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In Eukaryotes, organelle interactions occur at specialised contact sites

between organelle membranes. Contact sites are regulated by specialised teth-

ering proteins, which bring organelle membranes into close proximity, and

facilitate functional crosstalk between compartments. While contact site pro-

teins are well characterised in mammals and yeast, the regulators of plant

contact site formation are only now beginning to emerge. Having unique sub-

cellular structures, plants must also utilise unique mechanisms of organelle

interaction to regulate plant-specific functions. The recently characterised

NETWORKED proteins are the first dedicated family of plant-specific con-

tact site proteins. Research into the NET proteins and their interacting part-

ners continues to uncover plant-specific mechanisms of organelle interaction

and the importance of these organelle contacts to plant life. Moreover, it is

becoming increasingly apparent that organelle interactions are fundamental

to autophagy in plants. Here, we will present recent developments in our

understanding of the mechanisms of plant organelle interactions, their func-

tions, and emerging roles in autophagy.
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Eukaryotic cells are compartmentalised into specialised

membrane-bound organelles. Interaction between dif-

ferent organelles is fundamental to a range of pro-

cesses including exchange of small molecules such as

calcium, lipid transfer and autophagy [1,2]. Physical

Interaction between organelles occurs in various forms.

For example, membrane ‘contact sites’ between orga-

nelles are mediated by protein complexes that tether

membranes of each organelle in close proximity (ap-

proximately < 30 nm) without fusion of organelle

membranes [1]. Conversely, organelle fusion is regu-

lated by distinct tethering proteins, which facilitate the

merging of organelle membranes [3]. Interactions

between the actin cytoskeleton and organelle mem-

branes are also mediated by specialised protein com-

plexes with diverse roles [4], likely including regulation

of organelle interaction.

In animal and yeast model systems, proteins that

regulate organelle contact sites are well characterised,

and interactions between virtually all organelles are

known to be mediated by specific protein complexes.

However, the identities of contact site proteins in

plants have long remained elusive and, as such, the

mechanisms of plant organelle interactions and their

importance remained unknown. Orthologues of many

yeast and mammalian contact site proteins are not
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present in plants. Having markedly different cell struc-

tures, it can be expected that plants have adapted

unique toolkits of contact site proteins to regulate

their unique functional niches.

Recent breakthrough discoveries have greatly

advanced our understanding of how membrane inter-

actions are regulated in plants. For example, the NET-

WORKED family of actin-binding proteins have been

characterised as dedicated plant-specific contact site

proteins, linking various organelle membranes to the

actin cytoskeleton and mediating inter-organelle inter-

actions [5–8]. The NETWORKED protein family has

been a starting point used to uncover many novel con-

tact site proteins. Continuing research has uncovered

several plant-specific mechanisms of organelle interac-

tion, and their significance to plant life.

As we begin to understand the functions of plant

membrane interactions, their importance in the regula-

tion of autophagy is becoming apparent. During

autophagy, cargo destined for degradation (including

specific organelles and proteins) is encapsulated in

vesicular membrane autophagosomes and targeted to

the vacuole. It is now emerging in plants, as has been

well characterised in mammals and yeast, that orga-

nelle interactions are involved in several stages of

autophagy, including selective targeting of cargo for

autophagy, autophagosome biogenesis, and transport

and targeting to the vacuole.

In this review, we will discuss the discovery of the

NET protein family and the subsequent characterisa-

tion of novel contact sites, as well as other known reg-

ulators of organelle interaction. We will present recent

advances in the study of plant actin-membrane con-

tacts, organelle-membrane interactions, and their roles

in plant autophagy.

The NETWORKED protein family

The NETWORKED (NET) superfamily of actin-

binding proteins has been identified as plant-specific

proteins, hypothesised to fill the functional niche of

mammalian actin-membrane linker complexes such as

spectrin, filamin and a-actinin, which are absent in

plants [5]. The first NET family member was originally

discovered in a protein localisation screen in a library

of GFP fusions to Arabidopsis cDNAs [9]. One identi-

fied GFP fusion was named NETWORKED 1A

because of the chimeric protein’s localisation to a fila-

mentous array that was confirmed to be the actin net-

work. The cDNA fragment encoded a novel, NET

actin-binding (NAB) domain which was found to be

conserved in 12 other Arabidopsis proteins and this

domain then defined the NET superfamily of actin-

binding proteins. The NET protein family consists of

four subfamilies, based on protein structural homology

and expression patterns [5], and each bind F-actin at a

specific subcellular compartment. There exist four

NET1 isoforms in Arabidopsis (NET1A-D), of which

NET1A binds actin and localises to the plasmodes-

mata (Fig. 1A). The pollen-specific NET2 subfamily

(NET2A-D) binds the actin network at the plasma

membrane (Fig. 1B) [5,7,10]. The NET3 subfamily

meanwhile consists of three conserved proteins:

