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A B S T R A C T

Background:Machine learning sustains successful application to many diagnostic and prognostic problems in
computational histopathology. Yet, few efforts have been made to model gene expression from histopathol-
ogy. This study proposes a methodology which predicts selected gene expression values (microarray) from
haematoxylin and eosin whole-slide images as an intermediate data modality to identify fulminant-like pul-
monary tuberculosis ('supersusceptible') in an experimentally infected cohort of Diversity Outbred mice
(n=77).
Methods: Gradient-boosted trees were utilized as a novel feature selector to identify gene transcripts predic-
tive of fulminant-like pulmonary tuberculosis. A novel attention-based multiple instance learning model for
regression was used to predict selected genes' expression from whole-slide images. Gene expression predic-
tions were shown to be sufficiently replicated to identify supersusceptible mice using gradient-boosted trees
trained on ground truth gene expression data.
Findings: The model was accurate, showing high positive correlations with ground truth gene expression on
both cross-validation (n = 77, 0.63 � r � 0.84) and external testing sets (n = 33, 0.65 � r � 0.84). The sensitiv-
ity and specificity for gene expression predictions to identify supersusceptible mice (n=77) were 0.88 and
0.95, respectively, and for an external set of mice (n=33) 0.88 and 0.93, respectively.
Implications: Our methodology maps histopathology to gene expression with sufficient accuracy to predict a
clinical outcome. The proposed methodology exemplifies a computational template for gene expression pan-
els, in which relatively inexpensive and widely available tissue histopathology may be mapped to specific
genes' expression to serve as a diagnostic or prognostic tool.
Funding: National Institutes of Health and American Lung Association.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Tuberculosis
Diversity Outbred mice
Gene expression
Deep learning
Histopathology
i).

V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Microscopic examination of histopathological tissue sections
plays a central role in analysis, diagnosis and prognosis of biological
tissues. Increasingly, whole-slide imaging of tissues, along with fast
networks, data transfer and inexpensive storage has enabled the
curation of large databases of digitized tissue sections [1]. Further-
more, rapid advances in deep learning methods have enabled scien-
tists to develop automated histopathological analysis methods on
whole-slide images (WSIs), ranging from primitives such as nuclei
detection [2] and mitosis detection [3] to more advanced applications
such as tumour grading [4]. By and large, these developments and
those similar provide substantial evidence for the future of deep
learning as an essential tool for clinical and biomedical fields.

While much effort continues to perpetuate the successful applica-
tion of deep learning models to digital pathology, relatively few
efforts have been made to connect histopathology to molecular
markers such as gene mutations, gene transcripts and proteins.
Recent studies have shown that deep learning can identify and local-
ize areas of tissue correlated with specific mutations in the breast
[5�7], lung [8], and liver [9] cancers; predict microsatellite instability
in colorectal [10] and gastrointestinal tumours [11]; and predict
tumour mutational burden in lung [12] and liver [13] cancers. The

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2021.103388&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mniazi@wakehealth.edu
https://doi.org/10.1016/j.ebiom.2021.103388
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2021.103388
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom


Research in Context

Evidence before this study

We performed literature searches and publications in English
without date restrictions. We searched PubMed for "tuberculo-
sis AND (mouse model) AND (gene expression) AND (suscepti-
bility)" on January 31st, 2021. This retrieved 80 results � 77
were primary research articles and 3 were review articles. 69 of
the primary research articles utilized inbred or gene-deleted
mice whereas 8 utilized humanized mice or inbred mice with
transgenes. No primary publications utilized Diversity Outbred
mice. No primary research articles applied artificial intelligence
or machine learning to any aspect of their analysis. We
searched PubMed for the term "("deep learning") AND (histol-
ogy OR pathology OR histopathology) and ("gene expression")"
on January 31st, 2021. This retrieved 61 primary research
articles and 1 review article. 45 of the primary research articles
involved cancer. Four involved optimal drug prediction using
gene expression. None involved tuberculosis. 26 utilized gene
expression for some classification problem. Of these, one study
utilized multiple instance learning, and four utilized gene
expression for multi-modal analysis for some clinical outcome.
Three regressed to gene expression. The same three predicted
gene expression from haematoxylin & eosin-stained biopsies.
However, none of these studies linked predicted gene expres-
sion to some diagnostic outcome.

Added value of this study

Attention-based deep learning can be applied to haematoxylin
and eosin-stained tissues to predict expression of genes. Fur-
thermore, when applied to predict genes which accurately dis-
criminate disease outcomes of tuberculosis, the model is
sufficiently accurate to replicate relevant gene expression val-
ues such that disease outcomes which are easily discriminated
by microarray-based gene expression continue to be easily dis-
criminated by the approximations made by the model.

Implications of all the available evidence

Our methodology can be used to map histopathology to gene
expression with sufficient accuracy to predict a clinical out-
come. The proposed methodology exemplifies a computational
template for gene expression panels, in which relatively inex-
pensive tissue histopathology may be mapped to specific genes'
expression to serve as a diagnostic or prognostic tool.
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interest in predicting such signatures of disease stems from the
downstream effects on phenotypes � particularly changes in gene
expression � which in turn drives research towards particular tar-
geted therapies [14] and informs clinical decisions [15,16]. Yet, save
for one very recent study [17], no effort has been made to predict
gene expression profiles from histopathology. Such a tool would
prove invaluable, as current utilization of transcriptome analysis in
the clinic is limited by cost, time, and standardization [18�20].

