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Abstract

Classical swine fever virus (CSFV) is one of the most important pathogens affecting

swine. After infection with a moderate virulence strain at 8 hours after birth, CSFV is

able to induce viral persistence. These animals may appear clinically healthy or showed

unspecific clinical signs despite the permanent viremia and high viral shedding, in

absence of immune response to the virus. Given the role played by this infection in dis-

ease control, we aimed to evaluate the capacity of CSFV to induce postnatal persistent

infection at 3 weeks after birth. Nine pigs were CSFV infected and sampled weekly dur-

ing 6 weeks and viral, clinical, pathological and immunological tests were carried out.

Also, the CD4/CD8 ratio was calculated with the purpose to relate this marker with the

CSFV persistent infection. The IFN‐α response was detected mainly 1 week after infec-

tion, being similar in all the infected animals. However, 44.4% of animals were CSFV

persistently infected, 33.3% died and 22.2% developed specific antibody response.

Interestingly, in persistently infected pigs, the T‐CD8 population was increased, the T‐
CD4 subset was decreased and lower CD4/CD8 ratios were detected. This is the first

report of CSFV capacity to confer postnatal persistent infection in pigs infected at

3 weeks after birth, an age in which the weaning could be carried out in some swine

production systems. This type of infected animals shed high amounts of virus and are

difficult to evaluate from the clinical and anatomopathological point of view. Therefore,

the detection of this type of infection and its elimination in endemic areas will be rele-

vant for global CSF eradication. Finally, the low CD4/CD8 ratios found in persistently

infected animals may be implicated in maintaining high CSFV replication during persis-

tence and further studies will be performed to decipher the role of these cells in CSFV

immunopathogenesis.
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1 | INTRODUCTION

Classical swine fever (CSF) continues to be one of the most impor-

tant diseases affecting swine. Due to its high social impact in some

affected regions, the disease has been considered as a problem for

the food security of the population. Currently, CSF is endemic in

some countries of Asia, Eastern Europe and Latin America (Ganges

et al., 2008; Pérez et al., 2012).
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The aetiological agent, CSF virus (CSFV), belongs to the Pestivirus

genus, within the Flaviviridae family (Schweizer & Peterhans, 2014).

The virus targets different cell types of the immune system, such as

those that are derived from the monocyte‐macrophage lineage (Sum-

merfield, Hofmann, & McCullough, 1998; Zingle, Summerfield,

McCullough, & Inumaru, 2001). Therefore, the infection in this type

of cells plays an important role in viral pathogenesis, viral persistence

and spread. It has been established that the balance between the

nature of the virus and different host conditions, for instance age or

immunological status, plays a role in the severity of disease, which

can vary from acute to subclinical or chronic forms (Blome, Staubach,

Henke, Carlson, & Beer, 2017). However, these underlying interac-

tions are not completely known.

A significant trait of the Pestivirus genus is its ability to induce

congenital persistent infection of the foetus by viral transplacental

transmission, being known for over 40 years that congenital persis-

tent infection is the most important cause by which CSFV is perpet-

uated in swine population (Liess, 1984). Nevertheless, little is known

about the mechanisms involved. Persistently infected animals may

appear to be healthy for some weeks, and develop runting‐like signs

later in life, despite replicating and excreting significantly high viral

load (Liess, 1984; van Oirschot, 1979a,b).

Recently, it has been established that persistent infection can

also occur after early postnatal infection, in pigs infected within the

first 24 hr after birth, with a moderately virulent CSFV strain

(Muñoz‐González, Ruggli, et al., 2015). These animals remained

apparently healthy for several weeks, or showed clinical signs differ-

ent from those previously described for CSF (Liess, 1984; Muñoz‐
González, Ruggli, et al., 2015). Notably, these infected animals

showed a high and persistent viral load in blood and body secretions

for several weeks, as well as inability to generate specific cellular

and humoral response to the virus. In addition to the adaptive

immune response, recent studies have also shown that the innate

immune response to the virus, as measured by type I IFN‐α in the

serum, was impaired in pigs with a CSFV postnatal persistent infec-

tion, therefore, an immunological anergy has been observed in these

animals (Cabezón et al., 2017; Muñoz‐González, Ruggli, et al., 2015).
Previous studies have shown that a low CD4/CD8 ratio can be

interpreted as a measure of dysregulation of a patient's immune sys-

tem (Serrano‐Villar, Moreno, et al., 2014; Serrano‐Villar, Sainz, et al.,
2014), which has proven to be very useful marker in human immun-

odeficiency virus (HIV) therapy. Lower CD4/CD8 ratios have been

detected in humans suffering persistent and chronic infections with

HIV and hepatitis C virus (HCV) (Dustin, 2017). In this regard, a

lower CD4/CD8 ratio has also been found in patients with persis-

tently higher HIV‐1 viral load (Gandhi et al., 2017).

