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Extracellular vesicle mimics made from iPS ®

cell-derived mesenchymal stem cells
improve the treatment of metastatic

prostate cancer

Qingguo Zhao, Bo Hai, Jack Kelly, Samuel Wu and Fei Liu"

Abstract

Background: Extracellular vesicles (EVs) and their mimics from mesenchymal stem cells (MSCs) are promising drug
carriers to improve cancer treatment, but their application is hindered by donor variations and expansion
limitations of conventional tissue-derived MSCs. To circumvent these issues, we made EV-mimicking nanovesicles
from standardized MSCs derived from human induced pluripotent stem cells (iPSCs) with a theoretically limitless
expandability, and examined the targeting capacity of these nanovesicles to prostate cancer.

Methods: Nanovesicles are made from intact iPSC-MSCs through serial extrusion. The selective uptake of
fluorescently labeled nanovesicles by prostate cancer cells vs. non-tumor cells was examined with flow cytometry.
For in vivo tracing, nanovesicles were labeled with fluorescent dye DiR or renilla luciferase. In mice carrying
subcutaneous or bone metastatic PC3 prostate cancer, the biodistribution of systemically infused nanovesicles was
examined with in vivo and ex vivo imaging of DiR and luminescent signals. A chemotherapeutic drug, docetaxel,
was loaded into nanovesicles during extrusion. The cytotoxicities of nanovesicle-encapsulated docetaxel on
docetaxel-sensitive and -resistant prostate cancer cells and non-tumor cells were examined in comparison with free
docetaxel. Therapeutic effects of nanovesicle-encapsulated docetaxel were examined in mice carrying subcutaneous
or bone metastatic prostate cancer by monitoring tumor growth in comparison with free docetaxel.

Results: iPSC-MSC nanovesicles are more selectively taken up by prostate cancer cells vs. non-tumor cells in vitro compared
with EVs, membrane-only EV-mimetic nanoghosts and liposomes, which is not affected by storage for up to 6 weeks. In
mouse models of subcutaneous and bone metastatic PC3 prostate cancer, systemically infused nanovesicles accumulate in
tumor regions with significantly higher selectivity than liposomes. The loading of docetaxel into nanovesicles was efficient
and did not affect the selective uptake of nanovesicles by prostate cancer cells. The cytotoxicities of nanovesicle-
encapsulated docetaxel are significantly stronger on docetaxel-resistant prostate cancer cells and weaker on non-tumor cells
than free docetaxel. In mouse models of subcutaneous and bone metastatic prostate cancer, nanovesicle-encapsulated
docetaxel significantly decreased the tumor growth and toxicity to white blood cells compared with free docetaxel.
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Conclusions: Our data indicate that EV-mimicking iPSC-MSC nanovesicles are promising to improve the treatment of

metastatic prostate cancer.
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Background

Prostate cancer (PCa) is the second most frequent cancer
in men and the fifth leading cause of death worldwide [1].
Skeletal metastases occur in more than 80% of cases of
advanced-stage PCa and often become resistant to andro-
gen deprivation therapy and cytotoxic chemotherapies [2].
Despite recent advancements of novel therapies, the rela-
tive 5-year survival rate for distant stage PCa is still < 30%.
Nanomedicine of PCa is a promising direction, but main-
stream synthesized nanoparticles cannot efficiently deliver
anti-cancer agents into metastatic PCa due to the lack of
active targeting capacity and the limited uptake of these
nanoparticles by PCa cells [3, 4].

Natural extracellular vesicles (EVs) and EV-mimetic
nanovesicles (NVs) are taken up by cancer cells more effi-
ciently than synthetic nanoparticles through active endo-
cytosis pathways such as enhanced macropinocytosis (cell
drinking) [5]. Moreover, EVs and NVs are favorable drug
carriers to overcome the multidrug resistance of cancer
cells caused by the increase of drug efflux via hyperactive
membrane transporters. Compared with free drugs taken
up mainly by passive diffusion through the cell membrane,
drugs carried by EVs and NVs are released distal to the
cell membrane and therefore less likely to be extruded by
membrane transporters [5]. Consequently, the encapsula-
tion of chemotherapy drugs with EVs or NVs dramatically
increased drug accumulation and cytotoxicity in
multidrug-resistant renal cancer cells (up to 50-fold com-
pared with free drugs) [6], and improved therapeutic ef-
fects in animal models of colorectal cancer [7].