Our ongoing work focuses on utilization of histopathological and
molecular data to identify biomarkers and underlying mechanisms of
Mycobacterium tuberculosis (M.tb) infection, the cause of tuberculosis
(TB) in susceptible individuals. TB is an important global disease, as
over 2 billion people are currently infected worldwide, with an esti-
mated 10 million new diagnoses and 1.5 million deaths in 2019 [21].
TB results from complex host-pathogen interactions, that contribute
to a spectrum of TB disease forms including rapid mortality (fulmi-
nant TB), chronic disease (pulmonary TB), and more resistant forms:
incipient TB, latent M.tb infection, and early clearance of the bacteria.
Furthermore, although immunodeficiency, diabetes, and old age are
known risk factors for disease progression, most patients with latent
M.tb infection develop active pulmonary TB with no known risk fac-
tors [22]. Moreover, there exists no widely validated lung or blood
biomarkers that accurately differentiate each form of TB in part
because few animal models develop human-like disease phenotypes,
thereby limiting translational experimental findings.

To address these limitations, we use the Diversity Outbred (DO)
mouse population [23]. Each DO mouse is a heterozygous mosaic of
DNA inherited from 8 founder strains [24,25]. The populations’ and
the individuals’ genetic diversity rivals that of humans and has been
used to study disease mechanisms [23�29]. When infected with M.
tb, DO responses better emulate human TB than inbred strains
[23,30�33]. We have observed a wide range of phenotypes in sur-
vival, weight change, lung granulomas, inflammatory and immune
responses, which are not observed in M.tb-infected inbred strains
[34�44]. Analogous forms of TB in humans and DO mice are shown
in Table 1.

Our past work has utilized image analysis and deep learning to
automatically detect histological features of M.tb-infected lungs of
DO mice, including granulomas, cell-poor caseous necrosis, lympho-
cytic cuffs, macrophage-rich regions, neutrophil-rich regions, normal
lung tissue, and acid-fast stainedM.tb [35,37,45�47]. Our most recent
work utilizes attention-based multiple instance learning (MIL) to
classify DO mice into as "supersusceptible" (SS) and "non-supersus-
ceptible" (nSS) with high accuracy (91.50 § 4.68%) using only slide-
level labels [48]. The work was particularly notable for its interpret-
ability by human pathologists � examination of the MIL model
"attention-weights" revealed that the model was making diagnostic
decisions using a form of cellular necrosis: karyorrhectic and
pyknotic nuclear debris.

We sought to develop a deep-learning method to predict gene
expression of a subset of genes fromWSI as an intermediate for classi-
fying SS and nSS (Fig. 1). Recent studies similarly used deep learning
to predict susceptibility of infectious diseases. Abdullal et al. com-
pared a multilayer perceptron to traditional regression to predict sus-
ceptibility to COVID-19 [49]. Zhang et al. utilized genetic algorithms
to develop an autoencoder to extract and cluster features related to
gene expression to predict susceptibility to sepsis [50]. Shashikumar
et al. developed an interpretable recurrent neural network to pre-
emptively predict sepsis based on temporal features such as heart
rate and arterial pressure [51]. Recent studies have also utilized
deep-learning models to predict expression of disease associated
genes. Levy-Jurgenson et al. fine-tuned a pretrained Inception-v3 to
predict high and low expression of breast and lung cancer associated
genes using images patches from digitized haematoxylin and eosin
(H&E) slides, allowing a degree of spatial resolution for genes [52].
Dolezal et al. utilized a pretrained Xception to predict BRAF-RAS score
from digitized H&E slides, a correlate and conglomerate of genes'
expression, in non-invasive follicular thyroid neoplasms, similarly
allowing for a degree of localized scoring [53]. Xu et al. leveraged
deep learning with a novel quantitative method for measuring DNA
methylation in order to predict expression of H3K4me3 [54].
Schmauch et al. developed a multilayer perceptron to predict RNA-
seq expression of the whole transcriptome using features extracted
from generic features of a pretrained ResNet-50 from digitized H&E
biopsies [17].

In this present work, we developed a deep-learning method to
predict gene expression of a subset of genes from WSI as an interme-
diate for classifying SS and nSS (Fig. 1). Training and validation of our
model utilized a set of DO mice experimentally infected with M.tb
from which H&E-stained lung biopsies and gene expression data
(microarray) were acquired. We demonstrate that a modified version
of our previous attention-based MIL model [48] that regresses to gene
expression values is sufficiently accurate to discriminate SS from nSS



Table 1
Analogous TB form in humans and DO mice.

Humans(survival) Fulminant TB(weeks) Pulmonary TB(months/years) Incipient TB(years) Latent TB infection(years/decades) Early clearance(normal lifespan)

DOmice
(survival)

Supersusceptible
(<8 weeks)

Susceptible
(12-20 weeks)

Resistant
(>20 weeks)

Superresistant
(unknown)

Not yet observed
(unknown)
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better than our previous method when validated on a gradient
boosted tree (GBT) classifier trained on ground-truth gene expression
data.