Bearing in mind the proven CSFV ability to generate postnatal

persistent infection in newborn piglets, the aim of the present study

was to evaluate the capacity of CSFV to induce postnatal persistent

infection at a later time point than previously reported. To this end,

pigs were CSFV infected at 21 days after birth, and the characteris-

tics of the immunological and virological response related to viral

persistence were studied during a 6‐week period. In addition, the

phenotypic profile of peripheral blood mononuclear cells (PBMC)

was evaluated for lymphocytic and myeloid lineages. Finally, the

CD4/CD8 ratio was determined with the purpose to relate this

marker with the CSFV persistent infection.

2 | MATERIALS AND METHODS

2.1 | Cells and viruses

PK‐15 cells (ATCC CCL 33) and SK6 cells (Kasza, Shadduck, & Chris-

tofinis, 1972) were cultured in DMEM medium, supplemented with

10% foetal bovine serum (FBS) pestivirus‐free at 37°C in 5% CO2.

The Catalonia 01 (Cat01) strain used in this study belongs to the

CSFV 2.3 genogroup (Pérez et al., 2012). This strain has been char-

acterized as a moderately virulent strain (Tarradas et al., 2014).

Alfort 187 strain was used in the neutralisation peroxidase‐linked
assay (NPLA). Viral stocks were produced using PK‐15 cells that

were infected with 0.1 TCID50/cell in 2% FBS, and the virus was har-

vested 72 hr later. For virus isolation, both cell lines (PK‐15 and

SK6) were used. Peroxidase‐linked assay (PLA) (Wensvoort, Terpstra,

Boonstra, Bloemraad, & Zaane, 1986) was used for viral titration fol-

lowing the statistical methods described by Reed and Muench (Reed

& Muench, 1938).

2.2 | Experimental design

One pregnant sow (Landrace), pestivirus‐free, of 108 days into ges-

tation was housed in the BSL3 animal facility at IRTA‐CReSA (Barce-

lona, Spain). Delivery was at 115 days of gestation and nine piglets

were born. Twenty‐one days after birth, piglets were numbered from

1 to 9 and were inoculated intranasally with 2.5 × 104 TCID of

Cat01 strain. The inoculation of the piglets was conducted sepa-

rately from their mother and the sow was kept with the piglets until

9 days after inoculation (30 days after birth). The piglets were fed

(StartRite, Cargill, Spain) from week 4 onwards. Serum and rectal

swab samples were collected every week after infection during the

6 weeks of the trial. Whole blood samples for the isolation of

PBMCs were obtained at 4 weeks post infection. The tonsils were

collected at necropsy and were used to quantify CSFV RNA and in

virus titration assay. After macroscopic examination, a portion of the

tonsil from pigs numbers 3, 5, 6 and 7 was placed into 10% phos-

phate buffered formalin in order to conduct histopathological evalua-

tion. Fixed samples were sliced and embedded in paraffin wax after

dehydration through increasing alcohol concentrations and xylene.

Four micrometre sections were mounted on glass microscope slides

which were stained with haematoxylin and eosin for routine mor-

phological evaluation. Whole blood and tonsil samples from two

non‐infected pigs from the same origin as the sow and with the

same age of the infected animals (7 and 9 weeks respectively) were

also collected (numbered 10 and 11). These samples were used as

negative controls.

The procedure for the euthanasia of the animals was based on

an accepted method included in European Directive 2010/63/EU,
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using an anaesthetic overdose of 60–100 mg of pentobarbital per

kilogram of weight, administered via the vena cava.

A trained veterinarian recorded the temperature and clinical signs

daily in a blinded manner. The experiments were approved by the

Ethics Committee for Animal Experiments of the Autonomous

University of Barcelona (UAB) under number 8642, according to

existing national and European regulations.

