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Background: Post mastectomy radiotherapy (PMRT) is an independent predictor of 
reconstructive complications. PMRT may alter the timing and type of reconstruction 
recommended. This study aimed to create a machine learning model to predict the 
probability of requiring PMRT after immediate breast reconstruction (IBR).
Methods: In this retrospective study, breast cancer patients who underwent IBR 
from January 2017 to December 2020 were reviewed and data were collected on 
81 preoperative characteristics. Primary outcome was recommendation for PMRT. 
Four algorithms were compared to maximize performance and clinical utility: 
logistic regression, elastic net (EN), logistic lasso, and random forest (RF). The 
cohort was split into a development dataset (75% of cohort for training-validation) 
and 25% used for the test set. Model performance was evaluated using area under 
the receiver operating characteristic curve (AUC), precision-recall curves, and cali-
bration plots.
Results: In a total of 800 patients, 325 (40.6%) patients were recommended to 
undergo PMRT. With the training-validation dataset (n = 600), model perfor-
mance was logistic regression 0.73 AUC [95% confidence interval (CI) 0.65–0.80]; 
RF 0.77 AUC (95% CI, 0.74–0.81); EN 0.77 AUC (95% CI, 0.73–0.81); logistic lasso 
0.76 AUC (95% CI, 0.72–0.80). Without significantly sacrificing performance, 81 
predictive factors were reduced to 12 for prediction with the EN method. With the 
test dataset (n = 200), performance of the EN prediction model was confirmed 
[0.794 AUC (95% CI, 0.730–0.858)].
Conclusion: A parsimonious accurate machine learning model for predicting 
PMRT after IBR was developed, tested, and translated into a clinically applicable 
online calculator for providers and patients. (Plast Reconstr Surg Glob Open 2024; 
12:e5599; doi: 10.1097/GOX.0000000000005599; Published online 6 February 2024.)
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INTRODUCTION
Over the last decade, there has been a notable increase 

in the rates of immediate implant-based breast reconstruc-
tion (IBR),1–4 given its impact on quality of life and onco-
logic safety profile.5,6 One of the main challenges of IBR 

is the long-term morbidity, which may result after post-
mastectomy radiotherapy (PMRT).7 As an independent 
predictor of reconstructive complications, PMRT is associ-
ated with higher rates of reconstructive failure, infection, 
implant exposure, capsular contracture, and mastectomy 
flap necrosis.7,8 The need for PMRT may alter both the 
timing and type of reconstruction recommended to opti-
mize long-term outcomes.1,9–14

In the setting of early breast cancer, the need for PMRT 
is not known preoperatively. Indications for PMRT depend 
primarily on postoperative pathologic staging follow-
ing oncologic resection. For patients with invasive breast 
cancer and four or more positive lymph nodes and/or a 
tumor greater than 5 cm, the benefit of PMRT has been 
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well established.15 However, PMRT for patients with one 
to three positive lymph nodes is debated,16,17 as the abso-
lute benefit may not outweigh potential toxicities.18 Other 
patient and tumor characteristics may also influence the 
recommendation for PMRT including age, location of pri-
mary tumor, margin status, hormone receptor status, pres-
ence of lymphovascular invasion, extranodal extension, 
internal mammary lymphadenopathy, number of axillary 
lymph nodes removed, and size of largest deposit of axil-
lary nodal disease.19,20 The majority of patients for whom 
IBR is offered are early-stage and clinically node negative 
but are often found to have one to three pathologically 
positive lymph nodes.17 Predicting whether PMRT will be 
indicated is difficult for the most common clinical presen-
tation.2,3 Preoperative prediction of the need for PMRT 
would inform shared decision-making for the type and 
timing of reconstructive surgery.14

Machine learning (ML) prediction models gener-
ate individualized risk profiles based on group-level evi-
dence.21 ML modeling has been applied for predicting 
breast cancer outcomes, including risk of diagnosis,22,23 
prognosis,24 treatment adherence,25 and treatment mor-
bidity.26 In this present study, we sought to create an ML 
model to predict the probability of requiring PMRT after 
IBR. Secondarily, we aimed to compare the performance 
of ML to traditional regression methods for prediction 
modeling in this clinical setting.

