning, diagnostic 

interpretation has required the expertise of a trained pathologist. Both globally and within 

the US, there is an uneven distribution of expert pathologists available to provide 

intraoperative diagnosis. For example, many centers performing brain tumor surgery do not 

employ a neuropathologist and further shortages are expected given the 42% vacancy rate in 

neuropathology fellowships4. Moreover, while final pathologic diagnosis is increasingly 

driven by molecular rather than morphological criteria11, intraoperative diagnosis relies 

heavily on interpretation of cytologic and histo-architectural features. We hypothesized that 

the application of AI could be used to expand access to expert-level intraoperative diagnosis 

in the ten most commonly encountered brain tumors and augment the ability of pathologists 

to interpret histologic images.

We have previously demonstrated that SRH images are particularly well-suited for 

computer-aided diagnosis using hand-engineered feature extractors with random forest and 

multilayer perceptron classifiers6,10,12. However, manual feature engineering inherent in 

these methods is challenging, requires domain-specific knowledge, and poses a major 

bottleneck towards achieving human-level accuracy and clinical implementation13. In 

contrast, deep neural networks utilize trainable feature extractors, which provide a learned 

and optimized hierarchy of image features for classification. Human-level accuracy for 

image classification tasks has been achieved through deep learning in the fields of 

ophthalmology14, radiology15, dermatology16, and pathology17–19.

Consequently, we designed a three-step intraoperative tissue-to-diagnosis pipeline (Figure 1) 

consisting of: (1) image acquisition, (2) image processing, and (3) diagnostic prediction via 

a CNN. (Supplementary Video 1). A fresh, unprocessed surgical specimen is passed off the 

operative field and a small sample (e.g., 3 mm3) is compressed into a custom microscope 

slide. After inserting the slide into the SRH imager, images are acquired at two Raman 

shifts, 2845 cm−1 and 2930 cm−1. SRH images are then processed via a dense sliding 

window algorithm to generate overlapping, single-scale, high-resolution, and high-

magnification patches used for CNN training and inference. In the prediction stage, 

individual patches are passed through the trained Inception-ResNet-v2 network, a 

benchmarked neural network that combines inception modules and residual connections in a 

deep CNN architecture for image classification20.

Over 2.5 million labelled patches from 415 patients were used for CNN training (Extended 

Data Figure 1). The CNN was trained to classify tissue into 13 histologic categories 

organized into a taxonomy that includes output and inference nodes focusing on commonly 

encountered brain tumors (Extended Data Figure 2). To provide a final patient-level 

diagnostic prediction, an inference algorithm was developed to map all patches from a 
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specimen to a single probability distribution over the diagnostic classes (Extended Data 

Figure 3).

Noting the commentary on the importance of rigorous clinical evaluations of deep-learning-

based algorithms21, we executed a two-arm, prospective, multicenter, non-inferiority clinical 

trial comparing the diagnostic accuracy of pathologists interpreting conventional histologic 

images (control arm) to the accuracy of SRH image classification by the CNN (experimental 

arm) (Extended Data Figure 4 and Supplementary Table 1). Fresh brain tumor specimens 

were collected, split intraoperatively into sister specimens and randomly assigned to the 

control or experimental arm. Sister specimens in the control arm were processed via 

conventional frozen-section and smear preparation techniques and interpreted by board-

certified pathologists. Sister specimens in the experimental arm were imaged with SRH and 

diagnosis was predicted by the CNN. Two hundred seventy-eight patients were included and 

the primary endpoint was overall multiclass diagnostic accuracy using final clinical 

diagnosis as the ground truth. Overall diagnostic accuracy was 93.9% (261/278) for the 

conventional H&E histology arm and 94.6% (264/278) for SRH plus CNN arm, exceeding 

our primary endpoint threshold for noninferiority (>91%) (Figure 2).

Notably, the CNN was designed to predict diagnosis independent of clinical or radiographic 

findings, which were reviewed by study pathologists and are often of central importance in 

diagnosis. Nine of the 14 errors in the SRH plus CNN arm were glial tumors, which often 

have overlapping morphologic characteristics but highly divergent clinical presentations and 

radiographic appearances. Ten of the 17 errors in the conventional H&E arm were malignant 

gliomas incorrectly classified by pathologists as metastatic tumors, gliosis/treatment effect, 

or pilocytic astrocytoma. In addition, the CNN correctly classified all 17 of the cases in 

which the pathologist’s diagnosis was incorrect (Extended Data Figure 5). Moreover, 

pathologists correctly diagnosed all 14 cases misdiagnosed in the CNN/SRH arm. These 

results indicate that CNN-based classification of SRH images could aid pathologists in the 

classification of challenging specimens.

While the CNN output classes in our study would cover greater than 90% of all brain tumors 

diagnosed in the US22, the diversity and scarcity of rare tumors precludes training of a fully 

universal CNN for brain tumor diagnosis. Understanding the limitations of our CNN, we 

developed and implemented a Mahalanobis distance-based confidence scoring system to 

detect rare tumors23. Thirteen of the patients enrolled in our trial were diagnosed with nine 

rare tumor types. Our method for rare tumor detection identified all 13 tumors as entities 

distinct from the output diagnostic classes (Extended Data Figure 6).