Mesenchymal stem cells (MSCs) interact with PCa cells
through multiple surface molecules, and EV-mimicking
nanoghosts made from bone marrow (BM) MSC mem-
branes showed active PCa-targeting capacity in a mouse
model of subcutaneous PCa [8, 9]. However, nanoghosts
cannot deliver cytoplasmic components such as proteins
and nucleic acids expressed by MSCs. Moreover, MSCs
isolated from tissues such as bone marrow have high
donor variations and limited expandability and lose some
important biological functions after prolonged expansion
[10-14]. Therefore, it is challenging to use tissue-derived
MSC:s as reliable sources for the large amounts of stan-
dardized EV mimics required for further research and fu-
ture clinical application [15].

To address the cell source issues, we established MSCs
from induced pluripotent stem cells (iPSCs) with a

theoretically limitless expandability [16]. These iPSC-
derived MSCs (iPSC-MSCs) are highly consistent in the
homing capacities to various cancers and the expression
of surface molecules related to cancer targeting [16-18].
The osteogenic potentials of our iPSC-MSCs are superior
to BM-MSCs [16, 19], while the immunomodulatory cap-
acities are comparable between these two types of MSCs
[20, 21]. We have prepared nanoghosts from membrane-
only ghost iPSC-MSCs and nanovesicles from intact iPSC-
MSCs respectively by serial extrusions [18]. Compared
with nanoghosts, iPSC-MSC nanovesicles showed a much
higher production yield and a smaller size that is related
to better tumor penetration [18]. We report here that
iPSC-MSC nanovesicles are capable of targeting human
PCa xenografts in mouse models of subcutaneous and
bone metastatic PCa, and significantly enhanced thera-
peutic effects of docetaxel, a PCa chemotherapy drug, with
decreased toxicity to white blood cells.

Methods

Cells

The iPSC-MSCs were recovered from frozen vials of a cell
bank that has been characterized extensively including the
trilineage differentiation in comparison with bone marrow
MSCs from multiple donors [16, 19]. These cells were
plated at a density of 500 cells per square centimeter of
growth area in 17% FBS «aMEM medium at 37 °C and 5%
CO, and passaged upon 70-80% confluence. The iPSC-
MSCs at passage 6 with 70-80% confluency were har-
vested for all experiments. Human PC3 prostate cancer
cells, human smooth muscle cells (SMCs), human umbil-
ical vein endothelial cells (HUVECs), and THP-1 human
myeloid cells were purchased from ATCC and expanded
following ATCC instructions. PC3 cells were transduced
with the lentiviral vectors carrying firefly luciferase 2
(Luc2) and tdTomato [22] at a multiplicity of infection
(MOI) of 10 virus particles per cell in the presence of
8 ug/ml polybrene, and tdTomato" PC3 cells were sorted
by fluorescence-activated cell sorting (FACS) (Supplemen-
tary Methods and Fig. S3) for in vivo tracing.

Preparation and in vitro characterization of Dil-labeled
nanovesicles

To prepare fluorescently labeled nanovesicles and nano-
ghosts for in vitro assays, iPSC-MSCs (1 x 10%/mL) were
labeled with 5 ul/mL Dil cellular membrane labeling-
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solution (ThermoFisher, D-282) for 20 min at 37 °C. For
nanoghost preparation, iPSC-MSCs were hypotonically
treated with tris-magnesium buffer followed by mild
homogenization to make ghost cells without cytosol. Fol-
lowing the published protocols [7, 8, 23], ghost or intact
iPSC-MSCs were extruded through 10, 5, 3, 1.2, and
04 pm polycarbonate membranes, and nanoghosts or
nanovesicles were isolated by ultra-centrifugation for 45
min at 150,000xg at 4 °C. The sizes of these EV-mimics
were analyzed using Nanosight LM 10 Nanoparticle
Tracking Analysis System (Malvern). To examine the se-
lective uptake of nanoparticles by PCa cells in vitro, 1 x
10" Dil-labeled nanoghosts, nanovesicles, or liposomes
(FormuMax, F60103F-DI) were incubated with 1 x 10°
PC3 cells, SMCs, or HUVECs in 1 ml DMEM for 15 min,
1h, or 3h, then cells were washed with phosphate-
buffered saline (PBS) three times and analyzed by flow cy-
tometry for Dil signal. The selective uptake of Dil-labeled
nanoparticles by PC3 cells vs. SMCs or HUVECs was
quantified as the log odds ratio (LOR) as reported [8].