METHODS

Study Population
This is a single institution, multisite, retrospective 

cohort study of breast cancer patients who underwent 
mastectomy with immediate alloplastic breast reconstruc-
tion from January 2017 to December 2020. Institutional 
research ethics approval was obtained. Patients with a 
diagnosis of breast cancer underwent skin or nipple- 
sparing mastectomy with one or two-stage alloplastic breast 
reconstruction. Patient exclusion criteria were prophylac-
tic mastectomy, delayed reconstruction, autologous recon-
struction, and contraindications for PMRT, including 
history of chest wall irradiation, connective tissue disor-
der, pregnancy, in situ pacemaker, and severe lung disease 
precluding chest radiation therapy. Patients undergoing 
autologous reconstruction were excluded to reduce the 
potential confounder of reconstructive type influencing 
the recommendation for PMRT. All mastectomies were 
conducted by a group of nine surgical oncologists and six 
plastic surgeons. All patients undergoing IBR had acellu-
lar dermal matrix used as an adjunct in the reconstructed 
breast mound.

Primary Outcome
Recommendation for PMRT, as opposed to receipt of 

PMRT, was selected as the primary outcome for predic-
tion in this study. A group of five radiation oncologists 
provided recommendations for PMRT based on patient 
characteristics and postoperative pathologic staging in 
accordance with national guidelines.19,27 For early-stage 

breast cancer, recommendations for PMRT are based 
on an objective evaluation of the patient characteristics 
and tumor pathology after resection. In shared decision-
making, patient preference and autonomy is paramount 
and may trump clinician recommendations according to 
PMRT indications. Thus, we selected PMRT recommenda-
tion, as opposed to PMRT receipt, for our primary out-
come to facilitate the generation of a prediction model 
based on objective clinicopathological data.

Risk Factors for PMRT
Patients were categorized into two groups according to 

the recommendation for PMRT. A total of 125 factors (81 
preoperative and 44 postoperative risk factors) were con-
sidered of potential importance for interpreting the rec-
ommendation for PMRT. Only preoperative risk factors 
were used to generate the prediction model. Preoperative 
risk factors were recorded for patient and tumor character-
istics derived from clinical history, physical examination, 
diagnostic imaging, and biopsy pathology. Preoperative 
data included demographics, age of diagnosis, meno-
pausal status, genetic susceptibility, and tumor palpabil-
ity. Diagnostic imaging reports were reviewed, and data 
recorded for type of imaging [mammogram, ultrasound, 
magnetic resonance imaging (MRI), tumor size (maximum 
dimension)], focality, and number of foci. Preoperative 
biopsy data was recorded for type (core or open), grade, 
histologic subtype, estrogen, and progesterone receptor 
status, human epidermal growth factor receptor 2 (HER2) 
status. Treatment data were recorded for type of mastec-
tomy, receipt of neoadjuvant chemotherapy, and planned 
axillary surgery. Also, the final postoperative pathology 
characteristics were recorded to evaluate congruence 
with PMRT recommendations and serve as an interval 
validation of the clinicopathologic features that led to 
the PMRT recommendation. All data points collected are 
summarized and defined in Supplemental Digital Content 
1. (See table 1, Supplemental Digital Content 1, which dis-
plays the data dictionary defining preoperative variables 
used to generate prediction model and postoperative vari-
ables used to internally validate the congruence between 

Takeaways
Question: Postmastectomy radiotherapy (PMRT) is an 
independent predictor of reconstructive complications. 
Can the need for PMRT be predicted preoperatively to 
inform shared decision-making for the type and timing of 
breast reconstructive surgery?

Findings: A machine learning (ML) model for predict-
ing PMRT was developed, tested, and translated into a 
clinically applicable online calculator for providers and 
patients. The ML model quantifies the risk based on the 
relative importance of preoperative predictors and aggre-
gates these contributions into a combined statistical score.

Meaning: This ML prediction model may be used clini-
cally to provide an individualized patient risk of PMRT 
during the preoperative discussion of reconstructive 
options.