2. Methods

2.1. Study design

Overall, our objective was to predict SS of a population of DO mice
experimentally infected with M.tb from H&E images [30,37] using
gene expression data as an intermediate. This was inspired by the
high accuracy observed when predicting SS using gene expression
data. However, as gene expression data is not widely available and
Fig. 1. Flowchart for the overall method. (a) GBTs select genes that accurately identify SS. (b)
in ground truth label trained GBTs.
H&E is widely available (both in our dataset and in other applica-
tions), we did not want our model to depend on it during inference �
only during training. Our resulting methodology was three-fold � (1)
to select a set of differentially expressed genes that accurately classi-
fies SS (i.e., feature selection on gene expression data) using GBTs, (2)
to modify our previous attention-based MIL model [51] to regress
H&E images to selected genes' expression, and (3) to validate pre-
dicted gene expression data using GBTs trained on ground truth gene
expression to classify SS. Specific justifications for each step are
explained in respective subsections. Fig. 1 depicts a flowchart for the
overall methodology. Mice and M.tb infection, diagnostic categories
of mice, slide preparation, and digital imaging protocols are same to
our previous studies [48].
MIL predicts gene expression from H&E images. (c) Predicted gene expression validates
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2.2. Ethics statement

All ethical procedures for the study were approved by Tufts Uni-
versity's Institutional Animal Care and Use Committee (IACUC) proto-
cols: G2012-53; G2015-33; G2018-33. We complied with all animal
procedures.

2.3. Mice andM.tb infection

At 8-10 weeks old, female DO mice (RRID:SCR_016408) were
infected with very low (~20 bacilli) dose of M.tb strain Erdman (ATCC
strain designation 38501) using a CH Technologies nose-only system.
Mice were randomized in cages prior to infection [45,48]. After infec-
tion, mice were monitored daily for health, weighed at least weekly
and euthanized when IACUC-approved removal criteria were met or
at the predetermined experimental time point. Euthanasia was
required and performed when body condition score was < 2.0;
severe lethargy was observed; or severely increased respiratory rate
or effort was observed. Euthanasia by CO2 asphyxiation was the pri-
mary method, followed by vital organ removal as the secondary
method. No anaesthesia was performed. Non-infected control DO
mice matched for age and gender were identically housed, monitored
and euthanized at experimental end points.

2.4. Diagnostic categories of DO mice

The "supersusceptible" and "not-supersusceptible" ground truth
labels reflect clinical outcomes that occurs during experimental M.tb
infection, the former characterized by morbidity and mortality within
8 weeks of infection and the latter characterized by survival longer
than 8 weeks without morbidity or mortality. These phenotypes are
robust and reproducible.

2.5. Slide preparation and digital images

Lungs from each mouse were inflated and fixed in 10% neutral
buffered formalin, processed and embedded in paraffin, sectioned at
5mm and stained with H&E. H&E-stained glass slides were magnified
400 times and digitally scanned by Aperio ScanScope at 0.23 microns
per pixel with quality factor 70.

2.6. Sample size and selection of mice for gene expression analysis

Lung samples from non-infected DO mice and M.tb-infected DO
mice, representing a spectrum of disease, survival, and M.tb burden
phenotypes from SS and non-SS mice were selected for gene expres-
sion profiling using microarray. The training set (Set 1) consisted of
77 samples from mouse lungs. Briefly, one lung lobe was homoge-
nized in TRIzol and stored at -80C until total RNA extraction using
Pure Link RNA mini-kits (Life Technologies, Carlsbad, CA). RNA was
checked for purity and samples were analysed at the Boston Univer-
sity Microarray and Sequencing Resource Core Facility (Boston, MA).
Mouse Gene 2.0 ST CEL files were normalized to produce gene-level
expression values using the implementation of the Robust Multiarray
Average (RMA) in the affy R package (version 1.36.1) and an Entrez
Gene-specific probeset mapping (version 17.0.0) from the Molecular
and Behavioural Neuroscience Institute (MBNI) at the University of
Michigan. Array quality was assessed by computing Relative Log
Expression (RLE) and Normalized Unscaled Standard Error (NUSE)
using the affyPLM R package (version 1.34.0) and by normalizing the
CEL files using Expression Console (build 1.4.1.46) and the default
Affymetrix probesets to compute the Area Under the [Receiver Oper-
ating Characteristics] Curve (AUC) metric. All microarray processing
was performed using the R environment for statistical computing
(version 2.15.1). Principal component analysis was run on the result-
ing data matrix (Supplementary Fig. 1).
Near the end of our model development, the testing set (Set 2) �
consisting of 33 lung samples from DOmice with susceptibility labels,
lung gene expression data, and digitized H&E slide images of lungs �
became available. The slides and gene expression data from Set 2
were imaged in different batches, and RNA was extracted, processed,
and analysed in a separate batch from Set 1. Thus, Set 1 (77 samples)
and Set 2 (33 samples) were independent and the latter used as an
external testing set for model development.

3. Model description

3.1. GBTs for feature selection

Set 1 was relatively imbalanced in terms of SS (n=23) and nSS
mice (n=54). Furthermore, experimental conditions varied across
subsets of mice within Set 1 (i.e., different initialM.tb doses and batch
effects of microarrays). Finally, our experimentally infected DO mice
have over 20,000 genes for which expression data was available and
the majority of these expression patterns are not predictive of the SS
phenotype. To reduce the number of genes and identify genes predic-
tive of SS while simultaneously accounting for the aforementioned
deficits in Set 1, we posed GBTs as a feature selector, in which genes
were features, gene expression values were feature values, and SS
was the outcome being predicted. Specifically, we utilized the
Xgboost implementation [55] as a novel method for feature selection
[56]. Set 2 was similarly imbalanced (11 SS; 22 nSS), contained mice
across experiments (i.e., different initial M.tb doses), and consisted of
gene expression values derived from a distinct microarray batch.