NET3A has been observed to localise to the nuclear

envelope [5], NET3B binds actin to the ER (Fig. 1C)

[11] and NET3C binds actin at ER-PM contact sites

(Fig. 1D) [6]. Finally, the NET4 subfamily, consisting

of NET4A and NET4B, both bind actin at the vacuole

tonoplast (Fig. 1E) [5,8].

Therefore, the NET protein family represents a

plant-specific toolkit of proteins dedicated to linking

the actin cytoskeleton to various membrane compart-

ments. The characterisation of the NET family has

established early examples of protein complexes that

physically connect distinct organelles, through interac-

tion of proteins localised to separate compartments.

This has provided a starting point from which to

expand our understanding of plant contact site regula-

tion and function, as subsequent research into the

NETs and their wider interactors continues to eluci-

date novel protein complexes involved in the regula-

tion of organelle interactions. A summary of the

NETs’ interaction partners at membrane contact sites,

described below, is shown in Fig. 2.

Components of plant membrane
contact sites

Interactions between the cytoskeleton and

plasma membrane

In mammalian models, proteins that tether the actin

cytoskeleton to the plasma membrane, such as Spec-

trin, Filamin and a-Actinin, are not present in plants

[5]. Instead, plants possess several unique mechanisms

of interaction between the plasma membrane and the

actin cytoskeleton.

Recently, the NET2 subfamily of NET proteins was

found to bind and anchor actin cables at the plasma

membrane in pollen tubes through interaction with the

integral membrane kinases, PRK4 and PRK5, at

stable patches designated actin-membrane contact sites

(AMCS). These AMCS are important in the organisa-

tion of the cortical cytoskeleton and polar pollen tube

growth [7,10]. A direct link between a transmembrane

signalling receptor-kinase and F-actin implicates a role
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for AMCS in extracellular signal transduction to the

actin cytoskeleton to mediate actin-driven subcellular

responses to the environment.

Interactions between the actin cytoskeleton and PM

are also mediated by NET3C, which binds F-actin and

is hypothesised to interact with the PM phospholipids

through a putative C-terminal lipid-binding domain

[6]. Further research on NET3C has revealed it to exist

in a complex with the microtubule-binding proteins,

KLRC1 and IQD2, which together organise the corti-

cal actin and microtubule cytoskeletons to regulate cell

wall deposition [12].

Endoplasmic reticulum-plasma membrane

contact sites (EPCS)

Contact sites between the ER and plasma membrane

(ER-PM Contact Sites; EPCS) have been extensively

characterised in animals and yeast, from which canoni-

cal roles in inter-organelle lipid transfer and calcium

signalling have been attributed [13]. Perhaps, the best

characterised EPCS proteins are the Vesicle-Associated

Membrane Protein (VAMP)-Associated Protein (VAP)

family; ER integral membrane proteins conserved

across eukaryotes. The yeast VAP proteins, Scs2p and

Scs22p localise to the ER to mediate tethering to the

PM [14,15] and interact with several PM-localised

ORP [Oxysterol Binding Protein (OSBP)-Related Pro-

teins] family lipid transfer proteins, including Osh2p

and Osh3p, which facilitate lipid transfer between the

PM and cortical ER [14,16]. As in yeast, mammalian

VAP also interacts with OSBP, and has also been

shown to form EPCS through interaction with the

PM-localised Voltage-gated potassium channel, Kv2

[17]. Mammalian Extended Synaptotagmins (E-SYTs)

also serve as tethering factors between the ER and

Fig. 1. NETWORKED family proteins

connect the actin cytoskeleton to specific

membrane compartments. Depicted are

the subcellular localisations of GFP fusions

of representative NET proteins, analysed

by confocal microscopy. (A) NET1A-GFP

predominantly localises to the transverse

walls of root cell files, where it was found

localised to plasmodesmata [5]. (B)

NET2A-GFP localises to punctae at the

pollen tube plasma membrane [5]. (C)

NET3B-GFP binds actin to the ER [11]. (D).