 Chen et al • Postmastectomy Radiation and ML

3

PMRT recommendation and PMRT receipt based on indi-
cations. http://links.lww.com/PRSGO/D62.)

All data, including primary outcome and predictor vari-
ables, were collected directly from the medical records and 
stored in the Research Electronic Data Capture database.28

Statistical Analysis
Descriptive statistics were used to present continuous 

variables as a median (range) and categorical variables as 
proportions. Using the development cohort, patients with 
and without a recommendation for PMRT were compared. 
Three composite features (preoperative lymph node posi-
tivity, preoperative lymph node size, and maximum tumor 
size) were created to consolidate values across imaging 
modalities (mammogram, ultrasound, positron emission 
tomography). Thus, 81 preoperative factors were reduced 
to 54 factors to reduce overfitting. Values missing at ran-
dom were imputed using either logic-based rules29 or 
using the ML algorithm multivariate k-nearest-neighbor 
algorithm30 which leverages any available information to 
predict the missing value. Values missing with a known 
rationale were defined as “unknown” and not imputed 
(eg, ER, PR, and HER2 statuses were not routinely deter-
mined for patients with DCIS undergoing a mastectomy). 
Patient and tumor characteristics were summarized using 
descriptive statistics. For this first discovery study, sample 
size calculation was not performed given the absence of 
effect size estimates and the separation of these distribu-
tions in the published literature for ML model prediction.

Prediction Model Development
To predict the need for PMRT, four ML/statistical 

algorithms were applied: logistic regression (LR),31 elastic 
net (EN),32 logistic lasso (LL),33 and random forest (RF),34 
which are standard algorithms among ML practitioners.35 
Compared with LR, LL facilitates regularization to find a 
smaller model with fewer features. EN combines LL with 
ridge regression, which allows multiple correlated features 
to be selected.35 Feature importance scores were computed 
to assign a score to each preoperative variable representing 
its importance in predicting the likelihood of PMRT. For 
importance scores, a larger magnitude signifies a stronger 
influence; a positive score indicates higher likelihood of 
PMRT recommendation, whereas a negative score indicates 
lower likelihood of PMRT. Importance scores were com-
puted by standardizing regression coefficients. Training 
and validation were performed with five repetitions of strati-
fied 10-fold cross-validation procedure. The entire cohort 
was split into a development dataset and a test dataset by 
random computer selection, with 75% of patients analyzed 
for the development of the prediction models (training- 
validation) and 25% used for the testing of the models. Once 
developed, the trained prediction models were frozen and 
evaluated on the test dataset. There was no overlap between 
patient sources of the training-validation and test datasets.

Performance Evaluation
The area under the receiver operating characteristic 

curve (AUC) was used as the performance metric for eval-
uation, comparison, and selection of models.36 Additional 

evaluations for model performance included precision 
and calibration. Precision-recall curves were used to 
evaluate the trade-off between precision and sensitivity at 
defined thresholds. Calibration plots were used to com-
pare the models’ probabilistic predictions and the true 
PMRT recommendation probability, with perfect calibra-
tion defined by a plot of a 45-degree line.

RESULTS

Patient characteristics
A total of 800 breast cancer patients undergoing 

IBR were included in the study cohort. (See figure, 
Supplemental Digital Content 2, which displays the flow 
chart of eligible, included, and excluded patients. PMRT: 
postmastectomy radiotherapy; IBR: immediate breast 
reconstruction. http://links.lww.com/PRSGO/D63.)

At the time of mastectomy, 90% of patients underwent 
tissue expander placement and 10% underwent definitive 
implant placement. Patient and tumor characteristics are 
outlined in Table 1. At presentation, 59% had a palpable 
tumor and 10% underwent investigations for a palpable 
axillary lymph node. Tumor size was a median of 20 mm 
on both mammogram and ultrasound (range 1–25 mm, 
1–54 mm respectively). Preoperative biopsy with core nee-
dle was most common (88.2%), with invasive ductal carci-
noma as the most frequent histologic diagnosis (64.1%) of 
moderate grade. Among the entire cohort of 800 patients, 
a total of 325 (40.6%) patients were recommended to 
undergo PMRT. Based on postoperative pathology, indi-
cations for PMRT were most frequently the presence of 
positive axillary lymph nodes (51%), a tumor size greater 
than 5 cm (29%), and lymphovascular invasion (26%), 
with some patients having multiple indications. [See 
table 2, Supplemental Digital Content 3, which displays 
the indications for PMRT based on patient characteristics 
and postoperative pathologic features (n = 325 patients 
recommended to receive PMRT). http://links.lww.com/
PRSGO/D64.]