GBTs are an ensemble of decision trees that operate on the princi-
ple that adding additional trees to the ensemble should emphasize
data points that are incorrectly classified prior to adding additional
trees. For example, if a single tree misclassifies some subset of train-
ing data, then the next tree added to the ensemble should focus on
the misclassified training data. Boosted trees accomplish this by giv-
ing greater weight to misclassified training samples while computing
overall error. However, GBTs instead construct new trees by directly
using the error (called a residual) from the current state of the
ensemble. Thus, the error of the current state of the ensemble is mini-
mized rather than the overall error after adding an additional tree.

Hyperparameter selection was carried out for 100 iterations of a
10-fold cross-validation on Set 1 (details in Supplemental Methods).
For each trial, the unique set of genes utilized in the fitting of the
model were recorded. Following the gene selection process, the top 1
to top 15 most frequent genes (across all 100 trials) were selected,
and an Xgboost model was fit to predict SS for each set of genes using
leave-one-out cross-validation to determine how many genes to use
and to ensure model performance did not degrade. This leave-one-
out procedure was carried out 15 times due to the stochastic nature
of hyperparameter selection. Fig. 2 depicts the process of feature
(gene) selection.

3.2. Attention-based MIL for WSI Processing

Three primary challenges arise when processing WSIs using deep
learning. First, deep learning models require strong labels [57]. This
usually takes the form of hand-drawn annotations on images. Manual
annotations are time-consuming to create and sometimes cannot be
known. Strong labels thus are contrasted with weak labels, which are
assigned to a whole image rather than its individual components. A
second primary challenge is that conventional deep learning models
are incapable of quickly processing large images. Normally, this prob-
lem is resolved by resizing images but cannot apply for WSI process-
ing, as fine (often pertinent) details such as cells, location
information, and tissue-level microanatomy are lost. As a solution,
deep learning models tend to sample smaller image crops ("tiles")
from the WSI. But this is computationally expensive, as WSIs may



Fig. 2. Selection of genes. ~20000 genes are used as features to predict SS using Xgboost. This is iterated 100 times, while the genes utilized by the model are recorded. Then, the five
most frequently occurring genes were utilized for subsequent experiments.
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contain hundreds of thousands of tiles. Finally, a third primary chal-
lenge is that deep learning models are limited by their interpretabil-
ity [1]. This 'black-box' nature of deep learning limits its applicability
in research and medicine, as both scientists and clinicians must know
how decisions are made before informing a biological mechanism or
clinical decision [1,47]. Attention-based deep MIL [48,58] offers a
solution to each of these problems in deep learning when processing
WSIs. A background on MIL and details regarding its attention-based
implementation can be found in the Supplementary Methods. When
the MIL paradigm is applied to WSI processing, bags are analogous to
WSIs and instances are analogous to tiles taken from slides [4].

In our specific case, labels are analogous to SS or gene expression
data. This is because the areas of tissue indicative (i.e., predictive) of
SS are certainly implicit but not explicitly known. Similarly, gene
expression of localized lung regions is not explicitly known but is
implicit by the known overall expression of the whole tissue. When
posed as such, MIL resolves the first two problems described previ-
ously. First, weak labels are generally easily available for WSIs, such
as a disease state or diagnosis. Specifically, both SS and gene expres-
sion are weak (and not strong), as they apply to the whole tissue.
Second, tiles taken from slides (when subsampled) make processing
WSIs quicker without the need for resizing (although there are issues
with subsampling � see next section). The third problem, interpret-
ability, is resolved via attention pooling (Supplemental Methods).
Briefly, attention pooling automatically learns how to weight tiles
according to their pertinence to the overall target, in our case gene
expression. Thus, the magnitude of these weights gives insight into
what the model is paying attention to, yielding interpretability.

3.3. Sampling of WSIs

Ideally, slides would not need to be sampled (i.e., tiles taken as an
instance of the slide), and every part of the tissue would be included
in the training of the model. However, due to the sheer size of WSIs
(~100,000 £ 100,000), this would result in hundreds of thousands to
millions of instance tiles depending on their size. For a relatively shal-
low feature extractor and attention mechanism (as in Supplementary
Table 3), this number of instances far exceeds the limitations of mod-
ern GPUs (with ~16GB memory), as gradients for each instance need
to be recorded during training. This limitation is akin to batch size
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limitation in training conventional convolutional neural networks. In
previous experiments [48] with instance sizes of 32 £ 32 pixels and
256 £ 256 pixels, the resulting limitation was around 5000 and 100
instances, respectively. These experiments also demonstrated that
the spread of instances across the slide was more important than tile
size. Thus, experiments in this study utilized 5000 32 £ 32 pixel tiles
to maximize spread across the slide. Yet, simply sampling 5000 tiles
from each slide proved fruitless (see Results), so the sampling proce-
dure was altered. Instead, for each slide, 100,000 tiles were extracted
at random. Then during training of the MIL model, a random subset
of instances was selected in order to not exceed GPU memory limita-
tions. We thought this to be an appropriate alternative because over
several iterations, each instance should eventually be used. As a com-
parison, 75 bags were created for each slide by randomly sampling
2500 32 £ 32 pixel tiles for each bag. This method effectively func-
tioned as a manner of data augmentation, taking the set of 77 mice to
5775 mice. These sampling methods are depicted in Fig. 3.
3.4. Attention-based MIL to predict gene expression data fromWSIs

After the selection of candidate genes and bags from slides, mod-
els were trained using an attention-based MIL model to predict gene
expression values. Our implementation [48] mapped bag-level fea-
ture vectors to a single value using a fully connected layer followed
by sigmoid activation (which constrains the output to between 0 and
1 � i.e. a probability). A threshold was then applied to perform classi-
fication, as in Eq. (1).