Preparation and in vitro characterization of nanovesicles
labeled with renilla luciferase

To trace nanovesicle content, we constructed a lenti-
viral vector encoding cytoplasmic renilla luciferase
(rLuc) and GFP under the control of ubiquitous EFla
and PGK promoter, respectively. The rLuc ¢cDNA was
amplified from plasmid pRL Renilla Luciferase re-
porter vector (Promega) by PCR, linked into BamHI
site of pCDH-CMV-MCS-EF1-copGFP (System Biosci-
ences, CD511B-1) backbone, and then cloned again
into the EcoRI + Notl site of plasmid backbone
pCDH-EF1-MCS-BGH-PGK-GFP-T2A-Puro  (System
Biosciences, CD550A-1). Lentiviral vectors carrying
rLuc and GFP were prepared by transfecting 293T
cells (ATCC) with the above pCDH-EF1-mLuc-PGK-
GFP plasmid with pPACK packaging plasmid mix and
concentrated by PEG-it virus precipitation solution
(System Biosciences). Human iPSC-MSCs were trans-
duced with the rLuc-GFP lentivirus at an MOI of 10
with 8 ug/ml polybrene, and GFP" cells were sorted
by FACS to expand. NVs were reconstructed from
non-transduced and GFP" rLuc-transduced iPSC-
MSCs and absorbed on 4 pum aldehyde/sulfate-latex
beads (ThermoFisher) to examine GFP expression
with FC500 flow cytometer (Beckman Coulter). To
determine the correlation between rLuc signal inten-
sities and rLuc-NV numbers before or after uptake by
cells, rLuc-NVs were incubated alone or with 1 x 10%/
well PC3 cells in 96-wells plate for 3h at 37°C, and
the luminescence was measured after incubation with
rLuc substrate Coelenterazine (Sigma, 2.5pug/ml) for
15 min with a FLUOstar Omega plate reader (BMG
LABTECH).
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Animals

Male NU/J athymic nude mice were purchased from the
Jackson Laboratory. Subcutaneous and bone metastatic PCa
mouse models were generated by injecting 1 x 10°> Luc2-PC3
cells subcutaneously at the right flank or 5 x 10* Luc2-PC3
cells intratibially into the right hind leg of these mice at 9—
12 weeks old. The animal numbers are 4 mice per group for
biodistribution assays and 6 mice per group for assays on
therapeutic effects as reported [7, 24]. The in vivo Luc2 sig-
nals were imaged weekly with IVIS Lumina III System (Per-
kinElmer) at 15min after subcutaneous injection of D-
Luciferin (150 ng/g body weight in 100 pl PBS).

Biodistribution of nanovesicles in mice carrying PCa
Nanovesicles for biodistribution assays were labeled with ei-
ther rLuc inside them or the near-infrared fluorescent dye
DiR (ThermoFisher, D-12731) on their surface as reported
[24] with procedures similar to Dil labeling. These nanove-
sicles were PEGylated as reported [8] by incubating in PBS
containing Methoxy-polyethylene glycol (PEG) succinate
N-hydroxysuccinimide ~ (Sigma, 85,976) at room
temperature for 2 h with gentle agitation. The PEGylation
was stopped by adding 100 mg I-Lysine (Sigma), and then
unreacted PEG, excess lysine and reaction by-products
were eliminated by buffer exchange over a Micro-Bio Spin
P-30 column (Bio-Rad) equilibrated with TM-buffer (pH
8.6, Sigma). Mice carrying established subcutaneous or
bone PCa were randomly grouped and intraperitoneally
(IP) injected with PEGylated DiR-NVs, rLuc-NVs or DiR-
liposomes (FormuMax, F60203F-DR) at the dose of 1 x
10" particles/gram (p/g) as optimized for DiR-labeled
MSC EVs [24]. The numbers of NVs and liposomes were
quantified by nanoparticle tracking analysis with NanoSight
NS300 (Malvern). The biodistribution of DiR-labeled lipo-
somes and nanovesicles was examined by in vivo and
ex vivo imaging of DiR fluorescence with IVIS Lumina III
System (PerkinElmer). For in vivo imaging of rLuc signals,
ViviRen substrate (2 pug / g body weight in 200 ul PBS) was
IP injected, and luminescent images were taken 15min
later with IVIS Lumina III System. The intensities of DiR or
rLuc signals in tumor and non-tumor regions were quanti-
fied with the Living Image software (PerkinElmer).

