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Transposition of great arteries (TGA) is one of the most common and severe congenital heart
diseases (CHD). It is also one of the most mysterious CHD because it has no precedent in
phylogenetic and ontogenetic development, it does not represent an alternative physiologi-
cal model of blood circulation and its etiology and morphogenesis are still largely unknown.
However, recent epidemiologic, experimental, and genetic data suggest new insights into
the pathogenesis.TGA is very rarely associated with the most frequent genetic syndromes,
such asTurner, Noonan,Williams or Marfan syndromes, and in Down syndrome, it is virtually
absent. The only genetic syndrome with a strong relation with TGA is Heterotaxy. In later-
alization defects TGA is frequently associated with asplenia syndrome. Moreover, TGA is
rather frequent in cases of isolated dextrocardia with situs solitus, showing link with defect
of visceral situs. Nowadays, the most reliable method to induce TGA consists in treating
pregnant mice with retinoic acid or with retinoic acid inhibitors. Following such treatment
not only cases ofTGA with d-ventricular loop have been registered, but also some cases of
congenitally corrected transposition of great arteries (CCTGA). In another experiment, the
embryos of mice treated with retinoic acid in day 6.5 presented Heterotaxy, suggesting a
relationship among these morphologically different CHD. In humans, some families, beside
TGA cases, present first-degree relatives with CCTGA. This data suggest that monogenic
inheritance with a variable phenotypic expression could explain the familial aggregation
of TGA and CCTGA. In some of these families we previously found multiple mutations
in laterality genes including Nodal and ZIC3, confirming a pathogenetic relation between
TGA and Heterotaxy. These overall data suggest to include TGA in the pathogenetic group
of laterality defects instead of conotruncal abnormalities due to ectomesenchymal tissue
migration.

Keywords: transposition of great arteries, heterotaxy, genetics of congenital heart diseases, embryology of
congenital heart diseases, experimental animal models

INTRODUCTION
Transposition of the great arteries (TGA) is one of the most com-
mon and severe, but also one of the most mysterious, congenital
heart diseases (CHD).

With a prevalence of 3,54/10,000 live births in Europe, it is the
fourth most common type of major cardiac defect (1), represent-
ing 5% of all CHD and 34% of conotruncal defects with situs
solitus (2).

It is a severe CHD: indeed, if not treated, it is the leading cause
of cardiac death in neonates and infants (3).

Last but not least, it is still a rather mysterious CHD: in phy-
logenetic and ontogenetic development it has no precedent (4);
it does not represent an alternative physiological model of blood
circulation (5); its etiology and its morphogenesis are still largely
unknown (2).

Over the last years, great improvements have been made in
diagnosis, as well as in medical and surgical treatment of this
CHD (5–10). As a consequence, nowadays, the overall survival
of these patients is significantly better (11). In this review we

report on the recent genetic and embryological researches on this
fascinating CHD.

PATHOGENETIC CLASSIFICATION
In 1986 Clark (12) introduced a pathogenetic classification of
CHDs, that has been commonly accepted (13). This classification
consists of six causative mechanism of CHDs: (i) ectomesenchy-
mal tissue migration abnormalities; (ii) intracardiac blood flow
defects; (iii) cell death abnormalities; (iv) extra cellular matrix
abnormalities; (v) abnormal targeted growth; (vi) anomalies of
visceroatrial situs and ventricular looping. TGA, classically con-
sidered as a conotruncal defect, according to Clark’s classification
was considered an anomaly of ectomesenchymal tissue migration.

On the other hand, in the Baltimore–Washington Infant Study,
a fundamental epidemiologic investigation of CHD, Ferencz et
al. showed that extracardiac anomalies had different prevalence
in TGA (10%, mostly kidney and cerebral anomalies) in com-
parison with other conotruncal defects (35%), such as tetralogy
of Fallot, truncus arteriosus, and interrupted aortic arch, which
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are frequently associated with DiGeorge syndrome and del22q11
(2, 14). Moreover, in this study TGA resulted more common in
males than females. So the Authors suggested to consider TGA as
a CHD etiologically different than others conotruncal defect (2).

EMBRYOLOGIC THEORIES
There are two main theories which try to explain the embryological
mechanisms of TGA.

One theory, formulated by Goor and Edwards (15, 16), suggests
that TGA is caused by the lack of the normal, clockwise (when the
heart is viewed from above), rotation of the aorta toward the left
ventricle. This defect of infundibular rotation is supposed to be
caused by an abnormal resorption or underdevelopment of the
subpulmonary conus with an abnormal persistence of the subaor-
tic conus. Therefore, according to this theory, TGA is an extreme
case in the spectrum of “dextroposition of the aorta”that goes from
various forms of double outlet right ventricle, through tetralogy of
Fallot, up to malalignment type of ventricular septal defects (17).

