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Over 50 million people around the world currently are suffering from

Alzheimer’s disease (AD) without any effective therapy. Neuroinflammation

plays a pivotal role in AD, which leads us to probe the profile of immune cell

infiltration in AD. Here, we analyzed amicroarray dataset (GSE44770) containing

115 AD and 115 control samples to determine biomarkers and immune

infiltration characteristics of AD by multiple bioinformatics methods. First, we

identified 3,840 DEGs (1892 upregulated and 1948 downregulated) by using the

limma package and 2,697 hub genes by constructing a weighted gene

correlation network, and they had a total of 2,167 intersecting genes.

Second, combining the LASSO logistic regression and SVM-RFE, we

obtained five biomarkers (DGKG, MAP3K7IP2, NFKBIE, VIP, and PCCB), which

may reveal the key pathogenetic features of AD and serve as diagnostic markers

assessed by the ROC curve (AUC = 0.9716) and validation of another AD dataset

(GSE33000) (AUC = 0.9388). Third, immune cell infiltration analysis revealed

that compared with control samples, plasma cells, CD8 T cells, T follicular

helper cells, and activated NK cells infiltrated less in AD; Monocytes,

M2 macrophages, and neutrophils infiltrated more in AD. Neutrophils and

activated NK cells demonstrated the most significant and negative

correlation. Then, Spearman correlation analysis between the five

biomarkers and immune infiltrating cells revealed that all of them were

significantly associated with plasma cells. Finally, mRNA levels of VIP and

PCCB were conformed in a murine AD model. In conclusion, DGKG,

MAP3K7IP2, NFKBIE, VIP, and PCCB may be used as diagnostic markers of

AD, and the disruption of the delicate immune balance may be a key process in

the onset and development of AD.
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Introduction

Over 50 million people around the world currently suffer

from Alzheimer’s disease (AD) (Chung et al., 2020). Yet to

date, no effective therapy is available. Neuroinflammation

plays a pivotal role in AD in addition to accumulation of

extracellular β-amyloid (Aβ) and intracellular

hyperphosphorylated tau (Heneka et al., 2015a). Combined

multi-omics have uncovered more than 30 AD-risk loci, most

of which are associated with microglia and innate immune

responses, such as apolipoprotein E and triggering receptor

expressed on myeloid cells 2 (Pimenova et al., 2018). This

implies that neuroinflammation is not a bystander to the

pathological process of AD but an essential contributor.

This leads us to probe the profile of immune cell

infiltration in AD.

Here, we determined five biomarkers and the immune

infiltration characteristics of AD by multiple bioinformatics

methods and found that in the brain tissues of AD patients,

there is a tendency for the adaptive immune system to be

activated and innate immunity to be suppressed, which may

contribute to the pathological damage and cognitive impairment

caused by immune dysregulation in AD.

Data processing

GSE44770, an AD expression dataset, was downloaded from

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/) (Zhang et al., 2013). The data on

autopsied brain tissues of the dorsolateral prefrontal cortex

from 115 AD patients and 115 non-demented subjects were

taken for the study. We sequentially normalized the gene

expression data (normalizeBetweenArrays function), added

missing values (impute.knn function), removed unannotated

genes, discarded duplicates, and finally obtained the matrix

for subsequent analysis, which includes 17,405 genes (exp_

matrix_processed.txt).

Recognition of differentially expressed
genes

The limma package (Ritchie et al., 2015) in R was executed to

identify DEGs in autopsied brain tissues of the dorsolateral

prefrontal cortex between AD patients and non-demented

subjects. p < 0.01 adjusted by the false discovery rate (FDR)

and |log2 fold change (FC)| > 0.1 were considered as statistically

significant.

Weight gene correlation network analysis

The WGCNA package (Ritchie et al., 2015) in R was

performed for WGCNA, with all genes included. First, the

hclust function was used to inspect the hierarchical clustering

traits of the sample. Second, the soft threshold power β was

determined as 5 by the pickSoftThreshold function. The

parameter TOMType was set as “unsigned”. The minimum

module size should not be less than 30.