Preparation and in vitro characterization of docetaxel-
nanovesicles (DxI-NVs)

iPSC-MSCs were pre-incubated with 5pg/mL Dxl
(Sigma, PHR1883) for 24 h or not pretreated, and then
broken down by serial extrusion in the presence of 50,
100, or 200 pg/mL DxI to make Dxl-loaded NVs. The
amount of Dxl loaded into NVs was determined by UV
spectrometry at 230 nm as reported [25] using a spectro-
fluorometer (ThermoFisher). After incubation in 37 °C
PBS containing 10% pooled human serum (Sigma) or
4°C PBS for a series of periods, the supernatant was
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isolated by ultra-centrifugation at 100,000xg for 90 min
at 4°C using Sorvall WX Floor Ultra Centrifuge
(Thermo) to measure Dxl release from NV-Dxl by UV
spectrometry. Dxl-resistant PC3 cells were established as
reported [26]. 5x10%/well parent PC3 cells, Dxl-
resistant PC3 cells, or THP-1 human myeloid cells were
seeded into 96-well plates, incubated with empty NVs,
NV-Dxl], or free Dxl at a series of concentrations for 72
h, and then analyzed with PrestoBlue Cell Viability Assay
(ThermotFisher).

Therapeutic effects of NV-DxI

Mouse models of subcutaneous and bone metastatic
PC3 PCa were established as mentioned above. Sizes of
subcutaneous tumors were measured every 4 days with
calipers, and tumor volumes were calculated with the
modified ellipsoid formula 1/2(length x width?) [27, 28].
Luc2 signals were imaged weekly and the biolumines-
cence intensities were quantified with the Living Image
software (PerkinElmer). When subcutaneous tumors
reached the size of 50 mm?® and Luc2 signals were clearly
detectable in the injected leg by in vivo imaging, mice
were randomly grouped and injected IP with PBS, free
Dxl or PEGylated DxI-NVs at the dose of 5 mg/kg body
weight twice a week for 3weeks. The blood was col-
lected at the end point for complete blood count using
the VetScan HM5 Color Hematology System (Abaxis).

Statistical analyses

All statistical analysis and graphical generation of data
were done with GraphPad Prism software. Statistical
comparisons between two groups were performed with
unpaired two tailed Student’s ¢ tests. Comparisons in-
volving more than two groups were performed with
one-way analysis of variance (ANOVA) followed by the
post hoc Bonferroni test. Comparisons involving >3
time points and = 3 different treatments were performed
with a repeated measures ANOVA followed by the post
hoc Bonferroni test. P<0.05 is considered significant.
All quantified data were presented as mean + SD.