2.3 | CSFV RNA detection

RNA extraction was performed using the NucleoSpin RNA isolation

kit (Macherey‐Nagel). For all the analysed samples, an initial volume

of 150 μl was used in order to obtain 50 μl of RNA, which was

stored at −80°C. The presence of CSFV RNA in sera, rectal swabs

and tonsil was analysed by real time (qRT‐PCR) (Hoffmann, Beer,

Schelp, Schirrmeier, & Depner, 2005). Cycle threshold (Ct) values

equal or less than 42 were considered as positive. Samples in which

fluorescence was undetectable were considered negative.

2.4 | Humoral response detection by ELISA and
NPLA

The presence of E2‐specific antibodies in serum was evaluated using

a commercial ELISA kit (IDEXX), the samples were considered as

positive when the blocking percentage value was ≥40%. Serum sam-

ples were also tested by NPLA (Terpstra, Bloemraad, & Gielkens,

1984) against homologous and heterologous CSFV strains, Cat01

and Alfort‐187 respectively. Neutralising antibody titres were

expressed as the reciprocal dilution of serum that neutralised 100

TCID50 of the CSFV strains in 50% of the culture replicates.

2.5 | ELISA for IFN‐α detection in serum samples

IFN‐α concentration in serum was evaluated by ELISA at 0, 7 and

14 days post infection (dpi) (Muñoz‐González, Perez‐Simó, et al.,

2015; Muñoz‐González, Ruggli, et al., 2015) using monoclonal anti-

bodies (K9 and K17) and IFN‐α recombinant protein (PBL Biomedical

Laboratories, Piscataway, NJ, USA). Cytokine concentrations (units/

ml) in sera were determined using a regression line built with the

optical densities of the cytokine standards used in the test

2.6 | PBMC collection and flow cytometry analysis

Considering the virological and immunological profile previously evalu-

ated, whole blood sample was collected from animals 3, 5, 6 and 7 at

4 weeks post infection in order to obtain PBMC. Cells were separated

by density‐gradient centrifugation with Histopaque 1077 (Sigma) and

afterwards were subjected to osmotic shock in order to eliminate the

remaining erythrocytes. The number and viability of the PBMCs were

determined by staining with Trypan Blue. In addition, PBMCs from

non‐infected pigs, served as control (samples from pigs 10 and 11).

Flow cytometry was used in order to phenotype the PBMCs from

infected and naïve pigs at 4 weeks after infection (7 weeks of age).

Hybridoma supernatant (kindly provided by Dr. J. Dominguez (INIA,

Madrid, Spain)) was used for staining CD172a (BA1C11, IgG1), with

an anti‐Mouse IgG1 antibody labelled with Alexa Fluor 647 (ther-

mofisher scientific, produced in goat) used as a secondary antibody to

detect the primary anti‐CD172a antibody. Moreover, conjugated

mAbs detecting porcine T‐CD4 (Alexa Fluor® 647 Mouse Anti‐Pig
CD4a 74‐12‐4, IgG2b, BD Pharmingen), and T‐CD8‐α (FITC Mouse

Anti‐Pig CD8a 76‐2‐11, IgG2a, BD Pharmingen) were also used.

Briefly, 5 × 105 cells were plated in each well and the cell culture

medium was removed after centrifugation. For single‐colour staining,
cells were incubated with either hybridoma supernatant or conju-

gated mAbs for 20 min at 4°C. After washing with PBS + 2% FBS,

the secondary antibody was added to cells that had been incubated

with hybridoma supernatant. Meanwhile, for two‐colour staining,

cells were incubated simultaneously with both primary mAbs (mouse

anti‐pig T‐CD4 and T‐CD8) for 20 min at 4°C. Finally, a viability con-

trol (propidium iodide, 1 μg/ml) was added and twenty thousand live

cell events were recorded for each sample in the cytometer (FAC-

SAria IIu, BD Biosciences).

The cells were analysed by FACSDiva software, version 6.1.2

and the results were expressed as the percentage of positive cells

obtained for each staining, using irrelevant isotype‐matched mAbs as

staining controls. In order to corroborate the reproducibility of the

results, flow cytometry assays were performed twice for the infected

animals and three times for the naïve animals. Afterwards, the mean

value and standard deviation of each staining were calculated for

every animal. Following the flow cytometry analysis, the CD4/CD8

ratio in PBMCs from pigs numbers 3, 5, 6, 7, 10 and 11 was deter-

mined using the mean value obtained from each marker.

2.7 | Sorting of T‐CD8+ cells

The T‐CD8+ cell subsets were sorted using a live sterile cell sorting

system (FACSAria, Beckton Dickinson; San Jose, California, USA).