To gain insight into the learned representations utilized by the CNN for image classification, 

we used activation maximization, which generates an image that maximally activates a 

neuron in any neural network layer using iterations of gradient ascent in the input space 

(Figure 3 and Extended Data Figure 7)24. Deep hidden layers detected nuclear and 

chromatin morphology, axonal density, and histoarchitecture, indicating that our network 

learned recognizable domain-specific feature representations. We sampled 1000 SRH 

patches from normal brain tissue and two tumor classes to investigate class-specific, hidden-

layer neuron activation. Neurons from a deep hidden layer (convolutional layer 159) with 
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maximal mean activation for each class were recorded and the distribution of mean rectified 

linear unit activations was plotted.

The images generated through activation maximization reveal recognizable features for each 

histologic class. For example, green linear structures (neuron 148) represent lipid-rich axons 

found in grey matter. Neuron 12 was maximally active for malignant glioma and responds to 

high nuclear density and lipid droplets, features associated with higher grade gliomas25,26. 

Neuron 101 was maximally activated by patches containing large nuclei with prominent 

nucleoli and cytoplasmic vesicles commonly seen in metastatic tumor cells and pyramidal 

neurons. These results indicate that the CNN has learned the importance of specific 

histomorphologic, cytologic, and nuclear features for image classification, including some 

features classically used by pathologists to diagnose cancer. In addition, we used t-

distributed stochastic neighbor embedding (t-SNE) to show that our histologic categories 

have similar internal CNN feature representations and form clusters based on diagnostic 

classes (Extended Data Figure 8).

We also implemented a semantic segmentation technique to provide pixel-level classification 

and demonstrate how CNN-based analysis could be used to highlight diagnostic regions 

within an SRH image (Extended Data Figure 9). By utilizing a dense sliding window 

algorithm, every pixel in an SRH image has an associated probability distribution over the 

diagnostic classes that is a function of the local overlapping patch-level predictions. Class 

probabilities, can be mapped to a pixel intensity scale. A three-channel RGB overlay 

indicating tumor tissue, normal/non-neoplastic tissue, and nondiagnostic regions allows for 

image overlay of pixel-level CNN predictions. Our segmentation method achieved a mean 

intersection over union (IOU) value of 61.6 ± 28.6 for the ground truth diagnostic class and 

86.0 ± 19.2 for the tumor inference class for patients in our prospective cohort. Analysis of 

specimens collected at the tumor-brain interface in primary (Figure 4) and metastatic brain 

tumors (Extended Data Figure 10) demonstrates how the CNN can differentiate tumor from 

non-infiltrated brain and nondiagnostic regions.

Our semantic segmentation technique parallels that of Chen and colleagues who reported the 

development of an augmented reality microscope with real-time AI-based prostate and 

breast cancer diagnosis using conventional light microscopy27. Both methods superimpose 

diagnostic predictions of an AI algorithm on a microscopic image, calling the clinician’s 

attention to areas containing diagnostic information and providing insight into how AI could 

ultimately streamline tissue diagnosis.

In conclusion, we have demonstrated how combining SRH with deep learning can be 

employed to rapidly predict intraoperative brain tumor diagnosis. Our workflow provides a 

transparent means of delivering expert-level intraoperative diagnosis where neuropathology 

resources are scarce and improving diagnostic accuracy in resource-rich centers. The 

workflow also allows surgeons to access histologic data in near-real time, enabling more 

seamless use of histology to inform surgical decision-making based on microscopic tissue 

features.
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In the future we anticipate that AI algorithms can be developed to predict key molecular 

alterations in brain tumors such as MGMT methylation, IDH, and ATRX status. In addition, 

it is possible that SRH will ultimately incorporate spectroscopic detection of the metabolic 

effects of diagnostic genetic mutations, such as accumulation of 2-hydroxyglutarate in IDH 

mutated gliomas. In the interim, however, we note that SRH preserves the integrity of 

imaged tissue for downstream analytic testing and integrates well within the modern practice 

of molecular diagnosis.

While our workflow was developed and validated in the context of neurosurgical oncology, 

many histologic features used to diagnose brain tumors are found in the tumors of other 

organs. Consequently, we predict a similar workflow incorporating optical histology and 

deep learning could apply to dermatology28, head and neck surgery29, breast surgery30, and 

gynecology31, where intraoperative histology is equally central to clinical care. Importantly, 

our AI-based workflow provides unparalleled access to microscopic tissue diagnosis at the 

bedside during surgery, facilitating detection of residual tumor, reducing the risk of 

removing histologically normal tissue adjacent to a lesion, enabling the study of regional 

histologic and molecular heterogeneity and minimizing the chance of non-diagnostic biopsy 

or misdiagnosis due to sampling error32,33.

Study design

The main objectives of the study were to 1) develop an intraoperative diagnostic computer 

vision system that combines clinical stimulated Raman histology (SRH) and a deep 

learning-based method to augment the interpretation of fresh surgical specimens in near real-

time, and 2) perform a multicenter, prospective clinical trial to test the diagnostic accuracy 

of our clinical SRH system combined with trained convolutional neural networks (CNN). 

“Near real-time” diagnosis was defined as a nonclinically significant delay from the time of 

tissue removal from the resection cavity to tissue diagnosis (i.e., 2–3 minutes). Patient 

enrollment for intraoperative SRH imaging began June 1, 2015. Inclusion criteria for 

intraoperative imaging included: 1) male or female, 2) subjects undergoing central nervous 

system tumor resection or epilepsy surgery at Michigan Medicine, New York-Presbyterian/

Columbia University Medical Center, or the University of Miami Health System, 3) subject 

or durable power of attorney able to give informed consent, and 4) subjects in which there 

was additional specimen beyond what was needed for routine clinical diagnosis. We then 

trained and validated a benchmarked CNN architecture on an image classification task to 

provide rapid and automated evaluation of fresh surgical specimens imaged with SRH. CNN 

performance was then tested using a two-arm, prospective, noninferiority trial conducted at 

three tertiary medical centers with dedicated brain tumor programs. A semantic 

segmentation method was developed to allow for surgeon and pathologist review of SRH 

images with integrated CNN predictions.