1 if Prob � 0:5

0 if Prob<0:5

(
ð1Þ

bY ¼ zW ð2Þ
To perform regression, the sigmoid activation and thresholding

steps were removed and replaced with a fully-connected layer. Thus,
Fig. 3. Sampling methods. In the first sampling, method 5000 random tiles are selected for a
dom tiles are selected for a slide 75 times.
the regression step takes as input the bag-level feature vector (z)
multiplies it by a matrix of learned weights (i.e. a fully connected
layer) and outputs predictions for gene expression values, as in Eq.
(2). In addition, the initial feature extraction layers and attention
module remained the same. As we eventually utilized only five genes,
the ultimate fully-connected layer, W, was a 90£ 5 matrix, and bY was
a 5 £ 1 vector of predicted gene expression values. The resulting
model is summarized in Supplementary Table 1. Each model was
trained for 200 epochs using the Adam optimizer with a learning rate
of 0.0003, weight decay of 0.0005, betas of 0.9 and 0.999, and training
error cut-off of 0.1. Mean-squared error was used as a loss function
for the regression problem. Training was halted if the validation set
loss did not improve for more than 15 epochs. The model was saved
each time the validation loss decreased. Models were only fit to mice
in Set 1. Fig. 4 depicts WSI gene expression prediction.
3.5. Assessment of gene expression prediction

With models trained to predict the top five gene expression val-
ues, an assessment of how accurate these predictions was needed.
During experimentation, we often examined mean absolute error
over the distribution of gene expression values for single genes in
order to see which range of ground truth gene expression values
resulted in the most error. Although this was effective in comparing
model to model, it could not be used as an absolute measure for accu-
racy because it is not known howmuch error is acceptable in predict-
ing gene values. An error of 0 is the goal, but an error of 1 is perhaps
too much given that the range of gene expression values of the gene
we examined ranged from 2 to 12. Furthermore, gene expression val-
ues are log-transformed, so larger errors are more acceptable for
larger values. As a solution and to compare the MIL method to our
previous method [48], we decided to pass predicted gene expression
values through Xgboost model trained on ground truth gene expres-
sion data to predict SS. In this manner, the accuracy of predicting SS
was used as a proxy for the accuracy of gene expression values
slide. In the second, 100,000 random tiles are selected for a slide. In the third, 2500 ran-



Fig. 4. Gene expression prediction via an attention-based MIL model. Instances (32 £ 32 pixels) are randomly extracted from the lung H&E sections of each mouse and passed
through a feature extractor to yield instance embeddings. Embedding are passed through the attention module to yield an attention weight and thusly scaled and summed to a
slide-level vector. Gene expression is predicted from this slide-level vector using a fully-connected layer.

T.E. Tavolara et al. / EBioMedicine 67 (2021) 103388 7
predicted by the attention-based MIL model. Xgboost models were
trained using the same hyperparameter search as previously
described in the Methods section. Their specificity and sensitivity
were compared to our previous model, which utilized attention-
based MIL to directly predict SS from slides.

3.6. Model summary

Set 1 was used to select genes from 20000 using Xgboost as a fea-
ture selector. Next, the MIL model was trained using a 12-fold
Monte-Carlo cross-validation on Set 1 mice using various bag sam-
pling strategies to predict expression values of all five genes. These
same folds were utilized to cross-validate the Xgboost model to pre-
dict SS using the selected genes. Predicted gene expression values
from the MIL model were passed through their respective Xgboost
models to assess the accuracy of gene expression prediction and to
compare to slide sampling methods. Finally, the independent Set 2
was passed through each fold of MIL model to predict the expression
of the five selected genes. These predictions were passed through an
Xgboost model (trained on Set 1) to predict SS as a proxy for assess-
ing gene expression prediction accuracy and to compare models.

4. Analysis

4.1. Statistical methods

GBT performance was evaluated using overall accuracy, sensitiv-
ity, and specificity of a ten-fold cross-validation for the full set of
genes and subsequent leave-one-out cross-validation using selected
genes as described above (R 3.6.3). Accuracy of gene expression pre-
diction was evaluated using correlation and cosine similarity for each
sampling method using a 12-fold cross-validation as described above
(MATLAB 2020a). Finally, the performance of the H&E to gene expres-
sion model was evaluated using accuracy, sensitivity, and specificity
using the same 12 folds on a GBT model trained on ground truth
gene expression values (R 3.6.3). This procedure was carried out for
Set 1 and then validated using Set 2.
4.2. Role of funding source

The funders had no role in study design, data collection, data anal-
ysis, interpretation, or writing of the report.

5. Results

5.1. GBTs for feature selection

A total of 896 genes were utilized by the GBT classifiers, 100 of
which were unique. 40 of these genes were utilized in one trial, 60 in
more than one trial, and one gene (serpina3n) in 89 trials (Fig. 5a).
The testing sensitivities and specificities (mean§std) for classifying
SS and nSS in these trials were 97.00§8.21 and 92.00§15.67. Leave-
one-out cross-validation of the top genes (Fig. 5b) resulted in high
sensitivities and specificities (Fig. 5c). Given that the sum of mean
sensitivity and specificity for the top 5 genes was the highest, the
remainder of experiments utilized the top 5 genes � serpina3n, ifitm6,
serpina3m, cxcr2, and ms4a8a. The leave-one-out cross-validation
sensitivity and specificity utilizing these top 5 genes was 97.37§1.57
and 98.06§2.57. The variation derives from the hyperparameter
selection.