20 × 106 PBMC from pig number 5 were incubated with T‐CD8

conjugated monoclonal antibody (FITC Mouse Anti‐Pig CD8a 76‐2‐
11, IgG2a, BD Pharmingen) for 30 min on ice and washed with PBS

containing 2% FBS. Finally, the viability control was added and single

cell sorting was performed in using the yield mode, with a 70 μm

nozzle. The fluorescence reading was performed upon excitation

with a 488 nm argon laser. Recovered cells after sorting were resus-

pended in RPMI‐1640 Medium (Lonza) at final concentration of

2 × 106 cells/ml. The presence of CSFV RNA in T‐CD8+ and T‐CD8−

sorted cells was quantified by qRT‐PCR (Hoffmann et al., 2005) and

viral isolation in PK‐15 cells was performed as explained above.

3 | RESULTS

3.1 | Clinical manifestations during 6 weeks of
CSFV infection

Twenty‐four hours post infection, an increase in the rectal tempera-

ture value was registered in all the infected pigs. Likewise, from 4 to
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9 dpi, the temperature values increased above 40°C in all the

infected animals, with five of nine pigs showing temperatures above

41°C reaching 42°C in some of them. Subsequently, at 10 dpi, a

decrease in rectal temperature was recorded in six of nine infected

animals (Figure 1a). Values of rectal temperature generally below

40°C were recorded again in six animals from the study after this

time. These values were maintained until the end of the experiment

and in few cases individual peaks of fever were registered in some

of them during the trial, never surpassing the 40.5°C. On the other

hand, two animals (numbers 8 and 9) showed high fever peaks from

11 to 18 dpi, which maintained high temperatures values until 17

and 21 dpi (Figure 1a).

Besides an increase in body temperature, the majority of the pigs

did not show any clinical signs during the first week post infection,

with only one animal showing mild apathy starting at 5 dpi. At the

beginning of the second week of the trial, four of nine animals

developed mild diarrhoea and/or mild apathy during 3 days. At

10 dpi, two animals, pigs 2 and 8 showed moderate apathy and

weakness of the hindquarters respectively. Pig 2 was found dead in

the pen at 11 dpi, whereas, pig 8 developed diarrhoea, tremors, cya-

nosis in the ears and severe apathy and was euthanized at 17 dpi

(Figure 1b). Entering into the third week post infection, five pigs

remained with a clinically healthy status, meanwhile the other three

showed from mild to severe clinical manifestations, such as, moder-

ate skin lesions (mainly vesicles and desquamation in the skin) which

began to appear in pigs 1 and 9 at 19 and 16 dpi respectively. Pig

number 9 went on to develop ulcerations in the abdomen, as well as

severe dyspnoea at 20 dpi and thus had to be euthanized at 21 dpi

(Figure 1b). Thus, during the second and third weeks post infection,

the most severe clinical outcome was observed, with three animals

that were either euthanized or found dead (33.3%).

From week 4 to the end of the trial (week six), six pigs were

maintained, two of them showed mild diarrhoea, some vesicles and

skin desquamation (pigs 1 and 5). Finally, the four remaining animals

were apparently clinical healthy during this period (Figure 1b).

3.2 | Macroscopic and histopathological findings in
tonsils after 6 weeks post CSFV infection

No macroscopic changes were found in the tonsils from the anal-

ysed animals after infection, when compared to the control pigs. In

addition, after histopathological examination, no significant

F IGURE 1 Clinical signs developed after CSFV postnatal infection at 21 days of age. (a) Daily rectal temperature measured in infected
animals. Values greater than 40°C (dotted line) were considered to indicate fever. (b) Individual clinical signs in piglets after postnatal infections
with CSFV Cat01 strain at 21 days of age. The piglets were monitored daily during the 6 weeks of the study. The severity of the clinical signs
is represented by the colour scale, from white (absence of clinical signs) to black (death)
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abnormalities were observed in the tonsils from the infected pigs.

A mild increase in the amount of tingible body macrophages in the

lymphoid follicles was evidenced only in pigs numbers 3 and 7,

when compared to the tonsils from pigs 5 and 6 as well as, the

non‐infected (Figure 2).

3.3 | Most of the infected animals showed
permanent CSFV load in sera and rectal swabs

During the first week of the study, similar viral RNA load was

detected in all the CSFV infected animals, with Ct values between

30.5 and 33.3. In the second week of the study, two profiles of

CSFV RNA load in sera were detected, with six animals, numbers 1,

4, 5, 6, 8 and 9, showing low Ct values between 21.6 and 23.9, and

two animals (numbers 3 and 7) with high Ct values (32.7 and 34.8).