Stimulated Raman histology

All images used in our study were obtained using a clinical stimulated Raman scattering 

(SRS) microscope5. Biomedical tissue is excited with a dual-wavelength fiber laser with a 

fixed wavelength pump beam at 790 nm and a Stokes beam tunable from 1015 nm to 1050 
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nm. This configuration allows for spectral access to Raman shifts in the range from 2800 cm
−1 to 3130 cm−1.35 Images are acquired via beam-scanning with a spatial sampling of 450 

nm/pixel, 1000 pixels per strip and an imaging speed for 0.4 MPixel/s/Raman shift. The NIO 

Laser Imaging System (Invenio Imaging, Inc., Santa Clara, California), a clinical fiber-laser-

based SRS microscope, was used to acquire all images in the prospective clinical trial. For 

SRH, samples were imaged sequentially at the two Raman shifts: 2850 cm−1 and 2950 cm−1. 

Lipid-rich brain regions (e.g., myelinated white matter) demonstrate high SRS signal at 2845 

cm−1 due to CH2 symmetric stretching in fatty acids. Cellular regions produce high 2930 cm
−1 intensity and large S2930/S2845 ratios to high protein and DNA content. A virtual H&E 

look-up table is applied to transform the raw SRS images to SRH images for intraoperative 

use and pathologic review. A video of intraoperative SRH imaging with automated CNN-

based prediction can be found in Supplementary Video 1. The NIO Imaging System (Invenio 

Imaging, Inc., Santa Clara, California) is delivered ready-to-use for image acquisition. SRH 

images can be reviewed locally using the integrated high-definition monitor, remotely via 

the health systems picture archiving and communication system (PACS) or a cloud-based 

image viewer that allows images to be reviewed anywhere with a high-speed internet 

connection in less than 30 seconds.

Image preprocessing and data augmentation

The 2845 cm−1 image was subtracted from the 2930 cm−1 image, and the resultant image 

was concatenated to generate a three-channel image (2930 cm−1 minus 2845 cm−1, red; 

2845 cm−1, green; 2930 cm−1, blue). A 300×300-pixel sliding window algorithm with 100-

pixel step size (both horizontal and vertical directions) and valid padding was used to 

generate image patches. This single-scale sliding window method over high-resolution, 

high-magnification images has the following advantages: 1) accommodates the image input 

size of most CNN architectures without downsampling, 2) allows for efficient graphical 

processing unit-based model implementation, 3) boosts the number of training and inference 

images by approximately an order of magnitude, 4) allows for better learning of high-

frequency image features, and 5) is faster and 6) easier to implement compared to multi-

scale networks. Previous multi-scale CNN implementations have not yielded better 

performance for image classification tasks involving histologic images36. Additionally, the 

use of larger, lower magnification images complicates image label assignment in the setting 

of multiple class labels applying to separate regions within a single image (i.e., white matter, 

tumor tissue, nondiagnostic, gliotic tissue, etc.), which introduces an additional tunable 

hyperparameter to identify an optimal class labelling strategy. This problem is effectively 

avoided using high-magnification patches, where multiple class labels for a single image are 

rare. To optimize image contrast, the bottom and top 3% of pixels by intensity from each 

channel were clipped and images rescaled. All image patches in the training, validation, and 

testing datasets were reviewed and labelled by study authors (T.C.H, S.S.K., S.L, A.R.A., 

E.U.). To accommodate class imbalance due to variable incidence rates between the CNS 

tumors included in our study, oversampling was used for the underrepresented classes. We 

used multiple label-preserving affine transformations for data augmentation, including any 

uniformly distributed random combination of rotation, shift, and reflection. All images were 

mean zero centered by subtracting the channel mean of the training set.
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Image datasets

Our study included 4 image datasets obtained from 4 SRH imagers: 1) University of 

Michigan (UM) images from a prototype clinical SRH microscope6, 2) UM images from 

one NIO Imaging System, 3) Columbia University images from a second NIO Imaging 

System and 4) University of Miami images from a third NIO Imaging System. Distribution 

of tumor classes by both number of patches and patients used for CNN training and 

validation can be found in Extended Data Figure 1. A total of 296 patients were imaged 

using the prototype SRH microscope and 339 using the NIO Imaging System. Final tissue 

diagnosis was provided by each institution’s board-certified neuropathologists. Only UM 

images were used for model training and validation. Images acquired at Columbia 

University and the University of Miami were only used in the prospective clinical trial to test 

model performance on SRH images acquired at other medical centers and optimize 

assessment of CNN generalizability within our study.