Model Development and Feature Selection for Predicting 
PMRT

The training-validation dataset of 600 patients was used 
to optimize model and feature selection. All preoperative 
factors were initially considered as predictors. Four mod-
els, LR, LL, EN, and RF, were trained and evaluated using 
repeated 10-fold cross-validation. Model performance was 
LR algorithm, 0.73 AUC [95% confidence interval (CI) 
0.65–0.80]; RF, 0.77 AUC (95% CI, 0.74–0.81); EN, 0.77 AUC 
(95% CI, 0.73–0.81); LL, 0.76 AUC (95% CI, 0.72–0.80). 
Regularization incentivizes EN and LL to select only the 
most predictive preoperative factors. Without significantly 
compromising performance, the 81 predictive factors could 
be reduced to a minimum of 12 for the EN method (Table 2) 
and 13 for prediction with the LL method, and over 50 vari-
ables were selected using each RF and LR models.

Features selected by model algorithms were further 
verified for congruence with clinical knowledge. The fea-
tures of greatest importance in predicting the need for 

http://links.lww.com/PRSGO/D62
http://links.lww.com/PRSGO/D63
http://links.lww.com/PRSGO/D64
http://links.lww.com/PRSGO/D64
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PMRT recommendation included the presence of metas-
tasis on preoperative axillary biopsy, palpable axillary 
lymphadenopathy, and a negative HER2 receptor status. 
Tumor size and size of any present suspicious lymph node 
were also highly predictive of need for PMRT. Ultrasound 
as an initial diagnostic modality, any invasive histology, 
and presence of lymphovascular invasion on core biopsy 
were additionally predictive of PMRT. Features predicting 
against the need for PMRT included a histology of DCIS, 
having undergone a core biopsy (as opposed to excisional 

biopsy), older age, and a negative ER status. Frequency of 
each feature is summarized in Table 3 according to rec-
ommendation for PMRT.

Model Performance and Validation
Model parameters obtained during cross-validation 

were frozen and applied on the test dataset of 200 patients 
to predict the probability of PMRT. On the test dataset, 
both EN and LL evaluated to 0.794 AUC (95% CI, 0.730–
0.858, 95% CI, 0.728–0.859) with parsimonious feature 
selection as compared to the other two algorithms [LR, 
0.729 AUC (95% CI, 0.652–0.905); RF, 0.802 AUC (95% 
CI, 0.739–0.864)]. With the fewest features, the EN model 
achieved high performance as visualized in calibration 
(Fig. 1a) and AUC curves (Fig. 1b) with 12 features. In 
comparison, the RF model achieved the highest AUC of 
0.802 but necessitated 54 preoperative features for its pre-
diction of PMRT. Given the LL model with 13 features did 
not significantly outperform the EN model, the EN model, 
due to its simplicity, was used to create a nomogram cal-
culator based on the standardized coefficients (available 
online for real-time use at https://surgery.med.ubc.ca/
divisional-research/plastic-surgery/pmrt-nomogram/).

DISCUSSION
In the era of personalized medicine, patients seek 

information tailored to their individualized risk. In the 
setting of IBR, PMRT is an independent predictor of 
reconstructive failure and poor long-term outcomes.7,8 
To help guide preoperative shared decision-making, we 
have developed an online nomogram for predicting the 
recommendation for PMRT for patients seeking IBR. Our 
preferred EN prediction model is parsimonious, accurate, 
and clinically useful, as it is based on preoperative data 
available and accessible at the time of reconstructive con-
sultation. The EN online nomogram can be used in real-
time during discussion with patients.