GFP-NET3C localises to punctae at ER-PM

Contact Sites [5]. (E) NET4A-GFP localises

to punctae at the vacuole tonoplast [5].

Figure 1 has been reproduced from [5, 6,

11] (A), (B) and (E) have been reproduced

from [5]; (C) has been reproduced from

[11]; (D) has been reproduced from [6].
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PM; anchored to the ER membrane through an

N-terminal hydrophobic hairpin domain, and interact-

ing with plasma membrane phospholipids with C-

terminal C2 domains [18]. Many such EPCS proteins,

including VAPs, ORPs and E-SYT proteins are con-

served in plants, and their functions at membrane con-

tact sites are beginning to emerge.

Following the discovery of the plant NET protein

family, subsequent investigation of NET3C revealed it

to mediate EPCS through interaction with VAP27-1,

which is a plant orthologue of mammalian VAP, and

yeast Scs2 [6]. NET3C interacts with the ER-integral

VAP27 to tether the ER membrane to the PM, and

overexpression of NET3C and VAP27 results in

expansion of the EPCS [6,19]. Plant VAP27 proteins

have been shown to interact with endosomal clathrin

and PI(4)P to maintain homeostasis of endocytosis

[20], and NET3 and VAP27 have been shown to be

important in normal plant development [6,19,21].

SYT1, the orthologue of mammalian E-SYT pro-

teins, has also been characterised in Arabidopsis, and

has been shown to stabilise NET3C/VAP27-mediated

EPCS [22,23]. SYT1 is important in the regulation of

osmotic stress responses [24] and functions to enhance

EPCS expansion under salt stress. This appears to be

regulated by stress-induced PI(4,5)P2 accumulation at

the plasma membrane, with which SYT1 interacts

through its conserved C2 domains [22,25]

Our understanding of plant EPCS is still emerging,

and the hypothesised roles of plant EPCS in processes

such as calcium signalling or lipid exchange have yet

to be characterised. Plant ORP proteins are likely can-

didates to mediate lipid transfer between the ER and

plasma membrane; the Arabidopsis genome encodes

12 ORP proteins [26]; however, their functions have

yet to be characterised.

ER-mitochondrial and ER-plastid interactions

Interactions between ER and mitochondria are known

to exist in plants [27,28]; however, the protein com-

plexes that mediate contact sites are poorly charac-

terised compared to animals and yeast. In yeast, the

ERMES (ER-Mitochondria Encounter Site), mediated

by a complex consisting of the ER-integral Mmm1,

and mitochondrial outer envelope proteins, Mdm10,

Mdm34 and Mdm12, tethers the mitochondria to the

ER and mediates lipid transfer between the two orga-

nelles [29,30]. Additionally, the yeast mitochondrial

import protein, Tom70, interacts with the ER-localised

Fig. 2. Characterised mechanisms of organelle interactions and actin-membrane contact in plant cells. EPCS are mediated by SYT1 and

VAP27. VAP27 binds to PM-localised NET3C to connect the PM, ER and actin. NET3C forms a complex with the microtubule-binding pro-

teins IQD2 and KLRC1 to link the ER, PM, microtubules and actin. Actin-PM contact sites are also mediated by NET2 and the transmem-

brane receptor kinases, PRK4&5. NET1 binds actin and localises to the plasmodesmata [5]. NET3B binds actin to the ER. ER-mitochondrial

interactions are mediated by the interaction of VAP27 with the outer mitochondrial membrane proteins, TraB1a and TraB1b. Interactions

between the ER and chloroplasts occur through a yet-uncharacterised mechanism. NET4 binds actin at the vacuole tonoplast through inter-

action with tonoplast-localised RabG3.
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lipid transfer protein, Ltc1, which also is likely to

function in lipid transfer between the ER and mito-

chondria [31]. TOM70 also serves as an ER-

mitochondrial contact site protein in animals, and

mediates ER to mitochondrial calcium transfer

through recruitment of IP3R3 calcium channels [32].

In mammals, ORP5 and ORP8 are localised to ER-

mitochondrial contact sites, where they interact with

the mitochondrial outer envelope protein, PTPIP51

and ER-integral VAP proteins and are hypothesised to

mediate lipid transport [33].