Convolutional neural network training

A total of 13 diagnostic classes were selected that 1) represent the most common central 

nervous system tumors11,22 and 2) optimally inform intraoperative decisions that effect 

surgical goals. Classes included malignant glioma (glioblastoma and diffuse midline glioma, 

WHO grade IV), diffuse lower grade gliomas (oligodendrogliomas and diffuse astrocytomas, 

WHO grade II and III), pilocytic astrocytoma, ependymoma, lymphoma, metastatic tumors, 

medulloblastoma, meningioma, pituitary adenoma, gliosis/reactive astrocytosis/treatment 

effect, white matter, grey matter, and nondiagnostic tissue. We implemented the Google 

(Google LLC, Mountain View, CA) Inception-ResNet-v2 architecture with 55.8 million 

trainable parameters randomly initialized. Similar to previous studies, our preliminary 

experiments using pretrained weights from the ImageNet challenge did not improve model 

performance, likely due to the large domain difference and limited feature transferability 

between histologic images and natural scenes (Extended Data Figure 6)36,37. The network 

was trained on approximately 2.5 million unique patches from 415 patients using a 

categorical cross-entropy loss function weighted using inverse class frequency. A randomly 

selected 16-patient validation set imaged using the NIO Imaging System at UM was used for 

hyperparameter tuning and model selection based on patch-level classification accuracy. We 

used the Adam optimizer with an initial learn rate of 0.001, β1 of 0.9, and β2 of 0.999, ε of 

10E-8 and a 32-image batch size. An early stopping callback was used with a minimum 

validation accuracy increase of 0.05 and 5 epoch patience (Extended Data Figure 1). 

Training, validation and testing was done using the high-level Python-based neural network 

API, Keras (version 2.2.0), with a TensorFlow (version 1.8.0)38 backend running on two 

NVIDIA GeForce 1080 Ti graphical processing units.

Patient-level diagnosis and inference algorithm

Patch-level predictions from each patient need to be mapped to a mosaic-, specimen-, or 

patient-level diagnosis in order to provide a final intraoperative classification (Extended 

Data Figure 3). The set of diagnostic patch softmax output vectors from a specimen or 

patient are summed elementwise and renormalized to produce specimen-level or patient-
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level probability distribution. To account for normal brain and pathologic tissue contained 

within the same specimen, a thresholding procedure was used, such that if the probability of 

a normal specimen was greater than 90%, a normal label was assigned. Otherwise, the 

normal class probabilities were set to zero, the probability distribution renormalized, and the 

final diagnosis was the expected value of the renormalized distribution. Our inference 

algorithm leverages the fact that normal brain tissue and nondiagnostic regions have similar 

histologic features among all patients, resulting in high patch-level classification accuracy 

for normal brain and eliminating the need to train an additional classifier based on the patch-

level probability histograms39. Similar to previous publications using deep learning for 

medical diagnosis15,16, a taxonomy of inference classes was used to allow for classification 

at various clinically relevant levels of granularity (Extended Data Figure 2). The probability 

of any parent/inference class is the sum of its child node probabilities.

Mahalanobis distance-based confidence score

The most common brain tumors types were used for model training and includes greater 

than 90% of all CNS tumors diagnosed in the United States22; however, rare tumor types 

will be encountered in the clinical setting. Therefore, in addition to a posterior probability 

distribution over the CNN output classes, we aimed to provide a confidence score to detect 

tumor samples that are far away from the training distribution to detect rare tumor types not 

included during training. We induce class conditional Gaussian distributions with respect to 

mid- and upper-level features (i.e. layer outputs) of our CNN under Gaussian discriminant 

analysis that results in a confidence score based on the Mahalanobis distance23. Without any 

modification to our pertained network, we obtain a generative model by converting the 

penultimate layer, for example, to a class conditional distribution which follows a 

multivariate Gaussian distribution. Specifically, we compute 13 class conditional Gaussian 

distributions, one for each histologic class, with a tied covariance matrix using our training 

set. Using these induced class conditional Gaussian distributions, we calculate a confidence 

score, M(x), using the Mahalanobis distance between the test specimen x and the closest 

class conditional Gaussian distribution,

M(x) = f (x) − μc
⊤Σ−1 f (x) − μc

where μc is the class mean, f(x) is the output from the penultimate layer, and Σ is the tied 

covariance matrix. The specimen-level confidence is the mean patch-level confidence score. 

To improve performance and increase separability of common and rare tumor classes as 

previously described23, we implemented an ensemble method that included output from 7 

layers: convolutional layers 159, 195, 199, 203, final average pooling layer, final dense layer, 

and softmax output layer. Mahalanobis distance-based confidence scores for each layer were 

then used as features to train a linear discriminant classifier on our training set and rare 

tumor specimens imaged prior to starting prospective trial enrollment.
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Prospective clinical trial design

A noninferiority trial was designed to rigorously validate our proposed intraoperative 

diagnostic pipeline. An expected accuracy of 96%, a delta of 5%, alpha 0.05, and power of 

0.9 were used to calculate a minimum patient sample size of 264 with the primary endpoint 

of overall multiclass diagnostic accuracy (Extended Data Figure 4). Prospective enrollment 

began on April 6, 2018 and closed on February 26, 2019 with a total of 302 patients 

enrolled. Clinical trial inclusion criteria were the same for intraoperative SRH imaging. 

Exclusion criteria were 1) poor quality of specimen on visual gross examination due to 

excessive blood, coagulation artifact, necrosis, or ultrasonic damage or 2) specimen 

classified as out-of-distribution by LDA classifier using the Mahalanobis distance-based 

confidence score. A total of 278 patients were included in the trial. The conventional 

intraoperative H&E diagnosis was used in the control arm and the SRH imaging plus CNN 

was used for the experimental arm. The final histopathologic diagnosis was used to label 

patients into the appropriate patient-level ground truth class. For example, a patient with 

final WHO classification of glioblastoma, WHO IV, is classified into the malignant glioma 

class, or a final diagnosis of diffuse astrocytoma, WHO II, is classified into the diffuse lower 

grade glioma class. The strategy does not bias either study arm and allows for a multiclass 

accuracy value to be calculated for each study arm. Three instances arose where the control 

arm diagnosis was limited to “glioma” without further specification. To allow for a one-to-

one comparison between the two study arms, the “glial tumor” inference class was used in 

the experimental arm for these cases. To eliminate the possibility of sampling error in the 

control arm, all incorrectly classified specimens underwent secondary review by two board-

certified neuropathologists (S.C.P., P.D.C.) to ensure the specimen was of sufficient quality 

to make a diagnosis and to ensure that tumor tissue was present in the specimen. Following 

completion of the trial, we prospectively imaged 8 stereotactic needle brain biopsies to 

validate our workflow in operations were sampling was based on stereotactic navigation 

rather than gross inspection of the tissue (Supplementary Figure 1). SRH with automated 