FIGURE 1
Visualization of the principal component analysis (PCA) and volcano plot of DEGs between AD and control samples. (A) PCA plot revealed that
the two groups of AD and control clustered well after normalization. (B) Volcano plot showed DEGs, among which red dots represent upregulated
genes, blue dots represent downregulated genes, and gray dots represent genes without significance.
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Gene set enrichment analysis

GSEA is used to identify the differential expression of gene

sets rather than individual genes (Subramanian et al., 2005). The

clusterProfiler package in R (Subramanian et al., 2005; Yu et al.,

2012) was used to conduct GSEA for screening Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and

Gene Ontology (GO) terms that may be involved in AD of the

GSE44770 dataset. All 17,405 genes and corresponding log2FC

were included regardless of the p-value. The gene list can be

found in Supplementary Table S1. p < 0.05 adjusted by FDR was

considered statistically significant.

Gene enrichment analysis

In total, 2,167 overlapping genes of DEGs and hub genes

filtered from WGCNA were determined, which were considered

the input gene set for GO and KEGG analysis. Biological

processes (BP), cellular components (CC), and molecular

FIGURE 2
Identification of the AD-related module by WGCNA. (A) Soft threshold power β was set to 5. (B) Cluster dendrogram shows a total of
23 modules. Module size is as follows: black (668), blue (1,688), brown (1,497), cyan (96), darkgreen (45), darkred (49), darkturquoise (42), green
(1,016), greenyellow (224), gray (1910), gray60 (77), lightcyan (83), lightgreen (72), lightyellow (57), magenta (459), midnightblue (88), pink (598),
purple (331), red (799), royalblue (55), salmon (149), tan (167) turquoise (5,935), and yellow (1,300). (C) Correlation between modules and traits,
among which the turquoise module is the most relevant to AD (correlation coefficient = −0.74; P = 3e-41). (D) Scatter plot shows the correlation
between gene significance and module membership of individual genes in the turquoise module.
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functions (MF) comprise the GO terms. p < 0.05 adjusted by FDR

was considered statistically significant.

Scanning and validation of molecular
markers

The least absolute shrinkage and selection operator

(LASSO) regression algorithm is commonly performed on

high-dimensional data and can accurately predict key features

among thousands of variables (Tibshirani, 1996). Support

vector machine-recursive feature elimination (SVM-RFE) is

a feature selection algorithm widely used in genomics (Guyon

et al., 2002; Kai-Bo et al., 2005), metabolomics (Mahadevan

et al., 2008; Lin et al., 2012), and proteomics (Dao et al., 2017).

The packages of glmnet and e1071 in R were used to

implement algorithms of LASSO regression and SVM-RFE,

respectively. Then, overlapping genes obtained by LASSO and

SVE-RFE were taken as molecular markers of AD, which were

validated with the receiver operating characteristic (ROC)

curve.

Immune cell infiltration

CIBERSORT, a method for cellular heterogeneity

assessment, was used for the determination of immune cell

infiltration (Newman et al., 2015). Samples with p < 0.05 were

selected. In the present study, a total of 70 samples were retained

for immune cell infiltration. Spearman correlation analysis was

FIGURE 3
Gene enrichment analysis. (A,B) Bubble plot showing gene enrichment analysis of GO and KEGG. (C,D)GSEA for GO terms and KEGG pathways.
BP, biological processes; CC, cellular components; MF, molecular functions.
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evaluated between recognized molecular markers and infiltrating

immune cells.

qPCR validation of gene expression in
murine

The 5×FAD mice are a kind of canonical AD model mice

(Oblak et al., 2021). All mice were kept at the Xiamen University

Laboratory Animal Center with a 12-h light/12-h dark cycle and

food and water ad libitum. All animal experimental procedures

were approved by the Animal Care and Use Committee of

Xiamen University. Total RNA in the brain cortex of 12-

month-old WT and 5×FAD mice was extracted with the RNA

extraction kit (#G3013, Servicebio, China); then, 2 mg of which

was used for reverse transcription with the Evo M-MLV Mix Kit

(#AG11728, Accurate Biology, China). The mRNA levels of

relevant genes were determined by qPCR with SYBR Green

Mix (#AH0104-B, SparkJade Biotechnology, China) and

calculated. For statistical analysis, Student’s t-test was used. ns:

not significant, *p < 0.05, **p < 0.01, and ***p < 0.001.