A novel protein complex mediating ER-

mitochondrial contact sites has recently been charac-

terised in Arabidopsis. An interaction between VAP27

and the outer mitochondrial envelope proteins, TraB1a

and TraB1b promotes interaction between the ER

and mitochondrial membranes, and is important in

maintaining normal mitochondrial morphology and

respiratory function [21]. Additionally, plant ER-

mitochondrial interactions appear to have a functional

role in mitochondrial dynamics: the mitochondrial

outer envelope GTPase, Miro2, regulates tethering of

mitochondria to the ER and promotes mitochondrial

fusion [27]. It is also likely that plant contact site

proteins regulate processes such as calcium and

lipid transfer between the ER and mitochondria, as in

animals and yeast. In particular, plant homologues

of mammalian ORP5/ORP8 are promising candi-

dates to mediate ER-mitochondrial lipid exchange.

However, such areas of research are yet to be fully

explored.

The ER is known to reside in physical contact with

the chloroplast outer envelope [28,34,35], and this con-

nection appears to undergo dynamic remodelling

under stress [28]. ER-chloroplast connections are also

likely to occur at chloroplast stromules; tubular pro-

trusions of the chloroplast envelope which run con-

tiguous with ER, suggestive of some interaction [36].

Membrane contacts are important for lipid exchange

between the ER and chloroplasts, which is facilitated

by CLIP1 lipase, localised to ER-chloroplast contact

sites [37] and chloroplast-localised TRIGALACTO-

SYLDIACYLGLYCEROL (TGD) proteins [38].

Although the importance of ER-chloroplast interac-

tions is well understood, it is still unclear how the two

organelles are physically linked, and remains an excit-

ing area of future research.

Actin-membrane interactions at the vacuole

Contact sites between the actin cytoskeleton and vac-

uole have also recently been characterised in plants,

and are important in regulating vacuole morphology

[5,39]. This may indicate an involvement of actin in

regulating tonoplast remodelling, or vacuole fusion.

The NET4 subfamily of actin-membrane contact site

proteins is emerging as a regulator of actin-vacuole

contact sites. NET4 proteins bind actin at the tono-

plast [5,8,40], and may function to regulate vacuolar

occupancy [40]. NET4 proteins have recently been

characterised as downstream effectors of RabG3,

which recruit NET4 to the tonoplast to mediate actin-

driven vacuolar remodelling in response to extracellu-

lar pathogen perception [8]. It is possible that actin

may provide the driving force necessary to remodel the

structure of the tonoplast, and the exact mechanism

by which NET4-mediated contact sites can regulate

tonoplast morphology remains a focus of future

research.

The role of membrane interactions in
autophagy

It is becoming increasingly apparent that plant mem-

brane interactions have a crucial role in the regulation

of autophagy. Inter-organelle membrane contact is

fundamental to many steps of autophagy progression.

During the biogenesis of the autophagosome,

autophagosomal membranes are generated from orga-

nelle membrane sources such as the ER, facilitated by

an actin-driven force [41]. Selective autophagic degra-

dation of specific organelles requires their docking to

the expanding phagophore which is a double mem-

brane emanating from the ER and engulfs autophagic

cargo to form the autophagosome [42]. The mature

autophagosome is targeted to the vacuole through

association with actin transport networks, and must

fuse to the tonoplast to deliver its contents for degra-

dation in the vacuole [42]. Therefore, protein regula-

tors of organelle interaction can be expected to have

important roles in the regulation of autophagy. Here,

we will explore the potential roles of characterised con-

tact site proteins in autophagy.

Membrane contact sites in autophagosome

biogenesis

The ER is one of the main sources of autophagic

membranes, and ER-membrane contact sites are

known to have important roles in autophagosome bio-

genesis. In mammals, the EPCS proteins, VAPA and

VAPB have been shown to regulate expansion of pha-

gophores through the interaction of autophagy regula-

tory proteins, ULK1 and FIP200 [43]. Furthermore,

ESYT-mediated EPCS are necessary for localised PI3P

synthesis at the expanding phagophore, which is a
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crucial first step in autophagy initiation [44].

Mammalian ER-mitochondrial contact sites too are

important in autophagosome biogenesis. Recruitment

of ATG14, a regulator of PI3P synthesis, suggests

that ER-mitochondrial contact sites may have a

role in localised PI3P accumulation at the phagophore

[45].