Clinical Utility
Prediction models facilitate shared decision-making 

in breast reconstruction by risk profiling surgical mor-
bidity21,37–39 and have also been used to guide treatment 

Table 1. Preoperative Patient and Tumor Characteristics  
(n = 800 Patients)
Characteristic n (%) 

Age 49.3 (26–79)
BMI 24.0 (17.1–41.6)
Menopausal status  
  Premenopausal 425 (53.1)
  Postmenopausal 373 (46.7)
Family history of breast cancer 290 (36.7)
Genetic mutation carrier  
  BRCA 1 25 (3.1)
  BRCA 2 2 (0.3)
  p53 9 (1.1)
Palpability  
  Tumor 460 (59.2)
  Axillary lymph node 81 (10.1)
Diagnostic imaging  
  Mammography 706 (88.3)
  Ultrasound 615 (76.9)
  MRI 27 (3.4)
Tumor size on mammogram, mm 20 (1–25)
Tumor size on ultrasound, mm 20 (1–54)
Histology  
  IDC 513 (64.1)
  ILC 66 (8.3)
  In situ 218 (27.3)
Tumor grade  
  1 185 (24.5)
  2 399 (52.8)
  3 211 (27.9)
Tumor focality  
  Multifocal 161 (20)
Preoperative biopsy type  
  Core needle biopsy 796 (88.2)
  Excisional surgical biopsy 93 (11.8)
HER2 status  
  Positive 148 (18.5)
  Negative 503 (62.9)
  Unknown 149 (18.6)
Estrogen status  
  Positive 618 (77.3)
  Negative 132 (16.5)
  Unknown 50 (6.3)
Progesterone status  
  Positive 480 (60.0)
  Negative 198 (24.8)
  Unknown 122 (15.3)
Neoadjuvant chemotherapy 180 (22.5)
Planned nipple-sparing mastectomy 277 (35)
Planned sentinel lymph node biopsy 643 (80)

Table 2. Optimal Features Selected by the ML Algorithm EN
Feature Importance 

Presence of carcinoma on axillary lymph node biopsy 0.24046
Histology: DCIS −0.23067
Presence of preoperative palpable axillary lymph node 0.20967
HER status: negative 0.15977
Maximum dimension/size of preoperative tumor (mm) 0.15503
Histology: IDC 0.1547
Maximum size of preoperative suspicious lymph  

node (mm)
0.1276

Tumor biopsy method −0.1208
Initial diagnostic imaging modality: ultrasound 0.1221
Presence of lymphovascular invasion 0.02746
Age at diagnosis −0.02471
ER status: negative −0.01126

https://surgery.med.ubc.ca/divisional-research/plastic-surgery/pmrt-nomogram/
https://surgery.med.ubc.ca/divisional-research/plastic-surgery/pmrt-nomogram/
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decisions in cancer care40–43 and chronic care.44–48 Given 
the impact of PMRT on long-term reconstructive out-
comes, the ability to predict its use is invaluable in guiding 
decisions on the timing and type of reconstruction and 
informing our discussion of risks.14 This ML prediction 
model may be used clinically to provide an individualized 
patient risk of PMRT during the preoperative discussion 
of reconstructive options. The ML model quantifies the 
risk based on the relative importance of predictors and 
aggregates these contributions into a combined statistical 
score. We believe this score may assist in shared decision-
making. An immediate, delayed, or immediate delayed 
approach may be chosen based on the preoperative deter-
mined likelihood of PMRT.14,49 Adjuvant radiation was 
previously considered to be a relative contraindication 
for IBR, favoring a delayed reconstructive approach.1,11 
For immediate reconstruction, risk profiling will differ 
for those receiving PMRT, regardless of reconstructive 
type.14,39,50 Autologous reconstruction may be favored in 
the setting of anticipated PMRT, given a reduced level of 
morbidity as compared to alloplastic reconstruction.51–53 
Recent studies report that alloplastic reconstruction 
remains the predominant form of breast reconstruction in 
the setting of radiation54 and support successful comple-
tion of reconstruction.55 However, long-term patient sat-
isfaction and health-related quality of life is reduced after 
alloplastic reconstruction and PMRT when compared 
with those without PMRT exposure.53 Thus, the findings 
of this study may be used clinically to inform patients of 
their individualized risk of PMRT based on preoperative 
information. For example, a 40-year-old patient interested 
in IBR presenting with a 30-mm invasive ductal carcinoma 
(ER+/Her2+) with lymphovascular invasion diagnosed by 
mammogram and core biopsy, with no suspicious axillary 
lymphadenopathy, would have a predicted probability 
of 40% of needing PMRT. This individualized predictive 
moderate risk of PMRT may support the patient in avoid-
ing implant-based reconstruction and undergoing an 