Results

Nanovesicles made from iPSC-MSCs are more selectively
taken up by PCa cells than nanoghosts and liposomes
We prepared extracellular vesicles (EVs), nanoghosts
(NGs), and nanovesicles (NVs) from our iPSC-MSCs cul-
tured under same conditions as reported [7, 8, 18, 21].
The mean size of nanovesicles is much smaller and more
uniform than nanoghosts and EVs (Fig. S1A), suggesting
that nanovesicles might achieve better tumor penetration
due to smaller particle size [29]. The yield of nanovesicles
is about 3-fold of that of nanoghosts and 6-fold of EVs in
term of particle numbers (Fig. S1B). Both nanoghosts and
nanovesicles express EV surface markers ALIX and
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TSG101 at levels comparable to EVs (Fig. S1C-D). To
trace iPSC-MSC EVs, nanoghosts, and nanovesicles
in vitro, we labeled them with a lipophilic fluorescent dye
Dil [8]. The Dil labeling efficiency was comparable be-
tween EVs, nanoghosts, nanovesicles, and commercially
available Dil-liposomes, and the Dil signal intensities were
in proportion to numbers of these particles [18]. To deter-
mine the uptake of these particles by prostate cancer cells
vs. non-tumor cells, we incubated Dil-labeled and non-
PEGylated liposomes, EVs, nanoghosts, or nanovesicles
with human PC3 PCa cells, human smooth muscle cells
(SMCs), or human umbilical vein endothelial cells
(HUVEC:S) for 15 min, 1 h, or 3 h. After washing, percent-
ages of Dil" cells were determined by flow cytometry, and
the selective uptake by PC3 cells was quantified as log
odds ratios (LOR) vs. SMCs or HUVECs as reported [8].
The uptake of liposomes by PC3 cells was comparable to
non-tumor cells as expected, whereas iPSC-MSC EVs,
nanovesicles, and nanoghosts were selectively taken up by
PC3 cells vs. either SMCs or HUVECs after various incu-
bation periods (Fig. 1la—c). Despite the same cell source,
the PC3-selective uptake of nanovesicles (LOR) is signifi-
cantly higher than that of EVs and nanoghosts after incu-
bation for 1 or 3 h, which is related to the higher uptake
by PC3 cells of nanovesicles than EVs and the lower up-
take by non-tumor cells of nanovesicles than nanoghosts
(Fig. 1la—c). The selective uptake of nanovesicles by PC3
cells vs. SMCs was validated by confocal microscope im-
aging of GFP-transduced cells incubated with Dil-labeled
nanovesicles for 1 or 3 h (Fig. S2). We have confirmed that
iPSC-MSC nanovesicles maintain their size, charge, and
selective uptake by breast cancer cells after prolonged
storage [18]. Consistently, after storage at 4 °C for 1, 2, or
3 weeks or at — 80 °C for 6 weeks, the selective uptake of
iPSC-MSC nanovesicles by PC3 cells vs. SMCs was not
significantly decreased compared to fresh nanovesicles re-
suspended in PBS at 4 °C overnight (Fig. 1d, e). These data
indicate that iPSC-MSC nanovesicles are superior to EVs
and nanoghosts for PCa-targeting and maintain PCa-
targeting capacity after storage; therefore we focus on
iPSC-MSC nanovesicles for all following experiments.

Systemically infused iPSC-MSC nanovesicles accumulate

in subcutaneous PCa with higher efficacy than liposomes

For in vivo biodistribution assays, nanovesicles were
firstly labeled with a near-infrared lipophilic fluorescent
dye DiR as reported for EVs [24], PEGylated as reported
for BM-MSC nanoghosts [8], and compared with DiR-
labeled liposomes (FormuMax) PEGylated in the same
way as FDA-approved liposomes to deliver a chemother-
apy drug (Doxil, 5% PEG 2000-DSPE) [30]. Subcutane-
ous xenograft models are widely used for PCa study to
facilitate the monitoring of PCa growth and the harvest
of PCa tumors. Nude mice carrying subcutaneous Luc2-
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PC3 PCa were randomly grouped and injected intraperito-
neally (IP) with DiR-labeled liposomes or nanovesicles. In
vivo Luc2 and DiR imaging indicated that DiR signals in
Luc2” tumor region were significantly higher in the NV
group 12, 24, and 48 h after infusion than in the liposome
group, while strong DiR signals in both groups were also
present in the upper abdomen area containing the mono-
nuclear phagocytic system (MPS) organs such as the liver
and spleen (Fig. 2a—c). Tumors and major organs were har-
vested 24 h after infusion for ex vivo DiR imaging. The
tumor DiR signals were significantly higher in the NV group
than in the liposome group, whereas DiR signals in the liver
and spleen are comparable high in both groups (Fig. 2d—f).
Since assays on DiR only reflect the distribution of
membrane components of nanovesicles, we then labeled
contents of nanovesicles with cytoplasmic renilla lucifer-
ase (rLuc) that can be clearly distinguished from Luc2
signals in PC3 cells based on distinct substrates and bio-
luminescent properties. Nanovesicles were reconstructed
form iPSC-MSCs transduced with a lentiviral vector en-
coding cytoplasmic rLuc and green fluorescent protein