Results

Identification of DEGs in AD

The data from two groups clustered well after normalization

indicated by principal component analysis (Figure 1A). Based on

the given cut-off criteria, we identified 3,840 DEGs, of which

1892 were upregulated and 1948 were downregulated (Figure 1B,

Supplementary Table S1, S2).

Identification of the AD-relatedmodule by
WGCNA

WGCNA was performed to identify the key module with the

strongest relevance to AD. The soft threshold power β was set to 5

(Figure 2A). A total of 23 modules were determined (Figure 2B),

with the turquoise module being the most relevant to AD

(correlation coefficient = −0.74 and P = 3e-41; Figure 2C). The

correlation between gene significance (GS) andmodulemembership

(MM) of individual genes in the turquoise module was presented as

FIGURE 4
Scanning and validation of molecular markers by the algorithm of LASSO logistic regression and SVM-RFE. (A) Algorithm of LASSO logistic
regression. (B) Algorithm of SVM-RFE. (C) Venn diagram shows shared biomarkers identified by LASSO logistic regression and SVM-RFE. (D,E)
Diagnostic accuracy of the merged five biomarkers is shown by the ROC curve and validated in an external expression profile, GSE33000.
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a scatter plot (Figure 2D). According to the cut-off criteria of |GS| >
0.5 and |MM| > 0.6, 2,697 genes in the turquoise module were

determined as hub genes (Supplementary Table S3).

Gene enrichment analysis

There are 2,167 overlapping genes between DEGs and hub genes

of the turquoisemodule (Supplementary Table S4), whichwere taken

for further enrichment analysis of GOandKEGG (Figures 3A,B). GO

analysis showed that genes were significantly enriched in synapse

organization and regulation of neuro projection development,

learning, or memory; KEGG analysis showed that genes were

significantly enriched in Alzheimer’s disease and Huntington’s

disease. All these results implied that AD is characterized by

disordered homeostasis of the nervous system. As for GSEA, all

genes and the corresponding log2FC (Supplementary Table S1) were

included (Figures 3C,D). GSEA of GO showed that activation of the

immune response, macrophage activation, and neutrophil-mediated

immunity were significantly enriched, implying a role of immune

response in AD. More specifically, GSEA of KEGG showed that

inflammatory signaling pathways such as the IL-17 signaling

FIGURE 5
Assessment of immune cell infiltration between AD and control samples. (A) Box plot shows the relative proportion of different types of immune
cells in samples. (B)Heatmap indicates the correlation of different types of immune cells with significant differences. (C) Violin plot shows differences
in immune infiltrating cells between AD and control samples.
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pathway, JAK-STAT signaling pathway, and NF-kappa B signaling

pathway were significantly enriched.

Scanning and validation of molecular
markers

The 2,167 overlapping genes between DEGs and hub genes of

the turquoise module were included for the algorithm of LASSO

logistic regression and SVM-RFE. The samples are categorized

into a training set and a test set in a ratio of 7:3 for LASSO

regression, and as a result, 14 genes were identified (Figure 4A).

The area under the curve (AUC) of the two sets implied a reliable

accuracy of LASSO analysis and a favorable diagnostic capacity

of the 14 genes by the ROC curve (AUC of the train set =

0.9798 and AUC of the test set = 0.9793; Supplementary Figure

S1). A total of 27 genes were determined by the SVM-RFE

algorithm with 5-fold cross validated accuracy (Figure 4B).

Finally, we identified five genes shared by the two algorithms,

namely, DGKG, MAP3K7IP2, NFKBIE, VIP, and PCCB

(Figure 4C), and the ROC curve indicated high diagnostic

accuracy of the merged five genes with reasonableness and

appropriateness of combining LASSO regression and SVM-

RFE (combined AUC = 0.9716; Figure 4D). Further validation

was performed in another expression profile of AD, GSE33000

(Narayanan et al., 2014), and the result implied high sensitivity

and specificity of DGKG,MAP3K7IP2, NFKBIE, VIP, and PCCB

for diagnosing Alzheimer’s disease (combined AUC = 0.9388;

Figure 4E).