Subsequently, no viral RNA was detected in sera from pigs 3 and 7

at 3 and 4 weeks post infection. On the other hand, CSFV RNA was

detected in the remaining animals (44.4%) with similar Ct values to

those found in the second week of the trial, being the RNA levels

maintained or even increased during weeks 5 and 6 (Ct values

between 17.4 and 22). Alternatively, during these 2 weeks, one pig

was negative (pig 7) and the other showed high Ct values in the fifth

and sixth weeks (Figure 3a).

In rectal swabs, CSFV RNA was detected with similar Ct val-

ues in three of nine infected pigs (numbers 2, 5 and 7) in the

first week after infection. At week 2 post infection, most of the

animals were positive with moderate Ct values (between 27 and

35.3), with the exception of pig 7 that was negative until the end

of the study (Figure 3b). During the third week post infection, pig

3 showed a Ct value of 33.5. Whereas in the remaining animals

(numbers 1, 4, 5, 6, 8 and 9), lower Ct values (between 24.5 and

28.7) were observed. These Ct values were similar for the surviv-

ing animals (1, 4, 5 and 6) during the fourth and fifth weeks and

in some of them were decreased at week 6 (from 23.5 to 25).

Meanwhile, pig number 3 was negative at weeks 4 and 6 after

infection, however, it was positive with high Ct value (35.2) at

week 5 of the study (Figure 3b).

All of the analysed tonsil samples were positive, animals 1, 4, 5

and 6 showed low Ct values, while animals 3 and 7 showed higher

Ct values (from 26.3 to 29.5 respectively) (Figure 3c). Only tonsil

samples from pigs numbers 1, 4, 5 and 6 were positive by viral isola-

tion test, the viral load in samples from pigs 1, 4 and 5 was about

106.6 TCID50/ml, whereas the viral load in the tonsil from pig number

6 was 105.6 TCID50/ml.

3.4 | Only two infected pigs were able to
seroconvert

Seven of the nine infected animals did not develop a humoral

response detectable neither by ELISA nor neutralization test during

the 6 weeks of the trial. By contrast, the remaining two animals,

numbers 3 and 7 (22.2%) developed specific anti‐E2 antibody

response, detected by ELISA test, starting at 3 weeks post infection

(Figure 3d). The results were confirmed by NPLA test and the neu-

tralizing antibody response against the heterologous CSFV strain

(Alfort‐187) was detected also at 3 week post infection with a low

antibody titre (1:10). The titres were increased between weeks 5

and 6 post infection with a titre of 1:60 in both pigs. Meanwhile,

neutralizing antibody titres against the homologous CSFV strain

(Cat01) were detected 1 week earlier in animal 7 with higher anti-

body titres (1:120) to those found against the heterologous strain.

The titres were increased at 3 weeks post infection until the end of

the trial in both animals (from 1:80 to 1:1280).

3.5 | IFN‐α levels detected mainly 1 week after
infection

At time of viral infection, all the pigs showed low baseline levels

(between 10 and 20 units/ml) of IFN‐α in serum sample. An increase

in IFN‐α values was recorded for all the animals at 1 week after

infection with the CSFV Cat01 strain, with values ranging from 20

to 42 units/ml. During the second week post infection, IFN‐α
concentration had severely decreased in all the animals, showing

concentrations between 4.44 and 8.65 units/ml (Figure 4).

F IGURE 2 Histopathological evaluation of tonsil samples from CSFV infected pigs at 6 weeks post infection. Haematoxylin and eosin
staining of tonsil microdissections from an uninfected animal (pig 10), one CSFV infected pig that seroconverted (pig 3) and a CSFV infected
pig that showed permanent viremia (pig 5) [Colour figure can be viewed at wileyonlinelibrary.com]
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3.6 | Increased T‐CD8+ subset targeted by CSFV in
pigs showing permanent viremia

The percentage of T‐CD4+ cells oscillated between 17.05% and

18.3% in samples from pigs 3 and 7, while for pigs 5 and 6 the val-

ues were lower, ranging from 10.3% to 11.3%, being similar in the

control pigs (10.8% and 12.3%). Additionally, CD4+/CD8+ double

positive cells were found to be 0.8% in pigs 3 and 7 and lower

values (0.3%) were detected in pigs 5 and 6. In control animals,

percentage values of 0.4% and 3.2% were also detected (Figure 5).