(GFP), and almost all rLuc-labeled NVs express GFP as
indicated by flow cytometry assay (Fig. 3a). These rLuc-
nanovesicles were comparable to non-transduced (NT)
nanovesicles in size and selective uptake by PC3 cells vs.
non-tumor cells (Fig. 3b, c). We then examined the lucif-
erase activity of rLuc-labeled NVs in vitro with or without
co-culture with PC3 cells. Under both conditions, the in-
tensities of rLuc signals were correlated to nanovesicle
numbers in linear relationships (Fig. 3d, 7 >0.91). These
rLuc-nanovesicles were PEGylated and IP injected into
mice carrying subcutaneous PC3 tumors. The in vivo im-
aging indicated that at 12 and 24h after NV infusion,
strong and localized rLuc signals were present at Luc2*
tumor regions (Fig. 3e—g). Compared with tumor DiR sig-
nals, the relative intensity of tumor rLuc signals was
higher at 12 and 24 h after NV infusion but decreased fas-
ter. Similar to DiR signals, strong and dispersed rLuc sig-
nals were also present in the abdomen area containing
MPS organs (Fig. 3e—g). The DiR and rLuc imaging data
together indicated the selective accumulation of infused
nanovesicles in subcutaneous PCa and MPS organs.
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Systemically infused iPSC-MSC nanovesicles accumulate

in bone metastatic PCa with higher efficacy than
liposomes

The bone metastatic PCa mouse model was generated
by intratibial injection of Luc2-PC3 cells into nude
mice, and then DiR-labeled NVs or liposomes or
rLuc-labeled NVs were injected IP into randomly
grouped mice carrying bone metastatic PCa. In vivo
DiR imaging indicated that DiR signals in Luc2® bone
PCa regions were much stronger in the NV group
than in the liposome group at 12 and 24 h after infu-
sion, while strong DiR signals in both groups were
also present in the upper abdomen area containing
the MPS organs (Fig. 4a—c). The ex vivo DiR imaging
of tissues harvested 12h after the infusion confirmed
much higher relative DiR signals within the PCa-
carrying leg in the NV group than in the liposome
group, and also revealed high DiR signals in the liver
and spleen comparable between these two groups
(Fig. 4d-f). The rLuc imaging confirmed that
IP injected rLuc-NVs accumulated in bone metastases
despite a much faster decrease of rLuc signals than
DiR signals (Fig. 4g—i). These data indicated that sys-
temically injected iPSC-MSC NVs are capable of tar-
geting metastatic PCa with a selectivity superior to
liposomes. However, similar to all other nanoparticles
including bone marrow MSC EVs [24] and nano-
ghosts [8, 9], a large portion of the infused NVs is
taken up by MPS organs despite the routine PEGyla-
tion to increase their stealth, which need be decreased
for future applications.

Nanovesicles efficiently encapsulated docetaxel and
enhanced its cytotoxic effects on resistant prostate
cancer cells

Docetaxel (Dx]) is a first-line drug for metastatic pros-
tate cancer [31], but its dose is limited by toxicities to
non-tumor cells such as myeloid cells [32]. Furthermore,
Dxl resistance is common in advanced PCa patients [33].
Based on the protocol for loading Dxl into EVs from
tissue-derived MSCs [34], iPSC-MSCs were pretreated
with 5pg/mL Dxl for 24h or not pretreated; and then
broken down into NVs in solutions containing 50, 100,
or 200 pug/ml Dxl as reported for loading a similar drug,
paclitaxel, into EV mimics [35]. The maximal Dxl load-
ing into NVs was achieved by extrusion of Dxl-
pretreated iPSC-MSCs in 50 ug/mL Dxl (Fig. 5a). In
comparison to empty NVs, Dxl loading at 50 or 100 pg/
ml did not significantly affect the size distribution of
NVs (Fig. 5b) and the selective uptake of NVs by PC3
cells vs. SMCs (Fig. 5¢, d), whereas Dxl loading at
200 pug/ml slightly increased the NV size and signifi-
cantly decreased the selective uptake of NVs by PC3
cells. Therefore, we chose NV-Dxl made by extrusion of
Dxl-pretreated iPSC-MSCs in 50 pg/mL Dxl for all fol-
lowing experiments. The release kinetics of Dxl from
NV-Dxl indicated that in both 4 °C PBS and 37 °C serum
most Dxl remained inside NVs for up to 48 h (Fig. 5e).
In parent PC3 cells, the cytotoxicity of NV-Dxl was
comparable to free Dxl, whereas empty NVs displayed
no cytotoxicity at amounts equal to those of NV-Dxl
(Fig. 5f). In Dxl-resistant PC3 cells established as re-
ported [26], the cytotoxicity of NV-Dxl was significantly
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stronger than free Dxl: the half maximal inhibitory con-
centration (IC50) of free Dxl is higher than 100 ng/ml,
whereas that of NV-Dxl is around 30ng/ml (Fig. 5g).
Dxl frequently causes toxicities to non-tumor cells such
as myeloid cells, and the consequent severe neutropenia
is a major dose-limiting adverse effect of Dxl [32].
Therefore, we examined the toxicity of NV-Dxl and free
Dxl on human THP-1 myeloid cells. As indicated by the
viability assay, NV encapsulation significantly decreased
Dxl toxicity on THP-1 cells at concentrations between 3
to 30 ng/ml (Fig. 5h). These data suggest that NV-Dxl
could efficiently overcome Dxl-resistance of PCa in vivo
at tolerable doses.