5.2. Attention-based MIL to predict gene expression data fromWSIs

Following sampling of each slide, an attention-based MIL model
was trained to predict gene expression values for the top 5 genes via
12-fold Monte-Carlo cross-validation. The Pearson correlations
between predicted and ground truth gene expression values across
Set 1 folds are reported in Table 2 for each sampling method � 5000
instances per slide [48], 100,000 instances per slide [48], and the pro-
posed 75 bags of 2500 instances per slide � reported in respective
triplets. To come to a consensus gene expression prediction for the
75 bags of 2500 instances, an average was taken across all 75 output
vectors. Overall, correlation is high for this sampling method and
exceeds the correlation yielded by simply sampling 5000 instances
per slide [48]. In these contexts and throughout the Results, ground



Fig. 5. Results of GBTs for feature selection. (a) Distribution of gene utilizations � only one gene was utilized 89 times. (b) Frequency of each gene use (top 15 shown). (c) Results of
cross-validation on top-n genes (x axis) and their sensitivities and specificities (y-axis).
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truth gene expression refers to the raw log transformed values
reported by microarray analysis, and predicted gene expression
refers to the attention-based MIL model output based on H&E. Train-
ing and validation refer to mice in Set 1 (n = 77) utilized for model
Table 2
Ground truth and predicted gene expression correlation.

Training(Set 1) Validation(Set 1) Testing(Set 2)

serpina3n 0.06 | 0.26 | 0.86 0.18 | 0.59 | 0.69 0.16 | 0.13 | 0.82
ifitm6 0.12 | 0.29 | 0.90 0.25 | 0.60 | 0.84 0.15 | 0.16 | 0.82
serpina3m 0.07 | 0.25 | 0.85 0.13 | 0.36 | 0.63 0.13 | 0.14 | 0.81
cxcr2 0.09 | 0.14 | 0.81 0.29 | 0.50 | 0.69 0.25 | 0.24 | 0.65
ms4a8a 0.12 | 0.24 | 0.89 0.34 | 0.73 | 0.81 0.22 | 0.22 | 0.84
development. Testing refers to mice in Set 2 (n=33), an external test
meant to assess out-of-sample performance of each model.

Though correlation is high, it alone does not indicate that the val-
ues are the same. Thus, we report the cosine similarity of predicted
Table 3
Ground truth and predicted gene expression cosine
similarity.

Validation(Set 1) Testing(Set 2)

5000 0.9961 0.9957
100000 0.9963 0.9958
75 bags of 2500 0.9980 0.9970



Table 4
Performance predicting high/low gene expression.

Training(Set 1) Validation(Set 1) Testing(Set 2)

serpina3n 0.9220/0.1103 0.8571/0.2273 0.9701/0.7958 0.8983/0.1200 1.0000/0.0000 0.9661/0.8000 0.8826/0.1212 0.7682/0.2545 0.8977/0.8030
ifitm6 0.9120/0.1765 0.8750/0.3043 0.9552/0.8896 0.8571/0.1786 1.0000/0.5000 0.9286/0.8214 0.8587/0.1500

0.7565/0.2300
0.8188/0.8917

serpina3m 0.7514/0.2737 0.7234/0.5833 0.8951/0.8248 0.7193/0.4074 0.5000/1.0000 0.8596/0.8519 0.7542/0.3397 0.5750/0.5308 0.8792/0.8846
cxcr2 0.9646/0.0764 0.9184/0.0455 0.9679/0.6867 1.0000/0.0800 1.0000/0.0000 0.9492/0.7600 0.9400/0.1250 0.9480/0.1625 0.8067/0.4479
ms4a8a 0.9809/0.0417 0.9388/0.0455 0.9621/0.7766 0.9833/0.0000 1.0000/0.0000 0.9667/0.8333 0.9625/0.0321 0.9200/0.0692 0.9917/0.7051
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and ground truth gene expression values by taking both as a vector of
values in Table 3 � 5000 instances per slide [48], 100,000 instances
per slide [48], and the proposed 75 bags of 2500 instances per slide.
Overall, the sampling method using 75 bags is more accurate than
dynamically sampling from 100000 instances or the 5000 instances
of our original method. Cosine similarity is defined as the inner prod-
uct of two vectors divided by product of their magnitudes. In essence,
it reflects the angle between two vectors � the more they are aligned,
the higher the value (between 0 and 1).

Finally, we report model performance in terms of predicting high/
low gene expression for each gene in Table 4. As in Table 2, we report
results per gene in pairs for Set 1 and Set 2. Each cell contains three
rows, where each corresponds to a sampling method (5000 instances
per slide [48], 100,000 instances per slide [48], and the proposed 75
bags of 2500 instances per slide). Each member of a pair refers to
high/low classification performance. Overall, the proposed sampling
method outperforms conventional sampling methods.

5.3. Assessment of gene expression prediction

Predicted gene expression values for the validation set of each
fold were then passed through respective Xgboost models that were
previously trained on ground truth gene expression values of the
training set of each fold. The overall cross-validation sensitivity and
specificity for predicting SS are reported in Table 5 for each sampling
method � 5000 instances per slide [48], 100,000 instances per slide
[48], and the proposed 75 bags of 2500 instances per slide �
expressed in sensitivity/specificity pairs. Clearly, the sampling
method using 75 bags of 2500 instances per slide is superior in terms
of accuracy.