CNN diagnosis can play in essential role in these cases to confirm diagnostic tissue 

sampling, provide intraoperative histologic data, and cut total surgical time in half (i.e., 60–

90 minutes to 20–30 mins).

Activation maximization

Activation maximization allows for qualitative evaluation of learned representations in deep 

neural network architectures24. The objective is to generate an image that maximally 

activates a neuron or filter in a CNN hidden layer given a set of fixed, trained weights, such 

that:

x* = h j
l (x, θ)

where x is the input image, θ denotes the neural network weights, h j
l x, θ  is the activation of 

a jth neuron in hidden layer l, and R(x) is a regularization term. An image, x*, can be 

generated by computing the gradient of h j
l x, θ  and updating the pixel values of x using 
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iterations of gradient ascent. Our regularization term included weight decay, gaussian blur, 

and dark pixel clipping to improve image clarity and interpretability40. We used 500 

iterations of gradient ascent for each of the images shown in Figure 3 and Extended Data 

Figure 7. We choose convolutional layer 159, a deep hidden layer with sufficient spatial 

information to identify regions of low and high activation within a single image, to evaluate 

class-specific activation.

Probability heatmaps and semantic segmentation of SRH

Class probability heatmaps can localize diagnostic tissue and spatially identify areas with 

different predicted class labels (e.g., normal versus tumor infiltrated tissue). Our single-scale 

sliding window approach allows for an intuitive image patch-to-heatmap pixel mapping that 

1) is computationally efficient, 2) yields a 9-fold increase in heatmap pixel spatial resolution 

relative to patch size, and 3) integrates a local neighborhood of overlapping patch 

predictions for semantic segmentation. For example, a 1000×1000-pixel SRS image is 

divided into a 10×10-pixel grid. The image area contained within each heatmap pixel will 

overlap with 1 (grid corners) to 9 (inner 6×6 grid) neighboring patches due to valid padding 

and 100-pixel step size (Extended Data Figure 9). The softmax output vector from each 

overlapping patch is summed and renormalized to give a probability distribution for each 

heatmap pixel. This procedure yields a prediction heatmap for each output class to produce a 

10×10xk array, where k is the number of output classes. This method can be repeated to 

produce heatmaps for arbitrarily large SRH images. Intersection over union (IOU) metric 

was used to evaluate segmentation performance. To produce effective prediction overlays for 

pathologist review, probabilities were uniformly mapped to a 0–255 scale for three 

diagnostic classes (i.e., nondiagnostic, nontumor inference class, and tumor inference class) 

to generate a three-channel RGB transparency overlay (alpha = 40%).

Statistics and reproducibility

All measures on central tendency were reported as mean and standard deviation. CNN 

training was replicated 10 times and the model with the highest validation accuracy was 

selected for use in the prospective clinical trial. Pearson correlation coefficient was used to 

measure linear correlations. Full R code for calculated trial sample size can be found in our 

code repository (See below). Please see the Life Sciences Reporting Summary for more 

details.

Data availability

A University of Michigan IRB protocol (HUM00083059) was approved for the use of 

human brain tumor specimens in this study. To obtain these samples or SRH images, contact 

D.A.O. Code repository for network training, evaluation, and visualizations is publicly 

available at https://github.com/toddhollon/srh_cnn.

Extended Data
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Extended Data Figure 1: SRH image dataset and CNN training
The class distribution of (a) training and (b) validation set images are shown as number of 

patches and patients. Class imbalance results from different incidence rates among human 

central nervous system tumors. The training set contains over 50 patients for each of the five 

most common tumor types (malignant gliomas, meningioma, metastasis, pituitary adenoma, 

and diffuse lower grade gliomas). In order to maximize the number of training images, no 

cases from medulloblastoma or pilocytic astrocytoma were included in the validation set and 

oversampling was used to augment the underrepresented class during CNN training. c, 
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Training and validation categorical cross entropy loss and patch-level accuracy is plotted for 

the training session that yielded the model used for our prospective clinical trial. Training 

accuracy converges to near-perfect with a peak validation accuracy of 86.4% following 

epoch 8. Training procedure was repeated 10 times with similar accuracy and cross entropy 

convergence. Additional training did not result in better validation accuracy and early 

stopping criteria were reached.
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Extended Data Figure 2: A taxonomy of intraoperative SRH diagnostic classes to inform 
intraoperative decision making
a, Representative example SRH images from each of the 13 diagnostic class are shown. Both 

diffuse astrocytoma and oligodendroglioma are shown as examples of diffuse lower grade 

gliomas. Classic histologic features (i.e., piloid process in pilocytic astrocytomas, whorls in 

meningioma, and microvascular proliferation in glioblastoma) can be appreciated, in 

addition to features unique to SRH images (e.g., axons in gliomas and normal brain tissue). 

