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A B S T R A C T   

Introduction: Depression is a non-motor symptom of Parkinson’s disease (PD). PD-related depression is difficult to 
diagnose, and the neurophysiological basis is poorly understood. Depression can markedly affect cortical func
tion, which suggests that scalp electroencephalography (EEG) may be able to distinguish depression in PD. We 
conducted a pilot study of depression and resting-state EEG in PD. 
Methods: We recruited 18 PD patients without depression, 18 PD patients with depression, and 12 demograph
ically similar non-PD patients with clinical depression. All patients were on their usual medications. We collected 
resting-state EEG in all patients and compared cortical brain signal features between patients with and without 
depression. We used a machine learning algorithm that harnesses the entire power spectrum (linear predictive 
coding of EEG Algorithm for PD: LEAPD) to distinguish between groups. 
Results: We found differences between PD patients with and without depression in the alpha band (8–13 Hz) 
globally and in the beta (13–30 Hz) and gamma (30–50 Hz) bands in the central electrodes. From two minutes of 
resting-state EEG, we found that LEAPD-based machine learning could robustly distinguish between PD patients 
with and without depression with 97 % accuracy and between PD patients with depression and non-PD patients 
with depression with 100 % accuracy. We verified the robustness of our finding by confirming that the classi
fication accuracy gracefully declines as data are randomly truncated. 
Conclusions: Our results suggest that resting-state EEG power spectral analysis has the potential to distinguish 
depression in PD accurately. We demonstrated the efficacy of the LEAPD algorithm in identifying PD patients 
with depression from PD patients without depression and controls with depression. Our data provide insight into 
cortical mechanisms of depression and could lead to novel neurophysiological markers for non-motor symptoms 
of PD.   

1. Introduction 

Depression is a prominent non-motor symptom of Parkinson’s dis
ease (PD) [1]. PD-related depression affects ~20 %–40 % of PD patients, 
which is more than twice the expected prevalence in the general pop
ulation [2,3]. Importantly, physicians often miss this aspect of PD, 
contributing to morbidity and decreased quality of life [4–7]. Despite its 
significance and impact [8], it is unclear which brain circuits contribute 
to PD-related depression [9]. Determining which brain circuits are 
involved could lead to the development of new diagnostic tools to 

identify PD-related depression and targeted treatments such as neuro
modulation [10]. A fast and accurate neurophysiological diagnostic tool 
may also facilitate neuromodulation. In addition, a better understanding 
of depression in PD may help us illuminate the fundamental mechanisms 
of both diseases. 

PD and depression involve several overlapping circuits and associ
ated neurotransmitters, including dopamine and serotonin [11]. These 
projection systems affect cortical physiology [12,13]. Cortical regions 
can be profoundly dysfunctional in PD [14] and in depression [15]. One 
particularly well-suited technique to capture cortical neurophysiology is 
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electroencephalography (EEG). EEG uses scalp electrodes to record ac
tivity from the cortex via an array of scalp electrodes. EEG has been 
rigorously used to predict anxiety and depression in large sample sizes 
[16], including out-of-sample validation [17]. An early EEG study 
comparing depressed and non-depressed PD patients found widespread 
differences in alpha bands (8–12 Hz) in posterior and frontal sites [8]. 
Similar findings have been found for anxiety in PD with a large sample 
size [18]. Quantitative EEG (qEEG) studies have found spectral differ
ences that distinguished PD vs depression [19]. We recently developed a 
non-Fourier machine learning algorithm that holistically captures the 
power spectra of neurophysiological data [20]. This algorithm leverages 
linear predictive coding-based EEG algorithms for PD (LEAPD) and can 
distinguish PD from controls with high accuracy in out-of-sample tests 
[21]. We tested the hypothesis that LEAPD can distinguish depression in 
PD based on this prior work. 

We conducted a proof-of-principle study to test this hypothesis. We 
collected resting-state scalp EEG in PD patients with and without 
depression. We compared these data with control patients with 
depression but without PD. We report three main results. First, PD pa
tients with depression had globally attenuated alpha (8–13 Hz) rhythms, 
as well as attenuated central beta (13–30 Hz) and gamma (30–50 Hz) 
rhythms relative to PD patients without depression. Second, PD patients 
with depression had noteworthy global differences in gamma rhythms 
relative to non-PD patients with depression. Third, LEAPD-based clas
sification accurately identified PD patients with depression relative to 
PD patients and non-PD depressed patients. Collectively, these data 
implicate cortical rhythms in PD-related depression, which could lead to 
novel targeted therapies or new diagnostic neurophysiological markers 
for this important non-motor aspect of PD. 