The second theory, proposed by de la Cruz (18, 19), focuses on
abnormal spiraling of the aorto-pulmonary septum. She suggested
that in the embryogenesis, either normal or pathological, there is
no rotation at the infundibular level. TGA is due, instead, to a lin-
ear rather than spiral development of aorto-pulmonary septum,
that puts the forth aortic arch (the future aorta) in contact with
the anterior conus, situated on the right ventricle.

There are arguments both in favor and against each of these
theories.

The “infundibular theory” seems to explain better cases of
TGA with ventricular septal defect and with a certain degree of
pulmonary overriding, which are morphologically similar to the
double outlet right ventricle. It is less helpful, though, in explaining
cases with intact ventricular septum.

On the other hand, the “extracardiac theory” does not account
for the great variability of infundibular morphology in this cardiac
defect (20, 21).

However, a recent study showed that a spiraling migration
(clockwise when viewed from above) of cells from the right and
left secondary heart field is necessary for the elongation and a
proper alignment of the pulmonary outflow tract, so that it may
acquire its right-handed spiral pattern (22, 23). In 2006, Bajolle
et al. (24) demonstrated the occurrence in Pitx2 mutant embryos
of conotruncal defects with rotational anomalies, including TGA
(Figure 1), which confirms the importance of the spiral movement
of outflow tract (18, 19).

GENETIC SYNDROMES AND EXTRACARDIAC
MALFORMATIONS
Transposition of great arteries is very rarely associated with
the most frequent genetic syndromes, such as Turner, Noonan,
Williams or Marfan syndromes (Table 1), and in Down syndrome,
it is virtually absent (25). It is interesting to note that TGA might
be sporadically associated with trisomy 8 and 18, with VACTERL
and CHARGE syndromes (2, 14), as well as with tuberous scle-
rosis (26), deletion of the long arm of chromosome 11 (27) and
of the short arm of chromosome 18 (28) (Table 1). Moreover, in
our patients with TGA, we have observed also isolated cases of
anomalies of chromosome 3, 15, X (unpublished data) (Table 1).

FIGURE 1 |The L–R pattering is caused at the node by an early breaking
of bilateral symmetry. The nodal gene is essential in this function and the
midline acts as a physical and molecular barrier to determine correct
side-specific gene expression. The leftward Nodal flow (arrow) transport to
the left wall of the node the nodal vesicular parcels. At this level Nodal
interplays with other signalings including Notch, LeftyA, Cryptic, Pitx2, etc.
(Modified from Zhu et al 2006; 14:14–25)

Furthermore, extracardiac anomalies are extremely rare in
TGA patients, and include mostly kidney diseases and cerebral
abnormalities (2).

The association of TGA with DiGeorge/Velocardiofacial Syn-
drome and with del22q11 is a topic that deserves wider discussion.
Patient with DiGeorge syndrome may present TGA (14, 29), as
well as patient with del22q11 (30–33) (Table 1). Animal experi-
ments have demonstrated that the ablation of neural crest in chick
embryos may results in TGA (34). Nevertheless TGA cannot be
considered a characteristic cardiac defect of del22q11 syndrome,
unlike such defects as tetralogy of Fallot, truncus arteriosus, and
interrupted aortic arch type B (33). Instead only 1% of patient with
TGA have del22q11. Thus it is possible to hypothesize a patho-
genetic relationship between TGA and del22 but their association
should be considered rare and sporadic (30–33).

The only genetic syndrome with a strong relation with TGA is
the Heterotaxy (Table 1). First of all, TGA is rather frequent in
cases of isolated dextrocardia with situs solitus, showing link with
defect of visceral situs (35). Moreover, in lateralization defects
(Heterotaxy or isomerisms) TGA is frequently associated with
complete atrioventricular canal (CAVC), mostly in asplenia syn-
drome (right isomerism). TGA associated with CAVC has been
reported in almost 100% of cases of asplenia syndrome (35, 36),
with d-ventricular loop {A,D,D} as well as with l-ventricular loop
{A,L,L}. On the other hand, it is interesting to note that TGA is
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Table 1 | Genetic and non-genetic causes ofTGA.