autologous reconstruction to avoid the risks of capsular 
contracture or reconstructive failure.9,12,13,50 Although 
our present study provides a strategy for informing these 
important decisions, further validation is required and 
planned in an external cohort to assess generalizability of 
our findings before deployment of the model.

A minority (3%, n = 10) of patients recommended 
for PMRT elected not to undergo radiation therapy. We 
purposefully selected “recommendation for PMRT” as 
opposed to “receipt of PMRT” as we had hypothesized that 
some may elect not to receive radiation despite recom-
mendations. The prediction model is based on objective 
preoperative findings and aims to facilitate decision- 
making in the preoperative setting with an individual-
ized predictive risk of being recommended for PMRT. 
However, the receipt of PMRT will be based on tumor 
pathology after resection, patient characteristics, prefer-
ences, and goals in the shared decision-making process.

Model Development
Multifactor regression models based on popula-

tion cohorts provide epidemiological evidence to guide 
shared decision-making. However, they do not provide an 
individualized probability of an outcome. Furthermore, 
traditional regression models are inherently limited by 
mathematical assumptions including linearity and homo-
geneity of variance.56 Machine-learning algorithms may 
provide a higher level of prediction accuracy by captur-
ing complex linear and nonlinear relationships in clini-
copathological data. Accordingly, ML prediction models 
have been used for prognosticating outcomes of survival, 
recurrence, and morbidity in cancers of the breast,23,24 
colorectal cancer,57,58 and lung cancer.59–61 Regression-
based prediction models include LR, EN, and LL. Due 
to their normalization penalties, LL and EN prefer to 
shrink the estimated coefficients as much as possible 
given the same level of estimation error, thus minimizing 
overfitting. We experimented with varying regularization 

Table 3. Frequency of Predictive Features for “PMRT Recommended” and “No PMRT Recommended” Groups (n = 800)

Features 

PMRT Recommended

Yes
n (%) 

No
n (%) 

Presence of metastasis on axillary biopsy 85 (21.6) 23 (2.8)
Palpable axillary lymphadenopathy 54 (6.7) 27 (3.3)
Negative HER2 receptor status 242 (30.3) 261 (32.6)
Negative ER receptor status 58 (7.2) 74 (9.3)
Presence of suspicious lymph node 92 (11.5) 29 (3.6)
Ultrasound as initial diagnostic modality 288 (36) 327 (40.9)
Invasive histology 288 (36) 297 (37.1)
Presence of lymphovascular invasion 146 (18.2) 321 (40.1)
DCIS histology 35 (4.4) 180 (22.5)
Core biopsy 212 (26.5) 433 (54.1)
Age >40* 195 (24.4) 324 (40.5)
Tumor size*   
  <2 cm 100 (12.6) 237 (30.0)
  2−5 cm 178 (22.3) 171 (21.4)
  >5 cm 68 (8.6) 37 (4.7)
Total 325 (40.6) 475 (59.4)
*Age and tumor size were input as continuous variables in prediction model but categorized for presentation in this table.
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strengths (λ of LL, and the L1-to-L2 mixing parameter 
of EN) using a grid-search over candidate configurations. 
RF builds an ensemble of decision trees, and is capable 
of modeling complex, nonlinear relationships. RF has 
been used in the biomedical domain.62 RF offers little 
interpretability but serves as a strong performance ceil-
ing for the regression models. Thus, despite the high per-
formance of RF, LL and EN are preferred for achieving 
a balance of parsimony and accuracy. Recall that the key 
difference between LL and EN is how correlated features 
are allowed to be included in the model. Due to its sim-
plicity, we selected EN for the online nomogram. Of note, 
the model did not account for differences in the oncolo-
gists providing the PMRT recommendation, nor for the 
surgeons performing the mastectomy or reconstruction. 
In our center, the radiation oncologists are a small group 
of five individuals with a high-volume clinical practice of 
breast cancer patients and homogeneity in their applica-
tion and implementation of guidelines for PMRT recom-
mendation. Surgeon factors were not considered because 
the predictive variables are not influenced by a surgeon’s 
technique.