In plants, VAP27-mediated EPCS also appear to

have an important function in autophagosome biogen-

esis, and vap27 loss of function mutants exhibit

autophagy-defective phenotypes [46]. Plant EPCS are a

site of autophagosome biogenesis, and bring together

the ER membrane, cytoskeleton and plasma

membrane-localised endocytic machinery to drive for-

mation of the autophagosome. This process is medi-

ated by a complex of VAP27, the actin-binding

protein EH/Pan1, the T-PLATE complex and clathrin

[46]. It is possible that one role for VAP27-mediated

EPCS is PI3P synthesis at the expanding phagophore,

as pharmacological inhibition of PI3P synthesis dis-

rupted EH/Pan1 localisation to the autophagosome

[46].

Interaction of the actin cytoskeleton and ER is also

important in autophagosome biogenesis in plants. The

EH/Pan1 yeast orthologue activates the ARP2/3 com-

plex to regulate actin polymerisation and drive mem-

brane invagination during endocytosis [47,48].

Arabidopsis EH/Pan1 interacts with the ARP2/3 com-

plex at the autophagosome, and is likely to regulate

actin polymerisation to drive autophagosome biogene-

sis [46]. ARP2/3 is also regulated by the SCAR/WAVE

complex, members of which also regulate autophago-

some biogenesis. For example, the SCAR/WAVE pro-

tein, NAP1 localises to nascent autophagosomes

associated with the ER, and is important in

autophagosome biogenesis [49]. These recent findings

indicate that regulation of actin dynamics at the ER is

an important step in autophagosome biogenesis. It is

hypothesised that F-actin may provide the driving

force to shape the expanding phagophore, or connect

the newly formed autophagosome to actin transport

networks [49] (Fig. 3A). Interestingly, it has been

demonstrated that disruption of the actin cytoskeleton

does not inhibit bulk autophagy in plants, suggesting

that autophagosome biogenesis and targeting to the

vacuole can also be mediated by other mechanisms

independent of actin-membrane interactions [50]

Recent findings indicate that plant ER-mitochondrial

interactions also may have a role in autophagy. The

ER-mitochondrial contact site proteins, TraB1a and

TraB1b, have been demonstrated to interact with the

autophagy protein, ATG8 through ATG8-Interacting

Motif (AIM) domains, and regulate autophagic

degradation of mitochondria [21] (Fig. 3B). Further

investigation of this link between plant ER-

mitochondrial interactions and autophagy may eluci-

date potential mechanisms by which these contacts

may regulate autophagosome biogenesis.

Plant ER-organelle interactions and selective

autophagy

Selective autophagy is the targeted autophagic degra-

dation of specific cell components, including organelles

such as mitochondria, chloroplasts, peroxisomes and

the ER [51]. Organelles and other components targeted

for autophagic degradation must be sequestered to the

ER-derived phagophore [52]. Therefore, interactions

between organelles and the phagophore, and perhaps

the ER, is inherent to their degradation by the autop-

hagy pathway.

In yeast, it is known that ER-mitochondrial contact

sites, mediated by the ERMES complex, are required

for mitophagy, likely to facilitate sequestration of

mitochondria by the ER-derived phagophore [53]. In

plants, a similar role may be played by the ER-

mitochondrial contact site proteins, TraB1a and

TraB1b. TraB1 proteins are important in autophagic

degradation of damaged mitochondria under stress,

and promote mitophagy by interacting with ATG8,

perhaps targeting mitochondria to the nascent

autophagosome [21]. TraB1-mediated tethering of

mitochondria to the ER may be important to supply

ER-derived membrane to the expanding mitophago-

some.

Chloroplasts are also known to be degraded by

autophagy [54], and it is possible that tethering

between the ER and chloroplasts may also be an

important step in the initiation of chlorophagy.

ATG8-interacting protein 1 and 2 (ATI1 & ATI2) are

known to be important in stress tolerance, exhibit a

dual localisation to the ER and chloroplast, and have

a putative role in autophagic degradation of chloro-

plasts [55]. It is possible that ATI1 and ATI2 may

serve to establish a tether between the ER and chloro-

plasts during chlorophagy.