2. Methods 

2.1. Participants 

36 PD patients (11 women; Table S1) were recruited from clinics at 
the University of Iowa. A movement-disorders physician examined all 
PD patients to verify that they met the diagnostic criteria recommended 
by the United Kingdom PD Society Brain Bank criteria. Depression was 
quantified using the Geriatric Depression Short Form Scale in PD pa
tients [22]; a score of 5 to 15 was considered depressed). In addition, the 
motor Unified Parkinson’s Disease Rating Scale (UPDRS) was adminis
tered to all PD patients by a qualified rater, along with other clinical 
metrics, such as the Montreal Cognitive Assessment (MOCA) and 
behavioral assays. Data were collected with patients taking all pre
scribed medications and PD patients were in the “ON” state. See our 
prior work for details of cognitive assessments [23]. Demographics and 
other clinical details are presented in Table S1 and were compared be
tween groups by non-parametric Wilcoxon tests. 

We recruited 12 demographically-matched depressed patients 
without PD (5 women, Table S1) from the University of Iowa’s depres
sion and neuromodulation clinic. These patients were diagnosed with 
depression by the Patient Health Questionnaire-9, with a value of 9 to 
25. A psychiatrist evaluated all patients, and patients took their medi
cations as prescribed. 

According to the University of Iowa’s Institutional Review Board 
(IRB), we obtained written informed consent from all participants. De
mographics of patients and control subjects are summarized in Table S1. 

2.2. EEG recording and analysis 

Resting-state EEG was collected from patients sitting in a quiet room 
with their eyes open for two minutes. Scalp EEG signals were collected 
from 64 channels of an EEG actiCAP (Brain Products GmbH) using a 
high-pass filter with a 0.1-Hz cutoff and a sampling frequency of 500 Hz. 
Electrode Pz was used as a reference, and electrode FPz was used as the 
ground. We used recording methods described previously in detail using 

a custom EEG cap with Iz, I1, and I2 leads in place of FT9, PO3, and PO4 
leads; these leads were not analyzed [21,23,24]. We also removed FP1, 
FP2, FT10, TP9, and TP10 channels as these channels are often 
contaminated by artifacts, resulting in 56 channels for pre and post- 
processing. EEG activity at the reference electrode Pz was recovered 
by computing the average reference. Bad channels and bad epochs were 
identified using the FASTER algorithm and the pop_rejchan function from 
EEGLAB and were then interpolated and rejected, respectively. Eye 
blinks were removed using independent component analysis (ICA). All 
channels were low pass filtered at 100 Hz. Power was calculated using 
the pwelch function and was normalized to the mean power between 
0 and 100 Hz for each channel. Scalp topography was plotted using 
topoplot from EEGLAB in delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and gamma (30–80 Hz; Fig. 1) bands. 

2.3. Machine learning using linear predictive coding algorithms for PD 
(LEAPD) 

LEAPD is an algorithm for binary classification of the spectral con
tent of EEG signals. This approach was developed by Anjum et al. 
[19,20] to distinguish between PD patients and control participants. We 
implemented LEAPD to compare PD patients with depression (PDDEP) 
vs PD patients without depression (PD) and PDDEP vs depressed patients 
without PD (DEP). A LEAPD index between 0 and 1 is generated for each 
EEG recording using the procedure outlined below. In each of the two 
problems, a threshold of 0.5 is used to distinguish between two groups. 
For example, if the LEAPD index for an EEG recording is below 0.5, it is 
in Group B. If above 0.5, it is classified as belonging to Group A. 

In LEAPD, an EEG time series from a channel is processed using 
linear predictive coding (LPC) to encode the signal into an autore
gressive model’s coefficients that minimize the prediction error’s mean 
square [25] for that time series. Specifically, with x(k) the k-th sample of 
the filtered EEG time series, an n-th order LPC determines the LPC co
efficients a1,⋯, an by minimizing the mean square error between x(k)
and 

∑n
i=1aix(k − i). In LEAPD, these LPC coefficients are placed in an LPC 

vector which is the vector of these coefficients minus their mean. These 
coefficients can be determined by high-speed processing and can be 
viewed as the encoding of the EEG time series. 

Each LPC vector is viewed as a point in n-dimensional space. LPC 
vectors of each group approximately lie on distinct affine subspaces. For 
example, those for PDDEP roughly lie on one affine subspace while those 
of PD on another. An affine subspace is the generalization of a one- 
dimensional line or a two-dimensional plane in larger dimensions. 
These affine subspaces are determined in the training phase for each 
EEG electrode using Principal Component Analysis (PCA) as described 
below. 