The CD172a cell population ranged between 3% and 9% in PBMCs

from infected pigs, reaching in animals 3 and 7 from 8.3% to 9.05%

and in samples from pigs 5 and 6 from 3.1% to 6.9%. This cell

population ranged from 6% to 12% in control animals (Figure 5). The

T‐CD8+ subset oscillated from 16.2% to 32.4% in infected animals.

Notably, samples from animals 3 and 7 were between 19.15% and

16.2%. Higher values of 29.3% and 32.4% were found in pigs 5 and

6 respectively. Meanwhile, T‐CD8 marker from control samples ran-

ged from 8.2% to 14% (Figure 5).

The T‐CD8+ cells were sorted from PBMC of pig number 5

(29.3% of T‐CD8+ cells). With a purity over 91%, a total of 1373002

cells were recovered. While, 3350150 T‐CD8− cells were obtained

(purity over 98%). CSFV RNA was detected in the T‐CD8+ cells with

a Ct value of 25.82. In the case of T‐CD8− cells, the Ct value was

24.41. The presence of CSFV was confirmed by viral isolation test in

PK‐15 cells.

3.7 | Low CD4/CD8 ratio in pigs showing
permanent viremia

Finally, the CD4/CD8 ratio was calculated, values ranging from 0.31

to 1.05 resulted in samples for infected animals. The lower ratio was

found in pigs 5 and 6 with value about 0.3 in both of them. On the

contrary, the CD4/CD8 ratio resulted in values about 1 for pigs 3

and 7. Likewise, the values obtained in PBMC from naïve pigs were

0.95 and 0.88 (Figure 6).

4 | DISCUSSION

Here, we show that persistently infected piglets could also be gen-

erated following infection using a previously characterized CSFV

strain (Muñoz‐González, Ruggli, et al., 2015) at 3 weeks after birth,

an age in which the weaning could be carried out in some swine

F IGURE 3 Detection of CSFV RNA and specific humoral response during 6 weeks of infection in pigs infected at 21 days of age. CSFV
RNA was evaluated weekly in sera (a) and rectal swab (b) samples as well as in tonsil at time of euthanasia (c). Ct values above 42 (dotted line)
were considered as negative. Antibodies against the E2 glycoprotein of CSFV were evaluated weekly (d). Blocking percentage values above
40% (dotted line) were considered as positive

F IGURE 4 IFN‐α levels in serum from CSFV infected pigs. IFN‐α
was evaluated at 7 (black bars) and 14 dpi (white bars) in CSFV
infected pigs
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F IGURE 5 Expression of cell surface
markers in PBMCs from naïve and CSFV
infected pigs at 4 weeks post infection.
(a) Phenotypic profile in PBMCs from
CSFV seropositive (black bars)
seronegative (grey bars) and naïve (white
bars) animals. (b) Comparative phenotypes
in PBMCs from an animal representative of
naïve and CSFV infected pigs. *Indicates
an infected pig that seroconverted,
†Indicates an infected pig that did not
seroconvert. Parameters evaluated
included (I) forward scatter (relative cell
size, x‐axis) and side scatter (relative
granularity, y‐axis) and expression of
cellular markers CD172a (II, y‐axis), CD4
(III and V, y‐axis), CD8 (IV and V, x‐axis)
and CD4/CD8 double positive cells (V).
The experiments were repeated twice
under the same conditions
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production systems (Mahan, Cromwell, Ewan, Hamilton, & Yen,

1998; Park, Ha, Park, & Lee, 2014). After the infection that was

monitored during 6 weeks, besides the increase in rectal tempera-

ture, very mild or even no clinical signs were observed in some of

the infected pigs. Notably, a significant number of these animals

(44.4%) showed permanent viremia with high viral load in sera, rec-

tal swabs and tonsils samples in the absence of CSFV specific

humoral immune response for the 6‐week duration of the experi-

ment. These findings are in agreement with the profile previously

described for persistently infected pigs that were infected during

the first hours after birth (Muñoz‐González, Ruggli, et al., 2015).