Scale bar, 50 μm. b, A taxonomy of diagnostic classes was selected specifically to inform 

intraoperative decision making, rather than to match WHO classification. Essential 

intraoperative distinctions, such as tumoral versus nontumoral tissue or surgical versus 

nonsurgical tumors, allow for safer and more effective surgical treatment. Inference node 

probabilities inform intraoperative distinctions by providing coarse classification with 

potentially higher accuracy due to summation of daughter node probabilities16. The 

probability of any inference node is the sum of all of its daughter node probabilities.
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Extended Data Figure 3: Inference algorithm for patient-level brain tumor diagnosis
A patch-based classifier that uses high-magnification, high-resolution images for diagnosis 

requires a method to aggregate patch-level predictions into a single intraoperative diagnosis. 

Our inference algorithm performs a feedforward pass on each patch from a patient, filters 

the nondiagnostic patches (line 12), and stores the output softmax vectors in an RN x 13 

array. Each column of the array, corresponding to each class, is summed and renormalized 

(line 22) to produce a probability distribution. We then used a thresholding procedure such 

that if greater than 90% of the probability density is nontumor/normal, that probability 

distribution is returned. Otherwise, the normal/nontumor class (grey matter, white matter, 

gliosis) probabilities are set to zero (line 31), the distribution renormalized, and returned. 

This algorithm leverages the observation that normal brain and nondiagnostic tissue imaged 
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using SRH have similar features across patients resulting in high patch-level classification 

accuracy. Using the expected value of the renormalized patient-level probability distribution 

for the intraoperative diagnosis eliminates the need to train an additional classifier based on 

patch predictions.
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Extended Data Figure 4. Prospective clinical trial design and recruitment
a, Minimum sample size was calculated under the assumption that pathologists’ multiclass 

diagnostic accuracy ranges from 93% to 97% based on our previous experiments6 and that a 

clinically significant lower accuracy bound was less than 91%. We, therefore, selected an 

expected accuracy of 96% and equivalence/non-inferiority limit, or delta, of 5%, yielding a 

non-inferiority threshold accuracy of 91% or greater. Minimum sample size was 264 (black 

point) patients using an alpha of 0.05 and a power of 0.9 (beta = 0.1). b, Flowchart of 

specimen processing in both the control and experimental arms is shown. c, A total of 302 

patients met inclusion criteria and were enrolled for intraoperative SRH imaging. Eleven 

patients were excluded at the time of surgery due to specimens that were below the 

necessary quality for SRH imaging. A total of 291 patients were imaged intraoperatively and 

13 patients were subsequently excluded due to a Mahalanobis distance-based confidence 

score (See Extended Data Figure 5), resulting in a total of 278 patients included. d, 
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Meningioma, pituitary adenomas, and malignant gliomas were the most common diagnoses 

in our prospective cohort. University of Michigan, University of Miami, and Columbia 

University recruited 55.0%, 26.6%, 18.4% of the total patients, respectively.
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Extended Data Figure 5. Mahalanobis distance-based confidence score
a, Pairwise comparison and b, principal component analysis of class conditional 

Mahalanobis distance-based confidence score for each layer output included in the 

ensemble. The confidence score from the mid- and high-level hidden features are correlated, 

which demonstrate that out-of-distribution samples result in greater Mahalanobis distances 

throughout the network. As previously described and observed in our results, out-of-

distribution (i.e. rare tumors) are better detected in the representation space of deep neural 

networks, rather than the “label-overfitted” output space of the softmax layer23. c, 

Specimen-level predictions (black hashes, n = 478) and kernel density estimate from the 

trained LDA classifier for all specimens imaged during the trial period projected onto the 

linear discriminant axis. Trial and rare tumor cases were linearly separable resulting in all 13 

rare tumor cases imaged during the trial period correctly identified. d, SRH mosaics of rare 

tumors imaged during the trial period are shown. Germinomas show classic large round 

neoplastic cells with abundant cytoplasm and fibrovascular septae with mature lymphocytic 

infiltrate. Choroid plexus papilloma shows fibrovascular cores lined with columnar cuboidal 

epithelium. Papillary craniopharyngioma have fibrovascular cores with well-differentiated 

monotonous squamous epithelium. Clival chordoma has unique bubbly cytoplasm (i.e., 

physaliferous cells). Scale bar, 50 μm.
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Extended Data Figure 6. Error analysis of pathologist-based classification of brain tumors
a, The true class probability and intersection over union values for each of the prospective 

clinical trial patients incorrectly classified by the pathologists. All 17 were correctly 

classified using SRH plus CNN. All incorrect cases underwent secondary review by two 

board-certified neuropathologists (S.C.P., P.C.) to ensure the specimens were 1) of sufficient 

quality to make a diagnosis and 2) contained tumor tissue. b, SRH mosaic from patient 21 

(glioblastoma, WHO IV) is shown. Pathologist classification was metastatic carcinoma; 

however, CNN metastasis heatmap does not show high probability. Malignant glioma 
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probability heatmap shows high probability over the majority of the SRH mosaic, with a 