Assessment of immune cell infiltration

Immune cell infiltration traits were assessed by CIBERSORT,

followed by visualization. Figure 5A showed the immunocyte

composition of each sample. A total of seven types of immune

FIGURE 6
Correlation between the 5-gene signature and infiltrating immune cells. (A) Immune infiltrating cells significantly correlated with DGKG. (B)
Immune infiltrating cells significantly correlated with PCCB. (C) Immune infiltrating cells significantly correlated with MAP3K7IP2. (D) Immune
infiltrating cells significantly correlated with VIP. (E) Immune infiltrating cells significantly correlated with NFKBIE. (F) Venn diagram indicates that
plasma cells is the only term of immune infiltrating cells that significantly correlates with all the five biomarkers.
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cell infiltration significantly differed between control and AD

samples, and their correlation was evaluated (Figures 5B,C).

Specifically, compared with control samples, plasma cells,

CD8 T cells, T follicular helper cells, and activated NK cells

infiltrated less in AD; monocytes, M2 macrophages, and

neutrophils infiltrated more in AD (Figure 5C). The degree of

correlation between different immune cells implies their

potential inter-regulatory link. Among them, neutrophils and

activated NK cells demonstrated the most significant and

negative correlation, and T follicular helper cells indicated the

most significant and positive correlation with CD8 T cells

(Figure 5B).

Correlation between the 5-gene signature
and infiltrating immune cells

The ggstatsplot package was used for Spearman correlation

analysis between the 5-gene signature and infiltrating immune cells.

The results showed that DGKG positively correlated with

monocytes (correlation = 0.354; p = 0.003) and neutrophils

(correlation = 0.339; p = 0.004), and negatively correlated with T

follicular helper cells (correlation = −0.285; p = 0.02) and plasma

cells (correlation = −0.408, p = 0.0004), together with CD8 T cells

(correlation = −0.473; p = 3.57e-05) (Figure 6A); PCCB positively

correlated with plasma cells (correlation = 0.322; p = 0.006) and

activated NK cells (correlation = 0.289; p = 0.02) and negatively

correlated with monocytes (correlation = −0.249, p = 0.04)

(Figure 6B). Similarly, there were several infiltrating immune cells

correlated with MAP3K7IP2, VIP, and NFKBIE (Figures 6C–E).

The term of plasma cells is the only immune infiltrating cells that

significantly correlate with all genes in the 5-gene signature

(Figure 6F). These results may reveal a potential link between the

5-gene signature and traits of infiltrating immune cells, as well as

regulatory effects of the 5-gene signature on infiltrating immune

cells. The combined effects of the 5-gene signature may be a driving

factor in regulating infiltrating immune cells.

qPCR validation of the 5-gene signature in
murine

Wedetermined themRNA levels of these five genes using qPCR

and found that VIP and PCCB expressions were downregulated

compared to the control group, which is consistent with our

previous analysis. However, the DGKG expression profile was

contradictory to our aforementioned results; furthermore, we

found that the expression levels of MAP3K7IP2 and NFKBIE in

the AD group were not significantly different from those in theWT

group (Figures 7A–E).

Discussion

AD comprises the predominant type of dementia without

any effective therapy. In-depth exploration of the molecular

FIGURE 7
qPCR validation of the 5-gene signature in murine. ns: not significant, *p < 0.05, **p < 0.01, and ***p < 0.001.
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mechanisms of AD can help identify new therapeutic targets. The

role of neuroinflammation in AD has been extensively examined

over recent years (Heneka et al., 2015a; Calsolaro and Edison,

2016; Ryu et al., 2018), yet its exact contribution remains unclear,

which guided us to explore the immune infiltration

characteristics of AD.