6. Discussion

Our results indicate that our attention-based MIL model can be
extended to accurately regress a subset of gene expression values.
This is important, as recent methods have framed MIL solely as a clas-
sification problem in processing WSIs [4,58�62]. This makes sense in
the context of computational pathology, as most popularly, the dis-
ease of interest is cancer, and the desired outcome is grade (or multi-
class classification), or the existence or non-existence of a certain dis-
ease is desired (binary classification). However, there are continuous
clinical intermediates, gene expression being just one of them. These
intermediates are essential, as they provide the information clinicians
need to make informed clinical decisions. The proposed MIL model
not only opens an avenue for predicting other gene expression values
Table 5
Sensitivity/specificity of SS classification using predicted
gene expression values.

Validation(Set 1) Testing(Set 2)

5000 00.00/100.00 00.00/100.00
100000 21.74/90.74 00.00/95.24
75 bags of 2500 87.50/95.00 88.03/92.52
(i.e., other gene products for other diseases) but also other continu-
ous intermediates in medicine, such as tumour microsatellite insta-
bility and immune infiltration. Moreover, we have shown that more
than one continuous variable can be accurately predicted (i.e., multi-
regression). Thus, our model is not limited to predicting only one
value.

Furthermore, we have shown that whole-slide MIL datasets may
be augmented not in traditional sense (by which images are colour
jittered, rotated, flipped, blurred, and warped) but in a "bag" sense in
which multiple bags may be drawn from the same slide. This latter
point is supported by the higher correlation (Table 2), cosine similar-
ity (Table 3), performance (Table 4), and resulting accuracy (Table 5)
in identifying SS mice. This is not only because it is a viable data aug-
mentation step but mostly because WSIs are huge. As a result, deep
learning methods rarely process them as whole. Consequently, most
methods for processing WSIs focus on processing small regions,
namely high-power fields (HPFs). Though these solutions circumvent
the problem of being able to process huge WSIs, they do not fully
address the problem of how to sample WSIs. This is a well-known
problem in the pathology community. Pathologists often sample
regions of the slide when making a diagnosis, and these regions often
vary by pathologist, thus the analyses and decisions derived from
them [1,63]. MIL methods have been proposed as promising solutions
to the original problem � by allowing the processing of a whole-slide
for clinical tasks � and have seen many successes [4,61]. Yet, there
are still hardware limitations, as current hardware is only capable of
fitting a limited number of instances per slide into memory. The pro-
posed sampling methodology overcomes this barrier by decomposing
a slide into multiple bags, thereby processing the whole slide as a
result. The slide is well-represented with hardware-permitting mag-
nitudes of instances.

Given that the best performing sampling method (75 bags per
slide) dramatically increased the size of the dataset, the overall train-
ing time similarly increased. Though this sampling method yielded
more accurate results, a larger dataset (i.e. with more slides) would
similarly require longer training times. However, if the proposed
sampling method is viewed as a data augmentation step (as discussed
previously), it is possible that utilizing 75 bags per slide would not be
necessary for a dataset with more slides. We will explore this possi-
bility on larger datasets in the future.

Recently, investigators used a different a deep learning approach
to predict gene expression data from WSIs using a multi-step process
[17]. Briefly, their model was trained on WSIs of tumour biopsies,
with many origins, to predict the full gene expression data, not just
specific genes. WSI tissue area was spatially clustered using k-means
(k=100), and 8000 tiles (224 £ 224 pixels) were extracted from each
slide. These tiles were passed through Resnet50 [64], and their fea-
tures extracted into a 2048-dimensional vector. These vectors were
then averaged into 100 vectors based on the initial spatial clustering,
dubbed "super-tiles". A multi-layer perceptron was then trained on
these supertiles to predict gene expression data. During training,
only the top k [1,2,5,10,20,50], 100 tiles in terms of predicted gene
expression are selected and a weighted mean computed of their pre-
dictions, giving more weight to higher valued predictions. Finally, the
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model is fine-tuned for specific organs using the 8000 normal tiles,
again sampling the top k [10,20,50], 100, 200, 500, 1000, 2000, 5000
during training. There are three limitations to this method and its
results.

First is their initial clustering step. This step attempts to cluster
homogenous areas of the slide such that their resulting feature vec-
tors are relatively similar. Thus, when averaged, the resulting "super-
tile" remains on the same manifold as the original tiles. The authors
probably did this to reduce the effective number of samples to
decrease training time. Clustering based on slide coordinates intui-
tively makes sense, as local regions tend to be more similar than dis-
tal regions. However, this is not always the case. As tissue structures
on WSIs may be relatively complex in terms of shape, clustering
based on coordinates will result in clusters that do not necessarily
encompass homogenous tissue areas. Though some tissue structures
will fit this shape, many will not, such as layers of a colon or bladder.
Thus, homogenous areas of tissue are not guaranteed to be in the
same spatial cluster. Thus, when extracted features from tiles
selected from this heterogeneous cluster are averaged, the resulting
feature vector may not lie on the original manifold of the set of all
tiles [65]. For example, in three dimensions, extracted features from
tiles of one tissue type may lie on a plane, while another tissue type
may lie on a different plane. If all these points are averaged, unless
the planes are the same plane, the resulting feature vector will not be
on either plane. Both spatial positions, as well as value (i.e., the value
of the features coming from local regions), are important when con-
sidering clustering for such a purpose. This is evidenced by such
methods as mean-shift segmentation, which considers both spatial
coordinates as well as feature values [66]. Our proposed sampling
method, based on visual evidence, guarantees that homogenous
regions of the slide receive the same attention weight; thus, a true
heterogeneous sampling can be achieved.