LEAPD constructs two matrices, one for each group. LPC vectors of 
each group form the rows of the corresponding matrix. A singular value 
decomposition (SVD) is performed on each matrix. The left eigenvectors 
corresponding to the M largest singular values form the basis for the 
corresponding M-dimensional affine subspace. Parameters used to learn 
these affine subspaces are: (1) the cutoff frequencies of the filter used to 
process the EEG data; (2) the LPC order; and (3) the dimension of the 
affine subspace. 

For each new EEG recording, one obtains its LPC vector and gener
ates its LEAPD index as its relative distance from each affine subspace: 
With DA the distance of a recording’s LPC vector from the affine sub
space of group A and DB the distance from the affine subspace of the 
group B, one obtains. 

LEAPDIndex =
DB

DB + DA
.

A LEAPD index between 0 and 0.5 places the recording nearer to the 
affine subspace for group B leading to the recording being classified as 
being in group B. Likewise, an index between 0.5 and 1 classifies in 
group A. The distances are computed using standard projection methods 
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for finding the distance of a point from an affine subspace [26]. 
We quantified differences between LEAPD values for each channel 

using non-parametric Wilcoxon rank-sum tests. In addition, we 
computed the LEAPD index for each recording to calculate the accuracy 
of PD vs PDDEP and DEP vs PD at each channel. Two-channel LEAPD 
values were computed by taking each channel’s geometric mean of the 
LEAPD indices. We then used a classifier on all two-channel combina
tions and presented results only from selected high-performing 
combinations. 

As the dataset was small, we could not perform out-of-sample pro
spective tests to validate the model’s accuracy. However, we tested the 
robustness of the results by examining LEAPD performance on truncated 
data, in which a random subsequence of a desired smaller data length is 
selected over all participants. Truncation is shown across all electrodes. 
In all instances, leave-one-out cross-validation (LOOCV) was used to 
quantify performance. LOOCV uses the entire dataset without one test 
sample to predict each test sample, which protects against the over
fitting common with small datasets. We report data from individual 
channels and combinations of channels that yielded the a) highest ac
curacy in discriminating PD vs PDDEP and PDDEP vs DEP, and b) were 
the most robust on truncated data. 

3. Results 

PD patients with and without depression had similar age (p = 0.23), 
motor function as measured by UPDRS (p = 0.22), and cognitive profiles 
as measured by the MOCA (p = 0.94 value; Tables S1-S2). We collected 
resting-state EEG data and compared scalp topography of relative power 
for PD patients vs PD patients with depression (PDDEP) at delta (1–4 
Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma 
bands (30–80 Hz; Fig. 1A). We also compared scalp topography for 
PDDEP vs non-PD patients with depression (DEP; Fig. 1B). These data 
illustrate that band-specific differences can distinguish depression in PD. 

Our machine learning approach, LEAPD, compresses power spectra 
into a set of autoregressive coefficients that holistically captures the 
shape of each power spectra with a few numbers [20,21]. Here, we used 
LEAPD to classify PD vs PDDEP and PDDEP vs DEP from single channels, 
as well as combinations of two channels (Fig. 2; Table S3). 

We first used LEAPD to discriminate 18 PD from 18 PDDEP patients 
across all EEG electrodes (Fig. 3A). Single-channel accuracy for channel 
CP3 was 86 % and for TP8 was 86 % (Fig. 3A). Combining both CP3 and 

TP8 resulted in an overall LOOCV classification accuracy of 97 %. These 
channels had distinct LEAPD indices between PD and PDDEP (CP3: p =
0.00009, Cohen’s d = 1.8; TP8: p = 0.00004, Cohen’s d = 1.8; CP3 +
TP8: p < 0.001; Cohen’s d = 3.3). Of note, LEAPD outperformed tradi
tional spectral analyses of the delta, theta, alpha, beta, and gamma 
rhythms. 

Receiver-operator curves (ROCs) for these channels in predicting PD 
vs PDDEP are shown in Fig. 3B. 