Therapeutic and adverse effects of nanovesicles loaded
with docetaxel in the subcutaneous and bone metastatic
PC3 PCa mouse models

Both PCa mouse models were generated as mentioned
above with Luc2-PC3 cells. When subcutaneous tumors
reached the size of 50 mm® and Luc2 signals were clearly
detectable by in vivo imaging, we IP injected PBS, free
Dxl or PEGylated DxI-NVs into randomly grouped mice
at the dose of 5 mg/kg body weight twice a week for 3
weeks. The dose of NV-Dxl was chosen as reported for
Dxl carried by synthesized nanoparticles that effectively
inhibited the progression of subcutaneous PCa and re-
duced hematological toxicity in a mouse model [36].
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The tumor sizes were monitored every 4 days and Luc2
signals were imaged weekly. Compared with free Dxl
and PBS treatment, NV-Dxl significantly decreased the
Luc2 signal intensity and tumor volume after 2 weeks of
treatment (Fig. 6a—c) and reduced the tumor weight at
the end point of 24 days after treatment (Fig. 6d, e).
Consistently, tumors from mice treated with NV-Dxl
contain more TUNEL-positive cells than in free DxI or
PBS group, indicating an increase in apoptosis (Fig. S5).
Meanwhile, the white blood cell (WBC) count at the end
point was significantly decreased by free Dxl but not by
NV-Dxl compared with the PBS group (Fig. 6f).

The establishment and progression of bone metastatic
PCa was monitored by in vivo imaging of Luc2 bio-
luminescence weekly. When Luc2 signals were clearly
detectable at the leg injected with Luc2-PC3 cells, mice
were randomly grouped and intraperitoneally injected
with PBS, free Dxl, or PEGylated DxI-NVs at a dose of 5
mg/kg body weight twice a week for 3 weeks. Compared
with free Dxl and PBS treatment, NV-Dxl significantly
decreased the Luc2 bioluminescence intensity after 2
weeks of treatment (Fig. 7a, b). Meanwhile, the white
blood cell count at the end point of 21 days after treat-
ment was significantly decreased by free Dxl but not by
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NV-Dxl compared with the PBS group (Fig. 7c). These
data suggest that NV encapsulation can increase thera-
peutic effects of Dxl on metastatic PCa and decrease
toxic effects of Dx] on white blood cells.

Discussion

We reported recently that iPSC-MSCs circumvent donor
variations, expansion limitations, and the decreased ex-
pression of cancer-targeting surface molecules during

expansion in tissue-derived MSCs; therefore, iPSC-
MSCs are a reliable source of cancer-targeting EV-
mimics [18]. Moreover, nanovesicles made from intact
iPSC-MSCs have a much higher production yield and
smaller and more consistent sizes compared with EVs
and nanoghosts made from membrane-only ghost cells
[18]. Here, we report that iPSC-MSC nanovesicles are
more selectively taken up by prostate cancer (PCa) cells
than EVs, nanoghosts, and liposomes, the mainstream
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drug carrier for cancer nanomedicine. Moreover, nanove-
sicles can effectively deliver cytoplasmic components of
iPSC-MSCs into PCa as indicated by the rLuc tracing as-
says. These advantages make nanovesicles a better choice
than EVs and nanoghosts for targeting prostate cancer.