Second is the choice of the number of clusters as well the k's
(number of top tiles or supertiles to consider when computing loss)
during the training phase. The authors did not mention what criteria
led to the selection of any of these parameters. It is probable that
these parameters need to be tuned, which in the context of deep
learning may take exhaustive computational resources. In the case of
the proposed MIL model, these parameters need not be chosen, as
the attention weighting mechanism automatically learns the weights
necessary for combining embedded instances.

Third, the result of our correlation seems to be superior to those
presented in [17]. Their reported correlations ranged from 0.11 to
0.47, which is weak. This indicates that the gene expression predic-
tions were relatively inaccurate compared to the ground truth gene
expression. Our experiments on our best sampling method yielded
0.63 to 0.90, indicating relatively moderate to high correlation.
Though the results presented here only predicted five gene expres-
sion values compared to their 28,334. However, in preliminary
experiments, the proposed MIL model was mapped to 1000 random
genes rather than just the top 5. The resulting cosine similarities
were on average 0.9959 and Pearson correlations on average 0.59.
This suggests that the proposed MIL model may generalize to any
number of genes.

The proposed methodology has limitations. Our work is based
on a relatively small dataset that could limit its applicability to
other disease models. However, the MIL method does generalize
to an external dataset of microarray data, which was produced
from a separate experimental infection, different generation of
DO mice, and separate microarray batch. Finally, when applied to
a larger number of genes, this generalization still holds. There-
fore, we believe that the relatively small size of the dataset is not
a significant problem.

The translational relevance of the current work derives from the
insight gained from intensive study the lungs, the primary site of TB.
Lung tissues are not readily available from human TB patients before
or after death, and the treatments patients receive alter the tissue
and cellular responses. Therefore, to obtain mechanistic insight into
TB granuloma structure and function, we must model infection using
an in vivo animal model that genotypically and phenotypically
resembles humans. The DO mouse population is the only mouse pop-
ulation that captures human genetic diversity and can be used to
identify genes and polymorphisms that contribute mechanistically,
which is a goal of our research. No other Outbred animal model (e.g.,
non-human primates, rabbits, guinea pigs) can be used to address
these knowledge gaps. The transcripts highly expressed in lungs of
M.tb-infected SS DO require further study. Roles for 4 of the top 5
transcripts (serpina3n, ifitm6, serpina3m, and ms4a8a) are unknown
in TB. serpina3 transcripts encode for protein molecules in cell activa-
tion, signalling, and metabolism, and are elevated in brain tissues of
patients with TB meningitis [67] but mechanisms and consequences
are not known for TB. ifitm6 transcripts encode for an interferon-
inducible transmembrane protein of innate immune cells such as
macrophages [68] and may generally regulate generation of T cell-
mediated immunity [69] but this is unproven speculation. ms4a8a
transcripts encode for membrane-spanning plasma proteins reported
highly expressed in alternatively activated macrophages and den-
dritic cells in homeostasis [70] and autoimmunity [71]; and again is
unknown in TB. Of the top 5, cxcr2 has been investigated in context
of TB with 18 papers retrieved from a PubMed search on 3/24/2021.
cxcr2 encodes for a chemokine receptor which recruits neutrophils
and macrophages via ligands CXCL1, CXCL2, CXCL5. cxcr2 expression
is high due to many of these cells in the lungs, or high levels
expressed by few individual cells (or both). This is consistent with
the TB granuloma phenotypes we previously described [37]. In other
models of inflammation, cell-specific deletion of cxcr2 in neutrophils
protects hosts against brain-damaging inflammation [72]. Roles
(known and hypothesized for CXCR2 and its ligands CXCL1, CXCL2,
and CXCL5) in TB in humans and experimental animal models have
recently been reviewed [73].

Here, we presented a deep-learning model to predict SS of DO
mice to M.tb infection using gene expression data as an intermediate
modality from histology images. Overall, on our selected gene set, it
is accurate, showing relatively high positive correlations with ground
truth gene expression values on both cross-validation and external
testing sets. Furthermore, when predicted gene expression values
from validation and testing sets are passed through an Xgboost
model trained on ground truth gene expression training values, the
resulting classification accuracy in identifying SS mice is high. Finally,
the resulting accuracy is higher than that of our previous method. In
future studies, we will explore a promising biological application of
the model in which expression of single genes may be localized to
specific anatomical locations � "virtual staining" � using attention
weights in a similar manner to our previous work. This could gener-
ate novel hypotheses regarding molecular mechanisms and could be
used to infer functional differences in lesions with similar morpholo-
gies. We will additionally examine prediction of expression of a
larger number of genes.

The overall methodology, from gene selection to target a spe-
cific outcome, to predicting gene expression values, to again pre-
dicting an outcome based on predicted gene expression values,
we believe serves as a computational template for gene expres-
sion panels. As performing a full transcriptomic profile is not
practical in clinical settings, only disease-specific genes are pro-
filed. This aspect of gene expression panels is modelled by the
proposed GBT feature selection method (bound to a specific dis-
ease) and by the proposed MIL regression method to gene
expression. These profiles in the clinic then inform disease-spe-
cific clinical decisions, in our case supersusceptibility to tubercu-
losis. When trained for specific clinical outcomes, the overall
methodology depends on H&E and is economical, efficient and
deterministic in comparison to gene expression panels.
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