73.4% probability of patient-level malignant glioma diagnosis. High-magnification views 

show regions of hypercellularity due to tumor infiltration of brain parenchyma with 

damaged axons, activated lipid-laden microglia, mitotic figures, and multinucleated cells. c, 
SRH mosaic from patient 52 diagnosed with diffuse large B-cell lymphoma predicted to be 

metastatic carcinoma by pathologist. While CNN identified patchy areas of metastatic 

features within the specimen, the majority of the image was correctly classified as 

lymphoma. High-magnification views show atypical lymphoid cells with macrophage 

infiltration. Regions with large neoplastic cells share cytologic features with metastatic brain 

tumors, as shown in Figure 3. Scale bar, 50 μm.
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Extended Data Figure 7: Activation maximization to elucidate SRH feature extraction using 
Inception-ResNet-v2
a, Schematic diagram of Inception-ResNet-v2 shown with repeated residual blocks 

compressed. Residual connections and increased depth resulted in better overall 

performance compared to previous Inception architectures. b, To elucidate the learned 

feature representations produced by training the CNN using SRH images, we used activation 

maximization24. Images that maximally activate the specified filters from the 159th 

convolutional layer are shown as a time series of iterations of gradient ascent. A stable and 

qualitatively interpretable image results after 500 iterations, both for the CNN trained on 

SRH images and for ImageNet images. The same set of filters from the CNN trained on 

ImageNet are shown in order to provide direct comparison of the trained feature extractor 

for SRH versus natural image classification. c, Activation maximization images are shown 

for filters from the 5th, 10th, and 159th convolutional layers for CNN trained using SRH 

images only, SRH images after pretraining on ImageNet images, and ImageNet images only. 

The resulting activation maximization images for the ImageNet dataset are qualitatively 
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similar to those found in previous publications using similar methods34. CNN trained using 

only SRH images produced similar classification accuracy compared to pretraining and 

activation maximization images that are more interpretable compared to those generated 

using a network pretrained on ImageNet weights.
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Extended Data Figure 8. t-SNE plot of internal CNN feature representations for clinical trial 
patients
We used the 1536-dimensional feature vector from the final hidden layer of the Inception-

ResNet-v2 network to determine how individual patches and patients are represented by the 

CNN using t-distributed stochastic neighbor embedding (t-SNE), an unsupervised clustering 

method to visualize high-dimensional data. a, One hundred representative patches from each 

trial patient (n = 278) were sampled for t-SNE and are shown in the above plot as small, 

semi-transparent points. Each trial patient is plotted as a large point located at their 

respective mean patch position. Recognizable clusters form that correspond to individual 

diagnostic classes, indicating that tumor types have similar internal CNN representations. b, 
Grey and white matter form separable clusters from tumoral tissue, but also from each other. 

lipid-laden myelin in white matter has significantly different SRH features compared to grey 

matter with axons and glial cells in a neuropil background. c, Diagnostic classes that share 

cytologic and histoarchitectural features form neighboring clusters, such as malignant 

glioma, pilocytic astrocytoma, and diffuse lower grade glioma (i.e., glial tumors). 
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Lymphoma and medulloblastoma are adjacent and share similar features of hypercellularity, 

high nuclear:cytoplasmic ratios, and little to no glial background in dense tumor.
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Extended Data Figure 9. Methods and results of SRH segmentation
a, A 1000×1000-pixel SRH image is shown with the corresponding grid of probability 

heatmap pixels that results from using a 300×300-pixel sliding window with 100-pixel step 

size in both horizontal and vertical directions. Scale bar, 50 μm. b, An advantage of this 

method is that the majority of the heatmap pixels are contained within multiple image 

patches and the probability distribution assigned to each heatmap pixel results from a 

renormalized sum of overlapping patch predictions. This has the effect of pooling the local 

prediction probabilities and generates a smoother prediction heatmap. c, For our example, 
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each pixel of the inner 6×6 grid has 9 overlapping patches from which the probability 

distribution is determined. d, An SRH image of a meningioma, WHO grade I, from our 

prospective trial is shown as an example. Scale bar, 50 μm. e, The meningioma probability 

heatmap is shown after bicubic interpolation to scale image to the original size. 

Nondiagnostic prediction and ground truth is for the same SRH mosaic and is shown. f, The 

SRH semantic segmentation results of the full prospective cohort (n = 278) are plotted. The 

upper plot shows the mean IOU and standard deviation (i.e., averaged over SRH mosaics 

from each patient) for ground truth class (i.e., output classes). Note that the more 

homogenous or monotonous histologic classes (e.g., pituitary adenoma, white matter, diffuse 

lower grade gliomas) had higher IOU values compared to heterogeneous classes (e.g., 

malignant glioma, pilocytic astrocytoma). The lower plot shows the mean inference class 

IOU and standard deviation (i.e., either tumor or normal inference class) for each trial 

patient. Mean normal inference class IOU for the full prospective cohort was 91.1 ± 10.8 

and mean tumor inference class IOU was 86.4 ± 19.0. g, As expected, mean ground truth 

class IOU values for the prospective patient cohort (n = 278) were correlated with patient-

level true class probability (Pearson correlation coefficient, 0.811).
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Extended Data Figure 10. Localization of metastatic brain tumor infiltration in SRH images
a, Full SRH mosaic of a specimen collected at the brain-tumor margin of a patient with a 

metastatic brain tumor (non-small cell lung adenocarcinoma). b, Metastatic rests with 

glandular formation are dispersed among gliotic brain with normal neuropil. c, Three-

channel RGB CNN-prediction transparency is overlaid on the SRH image for pathologist 

review intraoperatively with associated (d) patient-level diagnostic class probabilities. e, 
Class probability heatmap for metastatic brain tumor (IOU 0.51), nontumor (IOU 0.86), and 

nondiagnostic (IOU 0.93) regions within the SRH image are shown with ground truth 

segmentation. Scale bar, 50 μm.
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Figure 1. Intraoperative diagnostic pipeline using SRH and deep learning
The intraoperative workflows for both conventional hematoxylin and eosin-staining (H&E) 

histology and stimulated Raman histology (SRH) plus convolutional neural networks (CNN) 

are shown in parallel. (1) Freshly excised specimens are loaded directly into an SRH imager 

for image acquisition. Operation of the SRH imager is performed by a single user, who loads 

tissue into a carrier and interacts with a simple touch-screen interface to initate imaging. 