Selective autophagic degradation of the ER, or ER-

phagy, also occurs in plants [56], and is likely to

depend on EPCS and actin. In yeast, the VAP27

homologues Scs2/Scs22, Pan1 and the ARP2/3 com-

plex regulate ER-phagy by connecting the cortical ER

to endocytic pits to facilitate actin-driven sequestration

of ER domains to the phagophore [57]. In Arabidop-

sis, EH/Pan1 and VAP27 may play a significant role

in ER-phagy through regulation of EPCS, actin and

the endocytic machinery.
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Autophagosome fusion with the tonoplast

Autophagy requires the fusion of autophagosomes to

the tonoplast. The mammalian orthologue of RabG3,

Rab7, is important in fusion of autophagosomes with

the lysosome [58]. In Yeast, the RabG3 orthologue,

Ypt7, localises to autophagosomes and recruits the

HOPS (Homotypic Fusion and Vacuole Sorting) com-

plex, which facilitates fusion with the tonoplast

through activation of SNARE proteins [59]. In plants,

a role for RabG3 in vacuolar targeting of autophago-

somes is emerging. RabG3 isoforms localise to

autophagosomes and interact with the autophagy

regulatory protein, ATG8 [60–62], while pharmacologi-

cal disruption of RabG3 function has been determined

to impair targeting of autophagosomes to the vacuole,

perhaps through blocking assembly of the HOPS

complex [62]. As downstream effectors of RabG3 [8],

NET4 proteins may also function in fusion of

autophagosomes to the tonoplast. The actin cytoskeleton

serves as an intracellular transport network and NET4

may serve to connect and tether actin to the tonoplast

downstream of RabG3. This may facilitate targeting

of autophagosomes to the vacuole, or perhaps pro-

mote fusion through regulation of actin-driven force

(Fig. 3C).

Conclusion

Our understanding of plant membrane contact sites

and their constituent protein complexes is rapidly

advancing, and characterisation of NET contact site

proteins has provided a starting point for the wider

characterisation of novel mechanisms of organelle

interaction. As plant membrane contact sites are

becoming better characterised, their diverse functions

are increasingly appreciated. In plants, inter-organelle

membrane interactions are implicated in extracellular

signal transduction across membranes [7,8,10], mem-

brane remodelling [8,49], maintenance of organelle

Fig. 3. Potential roles of organelle interactions and actin-membrane interplay in plant autophagy. (A) EPCS contribute to autophagosome bio-

genesis. The ARP2/3-regulator, EH/Pan1 interacts with VAP27 and PM-localised T-PLATE components. Regulation of the cortical actin

cytoskeleton and endocytic machinery functions to drive expansion of the ER-derived phagophore. It is also possible that EPCS are impor-

tant in lipid transfer from the PM to the phagophore membrane. Additionally, the SCAR-WAVE protein, NAP1, promotes ARP2/3-dependent

actin dynamics at the ER to drive autophagosome biogenesis. (B) Organelle interactions with the ER may play a role in selective autophagy.

The outer mitochondrial membrane proteins TraB1a and TraB1b bind VAP27 to mediate ER-mitochondrial interactions, and mitophagy

through interaction with ATG8. Tethering of mitochondria to the ER may promote their sequestration to the ER-derived phagophore. ATI1

and ATI2 may also have a role in mediating interaction of the chloroplast and the ER or phagophore, and interact with ATG8 to mediate

autophagic chloroplast degradation. (C) Actin-Membrane interactions may function to target autophagosomes to the vacuole. NET4 localises

to the tonoplast through interaction with RabG3, and may link actin transport networks to the tonoplast to promote autophagosome delivery.

Regulation of actin-driven force by NET4 may also promote fusion of autophagosomes and the tonoplast.
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structure and organisation [10,12,21], stress response

[25,46,49,55], lipid transfer between organelles [37,38],

membrane fusion [27], cell wall deposition [15] and cell

morphology [10,15].

Several novel types of plant contact sites have roles

in the regulation of autophagy. Interactions between

organelle membranes are known to play significant

roles in autophagosome biogenesis, likely by facilitat-

ing interplay between regulatory proteins located to

specific organelles, and lipid transfer between organelle

membranes [45,46,49]. Inter-organelle interactions are

fundamental to the sequestration of specific organelles

to the phagophore during selective autophagy, and

plant ER-mitochondrial contacts have been shown to

be important for mitophagy [21]. As the components

and functions of plant membrane contact sites become

elucidated, we will further understand how interor-

ganelle interactions regulate specific autophagic pro-

cesses.
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