Genetic Syndromic Heterotaxy (right isomerism) (35)

Trisomy 8 (2, 14)

Trisomy 18 (2, 14)

VACTERL (2, 14)

CHARGE (2, 14)

Tuberous sclerosis (26)

Deletion 11q (27)

Deletion 18p (28)

Anomalies chromosome 3, 15, X

(unpublished data)

DiGeorge/deletion 22q11 (14, 29–33)

Turner syndrome (25)

Noonan syndrome (25)

Williams syndrome (25)

Marfan syndrome (25)

Non-syndromic ZIC3 (41–43, 45)

Nodal (44, 47)

CFC1 (45, 46)

Smad2 (44)

Teratogens Maternal diabetes (56, 57)

Maternal infections (14)

Ionizing radiations (14)

Pesticides (52)

Ibuprofen (14)

Antiepileptic drugs (53)

Hormonal drugs (54)

Other drugs (55)

In vitro fertilization (58)

significantly rarer in polysplenia syndrome (left isomerism): in
these cases great arteries are usually normally related {A,D,S} or
“inversely” normally related {A,L,I} (35, 37). This different preva-
lence has statistical significance (35–37), and has to be given a
pathogenetic explanation.

Also in experimental animal models of Heterotaxy syndrome,
TGA has been frequently reported, both in d-ventricular loop
and in l-ventricular loop (38–40). It is worth noting that in
some large families with recurrence of Heterotaxy and ZIC3 gene
mutation (41–43) (Table 1), besides cases with situs inversus,
with polysplenia or asplenia, there are cases of congenitally cor-
rected transposition of great arteries (CCTGA) with situs solitus
{S,L,L}. Therefore, we can suppose, therefore, that the same genetic
mechanism could produce variable phenotypes in these families,
including not only different kinds of Heterotaxy (asplenia or poly-
splenia),but also situs solitus CCTGA. Moreover, in mice knockout
of Smad2 and Nodal gene (genes involved in the process of lateral-
ity determination) leads to TGA associated with right pulmonary
isomerism of the lung, in more than 50% of cases (44) (Table 1).
Finally, in some patients with isolated or syndromic TGA have been
observed mutations of ZIC3 (45), CFC1 (45, 46), and Nodal (47)
(Table 1). All these are“laterality genes”associated with Heterotaxy
(Figure 1).

A possible relationship between TGA and anomalies of ventric-
ular looping has been already speculated in times past (1, 48–50),

but scientific literature has not supported this hypothesis (51).
Nowadays, the recent evidences suggest that TGA is most closely
associated with the Heterotaxy syndrome.

TERATOGENS AND EXPERIMENTAL ANIMAL MODELS
An important issue, in the etiological and epidemiological studies
of the TGA, is the occurrence of this CHD due to intake of ter-
atogens, especially pesticides, by mothers (52) (Table 1). Cases of
TGA associated with intake of antiepileptic (53), hormonal (54),
and other drugs (55) are rarely reported, while the prevalence
of TGA is higher in infants of diabetic mothers (56, 57) and as
result of maternal infection (such as flu), intake of ibuprofen or
ionizing radiation (14), as well as in cases of in vitro fertilization
(58) (Table 1). A reduced occurrence of CHD, including TGA, has
been reported as result of periconceptional intake of folic acid,
which may be considered a protective factor against congenital
malformations (59).

To induce TGA with teratogens in experimental animal models
is quite difficult. Initially radiations and trypan blue were used,
but now the most reliable method consist in treating pregnant
mice with retinoic acid (1, 38). It is interesting to note that fol-
lowing such treatment not only cases of TGA with d-ventricular
loop have been registered, but also some cases of TGA with l-
ventricular loop (CCTGA). In another experiment, the embryos
of mice treated with retinoic acid in days 6.5 presented Heterotaxy.
We could explain the differences in the cardiac phenotype thus
obtained with a different timing of teratogen treatment (1, 38).
This notwithstanding, the pathogenetic mechanism seems to be
the same, suggesting that there is a relationship among these
morphologically different cardiac defects.

We recently obtained TGA by administration of a retinoic acid
competitive antagonist in pregnant mice (60), showing that crit-
ical levels of retinoic acid must be present for normal heart and
conotruncal development. These teratogenic effects may be con-
sistently reduced by folic acid and methionine supplementation
(61). Based on these data and following the results of further
experiments, we suggested that the teratogenic development of
TGA was due to Hif1α down-regulation in response to blocking
retinoic acid (62). Hif1α has an essential role in cardiac embry-
ology and one of his downstream target Cited2 is involved in
left/right determination (Figure 1). Overall these results confirm
a pathogenetic links between TGA and lateralization defects with
Heterotaxy.