Images are sequentially acquired at two Raman shifts, 2845 cm−1 and 2930 cm−1, as strips. 

After strip stitching, the two image channels are registered and virtual H&E provides SRH 

mosaics for intraoperative review by surgeons and pathologists. Time to acquire a 1×1-mm 

SRH image is approximately 2 minutes. (2) Image processing starts by using a dense sliding 

window algorithm with valid padding over the 2845 cm−1 and 2930 cm−1 images 
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concurrently. Registered 2845 cm−1 and 2930 cm−1 image patches are subtracted pixelwise 

to generate a third image channel (2930 cm−1-2845 cm−1) that highlights nuclear contrast 

and cellular density. Each image channel is postprocessed to enhance image contrast and 

concatenated to produce a single three-channel RGB image for CNN input. (3) To provide 

an intraoperative prediction of brain tumor diagnosis, each patch undergoes a feedforward 

pass through the trained CNN and takes approximately 15 secs using a single GPU for 1×1-

mm SRH image. Our inference algorithm (Extended Data Figure 3) for patient-level 

diagnosis acts by retaining the high probability tumor regions within the image based on 

patch-level predictions, and filtering the nondiagnostic and normal areas. Patch-level 

predictions from tumor regions are then summed and renormalized to generate a patient-

level probability distribution over the diagnostic classes. Our pipeline is able to provide a 

diagnosis in less than 2.5 minutes using a 1×1-mm image, which corresponds to more than a 

10x speedup in time-to-diagnosis compared to conventional intraoperative histology2. Scale 

bar, 50 μm.
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Figure 2. Prospective clinical trial of SRH plus CNN versus conventional H&E histology
a, The prediction probabilities for the ground truth classes are plotted in descending order by 

medical center with indication of correct (green) or incorrect (red) classification. b, 
Multiclass confusion matrices for both the control arm and experimental arm. Mistakes in 

the control arm, traditional H&E histology with pathologist, were mostly misclassification 

of malignant gliomas (10/17). The glial tumors had the highest error rate in the SRH plus 

CNN arm (9/14). Less common tumors, including ependymoma, medulloblastoma, and 

pilocytic astrocytomas were also misclassified, likely due to insufficient number of cases for 

model training, resulting in lower mean class accuracy compared to the control arm. These 

errors are likely to improve with additional SRH training data. Model performance on cases 

misclassified using conventional H&E histology can be found in Extended Data Figure 6. 

The glioma inference class was used for the clinical trial in the setting where the control arm 

pathologist did not specify glioma grade at the time of surgery, thereby allowing for one-to-

one comparison between study arms.

*No gliosis/treatment effect cases were enrolled during the clinical trial. This row is 

included because gliosis was a predicted label and to maintain the convention of square 

confusion matrices.
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Figure 3. Activation maximization reveals a hierarchy of learned SRH feature representations
a, Images that maximize the activation of select filters from layers 5, 10, and 159 are shown. 

(Activation maximization images for each layer’s filter bank can be found in Extended Data 

Figure 7.) A hierarchy of increasingly complex and recognizable histologic feature 

representations can be observed. b, The activation maximization images for the 148th, 12th, 

and 101st filter in the 159th layer are shown as column headings. These filters were selected 

because they are maximally active for the grey matter, malignant glioma, and metastatic 

brain tumor class, respectively, with example images from each class shown as row labels. A 

spatial map of the rectified linear unit (ReLU) values for the class example images and 

corresponding mean ReLU value (± standard deviation) is shown in each cell of the grid. 

Each cell also contains the distribution of mean activation values for 1000 images randomly 

sampled from each diagnostic class. High magnification crops from the example images 
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which maximally activate each neuron are shown. Activation maximization images show 

interpretable image features for each diagnostic class, such as axons (neuron 148), 

hypercellularity with lipid droplets and high nuclear:cytoplastic ratios (neuron 12), and large 

cells with prominent nucleoli and cytoplasmic vesicles (neuron 101). Example image scale 

bar, 50 μm; maximum ReLU activation area image scale bar, 20 μm.
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Figure 4. Semantic segmentation of SRH images identifies tumor-infiltrated and diagnostic 
regions
a, Full SRH mosaic of a specimen collected at the brain-tumor interface of a patient 

diagnosed with glioblastoma, WHO IV. b, Dense hypercellular glial tumor with nuclear 

atypia is seen diffusely on the left and peritumoral gliotic brain with reactive astrocytes on 

the right of the specimen. SRH imaging of fresh specimens without tissue processing 

preserves both the cytologic and histoarchitectural features allowing for visualization of the 

brain-tumor margin. c, Three-channel RGB CNN-prediction transparency is overlaid on the 

SRH image for surgeon and pathologist review intraoperatively with associated (d) patient-

level diagnostic class probabilities. e, Inference class probability heatmap for tumor (IOU 

0.869), nontumor (IOU 0.738), and nondiagnostic (IOU 0.400) regions within the SRH 

image are shown with ground truth segmentation. The brain-tumor interface is well 

delineated using CNN semantic segmentation and can be used in operating room to identify 

diagnostic regions, residual tumor burden and tumor margins. Scale bar, 50 μm.
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