Here, we applied comprehensive bioinformatics methods to

explore new mechanisms of AD. In total, 2,167 genes were

identified by combining DEG and WGCNA, which were

mainly enriched in pathways involving disordered homeostasis

of the nervous system. GSEA of GO and KEGG implied a pivotal

role of neuroinflammation in AD, such as the IL-17 signaling

pathway, JAK-STAT signaling pathway, or NOD-like receptor

signaling pathway.

Then, a 5-gene signature (DGKG, MAP3K7IP2, PCCB, VIP,

and NFKBIE) was identified by combining the LASSO logistic

regression and SVM-RFE, two machine learning methods

searching for the best variable. Briefly, DGKG (diacylglycerol

kinase gamma), exclusively expressed in the cerebellum, modifies

protein kinase C gamma to regulate cerebellar motor

coordination. Considering the potentially critical role of the

cerebellum in cognitive impairment of AD, how DGKG

participates in AD warrants further research (Jacobs et al.,

2018). MAP3K7IP2 (mitogen-activated protein kinase 7-

interacting protein 2), an activator of TAK1, is necessary for

the IL-1-induced activation of NF-κB and JNK(Hu et al., 2014).

PCCB (propionyl-CoA carboxylase subunit beta) is a

mitochondrial enzyme involved in lipid and amino acid

metabolism (Kalousek et al., 1980; Jiang et al., 2005; Chasman

et al., 2009). The aberrant methylation of PCCB is linked to

autism spectrum disorder by causing mitochondrial dysfunction

(Stathopoulos et al., 2020). VIP (vasoactive intestinal peptide)

has been shown to be neuroprotective and plays an essential role

in the acquisition of learning and memory (Gozes et al., 1996).

NFKBIE (NFKB inhibitor epsilon) can set NF-κB in an inactive

state by cytoplasmic retention of REL proteins (Whiteside et al.,

1997; Hoffmann et al., 2002). Downregulation of NFKBIE may

lead to aberrant upregulation of NF-κB, thus participating in the

development of AD. We further validated the mRNA levels of

these genes by qPCR in an ADmouse model and found that VIP,

PCCB, and DGKGwere down-regulated compared to the control

group, while MAP3K7IP2 and NFKBIE in the AD group were

not significantly different from those in the WT group. In vivo

and in vitro result conflicts might be due to species differences.

Collectively, the signature may reveal the key pathogenetic

features of AD, which need further research.

To further investigate the role of immune cell infiltration in

AD, we performed a comprehensive evaluation of AD immune

infiltration using CIBERSORT. We found less infiltration of

plasma cells, CD8T cells, T follicular helper cells, and

activated NK cells and more infiltration of monocytes,

M2 macrophages, and neutrophils in AD. Intriguingly, the

former is all classified as adaptive immunity, and the latter is

all classified as innate immunity; this implies a tendency of the

activated adaptive immune system and suppressed innate

immunity, which is consistent with the literature and may

contribute to the pathological damage and cognitive

impairment caused by immune dysregulation in AD.

Specifically, an AD transgenic mouse model lacking adaptive

immune populations (T cells, B cells, and natural killer cells)

showed higher Aβ deposition and exacerbated

neuroinflammation (Marsh et al., 2016). Preclinical and

epidemiological studies have shown that the activated innate

immunity is a key factor in promoting the development of AD

(Heneka et al., 2015b). Therefore, appropriate suppression of the

activated adaptive immunity and restoration of the suppressed

innate immunity may be a strategy for AD treatment.

There are several limitations to the present study. First,

sample size is inadequate; second, AD model mice instead of

human-derived tissues were used for mRNA expression

validation of the screened genes. Overall, further basic and

clinical research studies are still warranted to conform our

findings.

Conclusion

In conclusion, activated adaptive immunity and

suppressed innate immunity may act as underlying causes

of AD, and appropriate suppression of the activated

adaptive immunity and restoration of the suppressed innate

immunity may be a therapeutic strategy for AD treatment.

DGKG, MAP3K7IP2, NFKBIE, VIP, and PCCB may play a

pivotal role in AD and can be used as diagnostic markers and

therapeutic targets of AD.
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