Considering that, the proportion of animals that may develop CSFV

persistent infection decreases with age, being 60% when the infec-

tion is carried out during the first 24 hr after birth (Muñoz‐Gonzá-
lez, Ruggli, et al., 2015) to 44.4% when it is performed at 3 weeks

of age. Nevertheless, taking into account the important role of per-

sistently infected animals in the CSF control (van Oirschot, 2003;

Van Oirschot & Terpstra, 1977), the proportion of persistently

infected animals remains significant when the infection takes place

at 3 weeks of age.

A previous report also showed that humoral response is not gen-

erated after newborn piglets infection with the CSFV Cat01 strain

during 6 weeks (Muñoz‐González, Ruggli, et al., 2015). By contrast,

when animals are infected at 3 weeks old, this viral strain was cap-

able to generate humoral response starting the second and the third

weeks post infection, although in a small proportion of infected ani-

mals (22.2%). Hence, the age of infection also plays a relevant role

in the establishment of an immune response against CSFV. Further-

more, these two pigs were capable to clear the virus or reduce the

viral load in serum samples, rectal swabs and tonsils considerably

compared to persistently infected animals. However, both animals

became CSFV asymptomatic carriers. On the other hand, similar to

previous work, some of the infected animals from this trial (33.3%)

either died or had to be euthanized due to the severity in the clinical

manifestation. Likewise, all of infected animals showed high rectal

temperature values during the first 2 weeks after infection, being in

agreement with a previous report (Muñoz‐González, Ruggli, et al.,

2015).

It is noteworthy that some infected pigs in the present work,

including some of persistently infected animals, developed vesicular

lesions, ulcerations and skin desquamation after 3 weeks post infec-

tion. This fact highlights the ability of CSFV in its interaction with

the host to generate a wide variety of clinical signs (Blome et al.,

2017; Ganges et al., 2008; Tarradas et al., 2014). Therefore, the CSF

persistent forms may manifest clinical signs so far never described. It

is likely that, given the level of immune suppression (Muñoz‐Gonzá-
lez, Ruggli, et al., 2015), the clinical manifestations that may develop

in these animals could be related to the endemic pathogens circulat-

ing in each environment in coinfection with CSFV.

One of the most common anatomopathological findings associ-

ated after CSFV infection is found in the tonsil, a target tissue for

CSFV replication and wherein the virus persists for more than

30 days post infection (Koenig et al., 2007; Vrancken et al., 2009).

The most relevant histopathological finding in the tonsil are conges-

tion of the blood vessels along with focal to diffuse areas of haem-

orrhage (Malswamkima, Rajkhowa, Chandra, & Dutta, 2015).

Necrosis and depletion of lymphocytes, haemorrhages and tonsillitis

have also been described (Blome et al., 2017; Quezada et al., 2000).

Notably, despite the high viral load detected in the tonsils from per-

sistently infected pigs, neither macroscopic nor histopathological

lesions were found, a fact that may hinder the detection of this type

of infected animals.

IFN‐α levels in sera after CSFV infection are indicative of the

activation of innate immunity to the virus (Summerfield, Alves, Rug-

gli, De Bruin, & McCullough, 2006; Tarradas et al., 2014). Remark-

ably, the levels of IFN‐α detected after 7 days post infection were

similar to those observed in newborn piglets (Muñoz‐González, Rug-
gli, et al., 2015) and in 10‐week‐old pigs infected with the same

CSFV strain (Cat01) (Tarradas et al., 2014). Thus, we consider that

the innate immune response, in terms of IFN‐α levels in sera, is simi-

larly induced in the above mentioned ages. Therefore, even though

an immunotolerance related with the age of the host might be taking

place in the pathogenesis of CSFV persistent infection, further stud-

ies will clarify the role of this mechanism.

Likewise, it should be noted that previous studies have shown

that a hallmark of acute CSF form is the high IFN‐α levels found in

the serum early after infection with strains of high degree of viru-

lence, being this cytokine related to the cytokine storm phenomenon

previously described in this disease form (Tarradas et al., 2014). So,

unlike pigs that suffer from the CSF acute form and in agreement

with previous studies, CSFV persistently infected animals from the

present study also showed lower IFN‐α levels (Muñoz‐González,
Ruggli, et al., 2015; Tarradas et al., 2014). Hence, the impact of this

phenomenon may be decreased or has not been detected thus far,

explained in part the difference in the clinical outcome between

both types of CSF forms.