In addition, we found that LEAPD was highly accurate in differen
tiating 12 PDDEP patients (selected at random from 18 total) from 12 
DEP patients, with 96 % single-channel signal accuracy for electrode 
CPz and 92 % for electrode CP4. Combining both channels resulted in 
100 % classification accuracy (Fig. 3C-D). For these electrodes, LEAPD 
distinguished PDDEP vs DEP (Fig. 3D; CPz: p = 0.00004, Cohen’s d =
4.3; CP4: p = 0.0007, Cohen’s d = 2.0; CP4 + CPz: p = 0.00004; Cohen’s 

Fig. 1. Scalp topography of relative EEG power in PD patients with depression. A) Relative power in PD patients with depression (PDDEP) compared to PD patients 
without depression for delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30 Hz). B) Relative power in PDDEP compared to non-PD 
patients with depression (DEP). Electrodes are indicated by black dots; electrodes with significant differences between groups via ranksum testing are shown 
with white diamonds. Data from 18 PD, 18 PDDEP and 12 DEP. 

Fig. 2. LEAPD Classification approach: Flow chart of classification.  
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d = 4.3). 
Electrodes CP3 + TP8 were selected for the classification of PD vs 

PDDEP and CP4 + CPz for PDDEP vs DEP. To provide direct comparisons 
between classifications, we selected channels for classification between 
groups. We found that the combination of P4 + C6 was 97 % accurate for 
PD vs PDDEP and 100 % accurate for PDDEP vs PD. Furthermore, P4 +
C6 was 72 % accurate in separating PD vs a combined dataset of PDDEP 
and DEP and 86 % accurate in separating DEP from a combination of PD 
and PDDEP. Our results show that LEAPD can accurately discriminate 
depression in PD from a single combination of two channels. 

Additionally, we performed a truncation analysis of CP3, TP8, and 
CP3 + TP8 combined for PD vs PDDEP and of CPz, CP4, and CPz + CP4 
combined for DEP vs PDDEP. Recorded EEG data were truncated from 
full-length samples to samples numbering a fraction of the original 
length. LEAPD analysis was then performed on the shortened signal 
using the same parameters as the original signal. Truncation samples 
were chosen as continuous non-overlapping subsets of the time-series 
signals and was split into subsamples dependent on the truncation 
fraction. For a given truncation fraction, subsamples were chosen with 
random start time offsets under the constraint that subsamples from a 
single subject may not overlap. A uniform distribution of possible start 

values was used to generate the time offsets. 
Truncation fractions of 0.23, 0.3, and 0.45 were tested 100 times 

each using the described random starting time offset method. The me
dian performance was measured in Table S4. A boxplot of the runs is 
shown in Fig. 4. Although truncation reduced the channels’ accuracy, 
each channel still retained significant discriminatory ability at shorter 
signal lengths. The performance degraded gracefully with truncation, 
indicating that the signals chosen are likely measuring a fundamental 
difference in EEG behavior between classes rather than an artifact of 
overfitting. Notably, an accuracy greater than 85 % was achieved from 
two minutes of resting-state EEG signals. Performance on truncated data 
is shown in Fig. 4 for all channels of interest for PD vs PDDEP (Fig. 4A) 
and PDDEP vs DEP (Fig. 4B). Collectively, these data suggest that 
spectral features of scalp EEG can distinguish depression in PD. 

4. Discussion 

We explored the cortical basis of depression in PD using resting-state 
scalp EEG. We found that PD patients with depression significantly 
differed in beta and gamma rhythms. We used LEAPD, a spectral ma
chine learning approach, to detect differences in EEG signals from two 

Fig. 3. Machine-learning classification of LEAPD. A) We constructed LEAPD indices from LPC coefficients from electrodes CP3 and TP8 for PD patients without 
depression (PD) vs PD patients with depression (PDDEP). B) Receiver-operating curves (ROC) for single-channel performance of CP3, TP8, and CP3 and TP8 (CP3 +
TP8) combined. Data from 18 PD and 18 PDDEP patients. C) single channel performance across single electrodes and D) ROC curves and. Data from 12 PDDEP and 12 
DEP patients. 
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minutes of resting-state data from a single electrode, achieving accu
racies of 97 % for PD patients with and without depression and 100 % 
for PD vs non-PD patients with depression. These data indicate that PD 
patients with depression can be accurately differentiated from PD pa
tients without depression and depressed non-PD patients using machine 
learning. Thus, we proposed that LEAPD parameters derived from LPC- 
based analyses of EEG power spectra could be a neurophysiological 
marker for depression in PD. 