Risk Factors for PMRT
Not all preoperative factors were relevant to predic-

tion of PMRT. Feature selection reduced the number of 
required input factors from 81 to 12 for EN and 13 for 
LL. The EN and LL models performed equally well using 
either the reduced or the full feature set. A nomogram cal-
culator was created using the reduced feature set to facili-
tate use in the clinical setting. Clinical correlation with the 
ML selected features is essential for salience, interpretabil-
ity, and application of the prediction model. In this study, 
features predictive of PMRT recommendation pertained 
to the presence of metastasis on preoperative axillary 
biopsy, palpable axillary lymphadenopathy, and the size 

of any present suspicious lymph node. Notably, patients 
with presence of metastatic carcinoma on axillary lymph 
node biopsy or palpable lymphadenopathy did not always 
receive PMRT recommendation, explained by a negative 
postoperative lymph node status. Tumor size was highly 
predictive of need for PMRT. Maximal tumor dimension 
from any imaging modality was used in the model given 
that mammogram, ultrasound, and MRI differ in their 
accuracy of tumor size estimation.63 Interestingly, ultra-
sound as an initial diagnostic modality was most predic-
tive when compared with other modalities, which may be 
explained by the underestimation of size with mammo-
gram and overestimation of size with MRI.63,64

Limitations
To assess the clinical utility of an ML algorithm, not 

only its performance in recapitulating historical events 
must be evaluated but also its accuracy of predicting 
future events. This model was trained, evaluated, and 
tested using a dataset derived from a single institution. 
Although there are standardized indications for PMRT 
in breast cancer care, there may heterogeneity in the 
guidelines or implementation of these standards at 
national and international levels.15 A larger and multi-
institutional dataset would allow the fitted models to 
better generalize to other patient distributions.21 Our 
prediction model is based on objective clinicopatho-
logic features and did not account for the risk toler-
ance of either the patient or the radiation oncologist 
recommending PMRT. It is unknown if PMRT recom-
mendations are influenced by a planned or desired 
reconstruction and how patients integrate the risks of 
reconstructive morbidity in discussions with their radia-
tion oncologist. With a study cohort derived from a 
single institution, these potential PMRT recommen-
dation biases are minimized. Given this may limit the 

Fig. 1. Performance of the optimal model using en as visualized on calibration (a) and aUc curves (B) with 12 features.
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generalizability of our prediction model, further exter-
nal validation is planned. Given the absence of effect 
size estimates available for sample size calculation in this 
discovery study,65 we based our cohort size on other pre-
diction ML models of similar complexity66 and applied 
strategies to minimize overfitting.67 In subsequent vali-
dation, we will use the estimates of effect size and their 
distribution to inform our target sample size. Finally, it is 
important to emphasize that the final recommendation 
for PMRT is based on postoperative pathology results, 
which is an inherent limitation of prediction models in 
a preoperative setting.

CONCLUSIONS
ML was applied for predicting the recommendation 

for PMRT. A parsimonious accurate prediction model was 
developed, tested, and translated into a clinically appli-
cable online nomogram calculator for use by providers 
and patients. Relevant features for predicting PMRT are 
readily available in preoperative consultation, including 
tumor size, diagnostic modalities used, suspicion of axil-
lary lymph node metastasis, HER2 and ER status, and 
histology subtype. Clinical application of this prediction 
model may be invaluable for shared decision-making in 
breast reconstruction consultation.
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