F IGURE 6 CD4/CD8 ratio in naïve and CSFV infected animals at
28 days post infection. The CD4/CD8 ratio was calculated for pigs
that seroconverted (black bars), pigs that did not seroconvert (grey
bars) and naïve animals (white bars)
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To understand the effect of infection in the different immunolog-

ical profiles found in CSFV infected pigs, we focussed on the main T

lymphocyte populations as well as a myelomonocytic marker. An

increase in the T‐CD8 subset was observed in persistently infected

pigs in comparison with pigs that seroconverted and the naive ani-

mals. After the evaluation of the viral load in this sorted cell popula-

tion, we proved that these cells were CSFV infected. Thus, the

CSFV infected T‐CD8 cells subset may promote the virus dissemina-

tion into the host and may aid the virus persistence.

The T‐CD4 cell population was found decreased in the two per-

sistently infected animals analysed. Previous reports have underlined

the role of porcine T‐CD4 cells in activation of an effective

anamnestic response against CSFV (Ganges et al., 2005). Considering

that, the effect of CSFV infection in T‐CD4 cells from persistently

infected pigs may aid in understanding the lack of humoral response

in this form of infection and subsequently the immunological anergy

state. The decrease in the T‐CD4 cell population may impair the

development of an effective adaptive immune response and also

favour the viral persistence (Agrati et al., 2016).

As we explained above, the CD4/CD8 ratio correlates with the

effectivity of the immune response against different infection mod-

els (Agrati et al., 2016; Serrano‐Villar, Moreno et al., 2014; Serrano‐
Villar, Sainz et al., 2014). The low ratio values have been associated

with an immune exhausted state with a strong immunosuppression

in infected hosts (Ferrando‐Martinez et al., 2011; Serrano‐Villar,
Moreno et al., 2014; Serrano‐Villar, Sainz et al., 2014). Immune

exhaustion is a phenomenon in which the constant activation by

viral antigens or other mechanisms causes some effector or acti-

vated T cells to persist but become functionally unresponsive to

further antigen stimulation (Yao & Moorman, 2013). This phe-

nomenon is associated with chronic and persistent infections, such

as hepatitis C virus (HCV) and human immunodeficiency virus (HIV)

infection (Dustin, 2017; Ferrando‐Martinez et al., 2011; Serrano‐Vil-
lar, Moreno et al., 2014; Serrano‐Villar, Sainz et al., 2014). Previous

reports assert that CD4/CD8 ratio values around 1 correlated with

the generation of an effective immune response in swine (Apple-

yard, Furesz, & Wilkie, 2002; Cordes, Riber, Jensen, & Jungersen,

2012). Accordingly, the CD4/CD8 ratio values in the CSFV seropos-

itive pigs were around 1. By contrast, in CSFV persistently infected

pigs, that showed high and constant viral load, we found a lower

CD4/CD8 ratio with respect to naïve or CSFV antibody positive

pigs. This finding is in agreement with studies in persistent infec-

tion in humans, where the low CD4/CD8 ratio correlated with high

viral load and an inability of the immune system to clear the virus

(Gandhi et al., 2017). Also, it has been established that during HIV

persistent infection, the T‐cell functions including cytokine secretion

and proliferative capacity appear to decrease gradually, being asso-

ciated with the immune exhaustion phenomenon (Khaitan & Unut-

maz, 2011).

Consequently, considering the low CD4/CD8 ratio and the

reduced impact of the cytokine storm phenomenon, at least in terms

of IFN‐α, evidenced in CSFV persistently infected animals after

super‐infection with CSFV or African swine fever virus (Cabezón et

al., 2017; Muñoz‐González et al., 2016); we suggest the possible

implication of the immune exhaustion mechanism that may favour

the constant and high CSFV replication levels during CSFV persis-

tence (Cabezón et al., 2017; Muñoz‐González et al., 2016). Never-

theless, further studies will be performed to clarify the role of the

immune exhaustion phenomenon and other immunosuppressive

disorders in the CSFV pathogenesis.

Taken together, our findings provide the first report of CSFV

postnatal persistent infection in pigs at 21 days after birth. This type

of infected animals shed high amounts of virus and are difficult to

evaluate from the clinical and anatomopathological point of view.

Considering that, persistent infected pigs may go unnoticed in the

serological methods used for surveillance, as well as being unrespon-

sive to vaccination (Muñoz‐González, Perez‐Simó, et al., 2015).

Therefore, the detection of this type of infection and its elimination

in endemic areas is relevant for global CSF control. Finally, our find-

ings support the use of the CSFV postnatal persistent infection as a

model in the study of immunological phenomena associated with

viral persistence.
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