FAMILIAL RECURRENCE
Usually TGA is considered to have a low risk of familial recurrence.
The English multicentric study by Burn et al. reported no familial
cases of TGA (63). Our experience on this topic is rather differ-
ent (64–66): in a multicentric Italian study the recurrence rate in
siblings of patients with TGA were calculated at 1.7% (66). It is
interesting to underline that in some families, beside TGA {S,D,D}
cases, there were first-degree relatives (siblings or parents) with
CCTGA {S,L,L}. This data suggest that monogenic inheritance
(autosomal dominant or recessive) with a variable phenotypic
expression could explain the familial aggregation of TGA and
CCTGA. In some of these families we found multiple mutations in
laterality genes including Nodal and ZIC3 (Figure 1), confirming
a pathogenetic relation between TGA and Heterotaxy (67).
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VENTRICULAR LOOPING AND SPIRALITY, HETEROTAXY, AND
TRANSPOSITION
Ventricular looping is genetically determined in all vertebrates
including humans, and it represents the first morphological sign
of L–R asymmetry in embryonic development (68).

In normal embryogenesis the rightward looping of the heart
causes d-ventricular loop, continues with a looping movement
that brings the right ventricle anteriorly, and finally involves the
infundibula and the great arteries in a “rightward spiralization.”
As a result of this movement the ventricles, infundibula, and great
arteries fall into their regular position. The “rightward spiraliza-
tion” of the heart represents a pattern corresponding also with
the normal rightward rotation of the bowel (69) and the normal
cerebral asymmetry (70, 71).

It is remarkable that the same rightward spiralization is preva-
lent, though not exclusive, in the development of other organisms
such as shells (72) (Figure 2), some bacteria including Bacil-
lus subtilis (73) and some climber plant including Convolvulus
arvensis (74).

We have previously suggested that the normal (right-handed)
spiral pattern of the great arteries and the prevailing right-handed
spiral pattern of snail shells show some phenotypic similarities
(35, 75–77) (Figure 2).

Our morphological observations of cardiac defects in laterality
disorders, including TGA, showed that in persons with situs inver-
sus, the normal (right-handed) spiral pattern of the great arteries is
inverted, showing a left-handed spiral pattern similar to a minority
of shells. On the other hand, in subjects with TGA with or without
asplenia/right isomerism any spiral pattern of the great arteries is
lost: the two great arteries run parallel to each other, without any
sign of spiralization (35, 75, 76). Therefore, we hypothesized that
these normal and abnormal anatomical aspects, comparable in
humans and in shells, could share a common genetic mechanism
(35, 75, 77).

Recent articles confirmed our suggestion showing the role of
Nodal signaling in left-right asymmetry in snails: embryos of dex-
tral (right-handed) species Lottia gigantea express Nodal gene on
their right side, while embryos of sinistral (left-handed) species
Biomphalaria glabrata express Nodal on their left side (78, 79). As
in vertebrates the heart designates the situs, in snails the pattern of
chirality of the shell (right-handed vs. left-handed) is a sign of situs
and of internal organ arrangement (80–82). Moreover, the recent
study of Grande and Patel showed that pharmacologic inhibition
of the Nodal pathway produces loss of shell chirality, which results
in a straight non-spiralized shell (79). Interestingly, it recalls the

FIGURE 2 | (A) Anatomical aspect of normal heart with situs solitus.
Note the right-handed spiral pattern of outflow tract and great arteries.
(B) Right-handed shell of the snail Amphidromus perversus rufocinctus.

straight non-spiral phenotype of the great arteries in human TGA
in some cases, associated of mutation of the same Nodal gene
(67, 80–82). We can conclude that Nodal gene (Figure 1), strongly
conserved by phylogenetic mechanisms, is a gene of development
involved in the morphogenetic mechanism of normal and abnor-
mal spiralization of great arteries of vertebrates and of normal and
abnormal spiralization of the snail shells (78–82).

Moreover, what still needs to be elucidated is the possible rela-
tionship between the spiralization of the cardiac outflow tract
and of great arteries and the hypothesis of spiralized pattern of
myocardial band (77, 83–85), the chirally asymmetric paths of
intracardiac flow (86, 87), and the spiral pattern detected at cellular
and molecular level (83, 87).

CONCLUSION
In 1998, Brett Casey, one of the pioneers in the field of genetics
of Heterotaxy, asked “Are some complex, isolated heart malforma-
tions actually unrecognized manifestations of aberrant left–right
asymmetry development? (43).” Nowadays, the overall epidemi-
ological, experimental, and genetic data suggest that TGA, even
in situs solitus, can be expression of laterality defects, as it has
already been shown for some forms of CAVC (88–91).

Even though the detailed pathogenesis of TGA remains rather
mysterious, maybe there are some gleams of light in rela-
tion of normal or abnormal spiralization and lateralization
mechanisms.
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