Depression is a complex disorder [27] involving many brain net
works; however, one consistent finding is abnormal cortical function 
[15,28]. Scalp EEG studies have found dysfunctional alpha rhythms in 
depressed patients [29,30], which we report here comparing PD patients 
with and without depression. Beta rhythms can be profoundly abnormal 
in PD [31], and our data here indicate that depression decreases resting- 
state beta, alpha, and gamma rhythms in PD. We find that many cortical 
regions are implicated in PD-related depression, including prefrontal 
and parietal regions that have been found in prior studies of depression 
[15,32]. 

These data suggest that EEG, which is relatively inexpensive and 
ubiquitously available, can identify PD patients with depression. This 
finding is important because depression can be missed in PD [4–6], and 
electrophysiological diagnostic tools may aid this effort. Nonetheless, 
we report that our approach can rapidly, robustly, and accurately 
identify EEG signals from PD patients with depression. Furthermore, 
LEAPD outperforms traditional spectral analyses based on the power in 
predefined bands. Performance degrades with data truncation; however, 
it may be that 2 min is close to the threshold required for accurate 
discrimination, particularly in the case of DEP vs PDDEP. 

Our results are in line with previous efforts to use LEAPD to identify 
local field potentials from animal models of PD and EEG data recorded 
from PD patients and controls [20,21]. LEAPD-based techniques might 
have additional utility in settings where neurophysiology is common, 
such as during deep-brain stimulation surgeries, and they may be helpful 
for closed-loop control applications. Besides being robust and accurate, 
LEAPD is amenable to fast implementation and can serve as a trigger 

mechanism for brain stimulation. 
Our work is supported by prior qEEG studies describing that a single 

parameter can differentiate depression and dementia in PD [19]. An 
early study that averages across all EEG electrodes reported distinct 
scalp topography of depressed PD patients, focusing on alpha rhythms 
[8]. Our study supports these differences, and we can localize these 
results to the left frontal electrodes. In addition, we find broader dif
ferences over central electrodes in beta and gamma bands, which may 
have been averaged out in prior work that averaged EEG signals from 
multiple electrodes. Single-electrode and spectral band analyses reveal 
differences with depression in PD (Table S3). However, LEAPD has 
several advantages: 1) it holistically captures the entire power spectra, 
2) it is robust to random truncation and captures spectral differences in a 
single parameter, and 3) it can be used for binary classification. 

We used LEAPD to distinguish PD patients with depression from PD 
patients and non-PD patients with depression. Recent work has reported 
frontal differences in sleep in PD patients with depression [33] and 
differences between midline event-related potentials between PD pa
tients with and without depression [34]. Our study extends these find
ings, helps define the spectral topography of resting-state EEG in PD 
patients with depression, and demonstrates the potential of machine 
learning for identifying PD patients with depression. We note that EEG is 
not routinely used in diagnosing or treating depression in PD or non-PD 
patients. Our data might contribute to a better understanding of the 
neurophysiological basis of depression in PD and possibly to the devel
opment of novel neuromodulatory treatments. 

Our study has several limitations. First, our sample size was limited, 
although in line with prior EEG studies in PD patients with depression 
[33,34], as these patients can be challenging to diagnose. Indeed, this is 
the principal motivation of this paper. Second, all of our patients were 
medicated, and there is a possibility that medications could influence 
these EEG signals [35]. Third, our method of diagnosing depression and 
quantifying symptom burden in PD patients was distinct from the 
method used with non-PD patients, limiting comparisons between these 
groups. Critically, this only applies to PDDEP vs DEP, and the LEAPD 

Fig. 4. Truncation analysis of LEAPD-based classification. A) Classification of PD vs PDDEP for CP3, TP8, and both CP3 + TP8 with truncated data lengths. B) 
Classification of PDDEP vs DEP for CPz, CP4, and both CPz + CP4 with truncated data lengths (truncation as in A). 
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classifier still performed with >97 % accuracy in distinguished PD vs 
PDDEP when the same depression scale was used. Finally, our LEAPD 
approach did not include an out-of-sample prospective test (we note this 
is the largest resting-state EEG dataset of depression in PD that we are 
aware of). However, the truncation analysis does remove concerns of 
overfitting. These concerns suggest that our finding is a preliminary, 
proof-of-principle demonstration, and much further work is needed to 
investigate depression in PD and the effect of interventions. Despite 
these shortcomings, our findings describe spectral changes in PD pa
tients with depression compared to PD patients without depression and 
non-PD patients with depression. We report that LEAPD-based machine 
learning approaches can identify EEG signals from PD patients with 
depression. These data could help illuminate the cortical neurophysi
ology of PD-related depression and could help lead to new neurophys
iological markers or diagnostic tools. 
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