In both subcutaneous and bone metastatic PCa mouse
models, human iPSC-MSC nanovesicles selectively accu-
mulate in PCa with much higher efficiencies than lipo-
somes. The PCa-targeting capacity of MSCs and MSC
EV mimics is related to multiple surface proteins that
interact with molecules abundant in PCa tumors [8, 9].
Advanced PCa cells express high levels of Integrin a3,
a6, and Pl (ITGA3/A6/B1) [37, 38], EphA2 [39, 40], and
connexins (Cx) such as Cx43/45 [41] at their surface,
and also increase levels of extracellular matrix (ECM)
components including fibronectin (FN) [42], osteopontin

(OPN) [43], and hyaluronan [44] in tumor stroma. These
over-expressed molecules contribute to the maintenance
of cancer stem cells, metastasis, and poor clinical out-
come. MSCs and their EVs or EV mimics carry multiple
ligands of above molecules including Integrin a4, all
and f1 (ITGA4/A11/B1) [8, 9], CD44, CD63, TSPAN4,
ICAM1, VCAM]1, CD9, CD81, and Cx43 [18] (Fig. S4).
We have confirmed the high levels of these ligands in
our iPSC-MSCs and derived EV mimics [18]. Moreover,
the common PTEN-deficiency in metastatic PCa cells in-
cluding PC3 cells greatly promotes macropinocytosis
[45], which in turn dramatically enhances uptake of ad-
jacent EVs and EV-mimics [5]. These two mechanisms
together make iPSC-MSC nanovesicles a promising car-
rier for the targeted delivery of anti-cancer agents into
metastatic PCa.



Zhao et al. Stem Cell Research & Therapy (2021) 12:29

Page 11 of 13

Free Dxl

PBS Free Dxl
Fig. 7 Therapeutic effects of NV-Dxl| in the mouse model of bone metastati

images before and by the end of treatments. b The quantification of weekly in vivo Luc2 bioluminescence intensities during treatments. ¢ The

blood was collected at the end point to count white blood cell (WBC). N=

\

. ‘ ’ 0.1

NV-DxI

2 A

NV-DxI

§
o)
—

003 -e- PBS
-=- Free Dx|

- NV-Dx|

-
o

-

Luc2 activity (x10* RLU)

0 7 14 21
Days after first treatment

H C
15k =
5 =
o
[s2]
o
ok
€
>
8
LY
om
<

0]
PBS Free NV-

Dxl  Dxl

C prostate cancer. a The representative in vivo Luc2 bioluminescence

6, *p < 0.05 vs. the free DxI group and PBS group; ns, not significant

However, like EVs and all other nanoparticles, a large
portion of nanovesicles accumulate in the mononuclear
phagocytic system (MPS) organs despite the routine
PEGylation. The PEG layer can reduce the binding of
synthetic nanoparticles to phagocytes and prolong their
circulation time and also inhibits active cancer targeting
and cellular uptake mediated by targeting ligands and
consequent intracellular delivery of payloads [46]. Since
PCa express much higher levels of matrix metallopro-
teinases (MMP) than non-tumor tissues [47], the shield-
ing of nanovesicles with MMP-sensitive PEG [48-50] is
expected to lead to the cancer-specific degradation of
PEG, which can enhance the uptake of nanovesicles by
PCa cells while inhibiting that by MPS cells. Another
promising approach is pretreating MSCs with proinflam-
matory cytokines before extrusion: in the mouse model
of subcutaneous PC3 PCa, pretreatment of BM-MSCs
with TNFa and IL1p significantly increased the accumu-
lation of MSC nanoghosts in PCa but not in MPS or-
gans, which is likely related to slight changes in
expression levels of multiple membrane proteins [51].

The current guideline of International Society of Geri-
atric Oncology recommends docetaxel (Dxl) as the
standard of care for metastatic PCa [31], but some pa-
tients cannot tolerate the toxicity of DxI and all PCa pa-
tients will ultimately develop resistance to Dxl [33]. The

encapsulation with nanovesicles significantly improved
the cytotoxicity of Dxl on cultured Dxl-resistant PCa
cells, which is likely through diverting enhanced drug ef-
flux mediated by over-expressed or hyperactive mem-
brane drug transporters [5]. In both subcutaneous and
bone metastatic PCa mouse models, NV-Dxl signifi-
cantly inhibited the tumor growth compared with the
equal dose of free Dxl and resulted in much weaker tox-
icity on white blood cells. The increased therapeutic effi-
cacy of NV-Dxl is likely related to both the enhanced
delivery of Dxl into PCa tumors and the decreased Dxl
efflux by membrane drug transporters in PCa cells.

Conclusion

Our data indicate that EV-mimetic nanovesicles made
from iPSC-MSCs with a theoretically limitless expand-
ability and consistent biological properties are a promis-
ing platform for targeted delivery of anti-cancer agents
to improve treatment of metastatic prostate cancer.
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