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Abstract: There is a large variability in individual responses to atorvastatin administration. This
study assessed the pharmacogenetic effects of solute carrier organic anion transporter family member
1B1 (SLCO1B1, c.388A>G and c.521T>C) and cytochrome P450 3A5 (CYP3A5, CYP3A5*3) genetic
polymorphisms on the pharmacokinetics of atorvastatin and its active metabolite, 2-hydroxy (2-OH)
atorvastatin, in 46 individuals who were administered a clinically used single oral dosage of 80 mg.
The Cmax and AUC of atorvastatin in CYP3A5*3/*3 carriers were 2.6- and 2.8-fold higher, respectively,
than those in CYP3A5*1/*1 carriers, and similar results were observed for 2-OH atorvastatin phar-
macokinetics. SLCO1B1 c.521T>C also increased the AUC of atorvastatin and 2-OH atorvastatin.
The AUC ratio of atorvastatin and 2-OH atorvastatin were not affected by SLCO1B1 c.388A>G or
c.521T>C, whereas CYP3A5*3 reduced the AUC ratio. In an analysis evaluating the simultaneous
effect of the SLCO1B1 c.521T>C and CYP3A5*3 polymorphisms, SLCO1B1 c.521TT/CYP3A5*1/*1 car-
riers showed lower Cmax and AUC values for atorvastatin and 2-OH atorvastatin than in individuals
with the SLCO1B1 c.521T>C and/or CYP3A5*3 genotypes. Among the participants with the SLCO1B1
c.521TT genotype, the CYP3A5*3 carriers had a higher systemic exposure to atorvastatin and 2-OH
atorvastatin than the CYP3A5*1/*1 carriers. Thus, SLCO1B1 c.521T>C and CYP3A5*3 polymorphisms
affect the pharmacokinetics of atorvastatin and 2-OH atorvastatin.
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1. Introduction

Atorvastatin is a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, which
is used for managing dyslipidemia [1,2]. Statins reduce cardiovascular morbidity and
mortality in high-risk patients, and their efficacy and safety in facilitating the primary
and secondary prevention of cardiovascular events have been demonstrated in various
clinical trials [2].

However, individual responses to statins can vary considerably and may yield various
adverse events. For example, statins can cause myopathy and even rhabdomyolysis, which
is a rare adverse effect in certain patients [1,3,4]. This toxicity is often associated with
increased plasma concentrations of statins caused by drug interactions or hereditary differ-
ences in statin pharmacokinetics, and this includes the effect of interindividual variability
of enzymatic (e.g., CYP3A5) and transporter (e.g., SLCO1B1) activities caused by SNPs
responsible for atorvastatin [3,5,6].

Atorvastatin is subject to an extensive first-pass metabolism in the gut wall and
liver, with an oral bioavailability of 14% [7]. Recently, atorvastatin was identified as a
substrate of SLCO1B1 (i.e., organic anion transporting polypeptide 1B1, OATP1B1) [8–10].
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In addition, several single nucleotide polymorphisms (SNPs) in the gene encoding SLCO1B1
have been identified, and some, specifically the c.521T>C polymorphism, are associated
with a reduced activity of SLCO1B1 and markedly elevated plasma levels of atorvastatin
in vivo in humans [8–10]. The SLCO1B1 c.388A>G polymorphism also affects the SLCO1B1
transporter function [11,12].

In hepatic metabolism, atorvastatin is hydroxylated primarily by CYP3A4 and CYP3A5,
as well as by CYP2C8 at a low rate; this hydroxylation yields its major active metabolites,
including 2-hydroxy (2-OH) atorvastatin and 4-hydroxy-atorvastatin [7]. In the CYP3A
family, CYP3A4 is generally considered the dominant form. However, recent data sug-
gested the relative contribution of CYP3A5 to the total CYP3A pool may be much larger
than was previously suspected, particularly in individuals with increased expression levels
of CYP3A5 [13–15]. The CYP3A5 protein is expressed polymorphically, and several genetic
variants, of which CYP3A5*3 is the single common allele for major ethnic groups, can re-
duce the expression level of CYP3A5 [16,17]. The genetic variants thereby cause variation in
the pharmacokinetics and pharmacodynamics of the substrate [16]. Several in vivo human
datasets have shown that the CYP3A5*3 genotype remarkably affects the pharmacokinetics
of CYP3A substrates [18,19]. In addition, the pharmacokinetic and lipid-lowering effects of
statins are reportedly related to CYP3A4/5 genotypes [20,21].

Based on the evidence that the respective SLCO1B1 and CYP3A5 genotypes may affect
the pharmacokinetics of atorvastatin and its active metabolite, this study assessed the
simultaneous pharmacogenetic effects of SLCO1B1 and CYP3A5 genetic polymorphisms on
the pharmacokinetics of atorvastatin and its active metabolite 2-OH atorvastatin in humans.

2. Materials and Methods
2.1. Participants

A total of 46 healthy male volunteers were enrolled from previous pharmacokinetic
studies, and all participants were recruited from a Korean population. Detailed physical
examinations, 12-lead electrocardiograms, vital parameters, and laboratory tests, including
blood chemistry, hematology, and urine analyses, were performed to determine the health
status of the volunteers. The exclusion criteria were as follows: history or evidence of
hepatic, renal, gastrointestinal, or hematological pathologies, hepatitis B or C or human
immunodeficiency virus infections, any other acute or chronic disease, and an allergy to any
drug. The participants were not allowed to consume any drug two weeks before or during
the study period. All procedures were performed in accordance with the Declaration of
Helsinki and the Good Clinical Practice guidelines.

2.2. Study Design

The study protocol was approved by the Institutional Review Board of Anam Hospital,
Korea University College of Medicine (Seoul, Korea). For pharmacokinetic data, we
used data obtained from the previous pharmacokinetic studies. All study participants
were admitted to the clinical trial center during the evening prior to the day of drug
administration. After fasting overnight, they were given a single 80 mg oral dose of
atorvastatin (Pfizer Korea Ltd., Seoul, Korea) with 240 mL of water. The selected dosage
was a highest maintenance dose for commercially used atorvastatin [1]. Blood samples
were collected immediately before drug administration (baseline) and then at 0.17, 0.33, 0.5,
0.67, 0.83, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 8, 10, 12, 24, 36, and 48 h after drug administration.
Blood samples were collected in ethylenediaminetetraacetic acid (EDTA) tubes (Vacutainer,
Becton Dickinson, Franklin Lakes, NJ, USA) and centrifuged at 1977 g and 4 ◦C for 15 min.
Plasma samples were stored at −70 ◦C until analysis.

2.3. SLCO1B1 and CYP3A5 Genotyping

For the genetic analysis, a blood sample was drawn from each individual and stored
in EDTA at −20 ◦C until DNA extraction. DNA was extracted using standard methods
(QIAamp DNA Blood Mini Kit; Qiagen, Hilden, Germany) [22,23]. All participants were
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genotyped for the SLCO1B1*1b (c.388A>G, rs2306283), SLCO1B1*5 (c.521T>C, rs4149056),
and CYP3A5*3 (6986A > G, rs776746) alleles using previously described pyrosequencing
methods [24,25]. The validity of this method was confirmed using direct sequencing.

2.4. Bioanalysis

The atorvastatin and 2-hydroxy (2-OH) atorvastatin concentrations were measured
as described in a previous study, with a slight modification [26]. Briefly, the sample was
injected into a high-performance liquid chromatography system (Shiseido Co., Ltd., Tokyo,
Japan) coupled with an API 4000 mass spectrometer (Applied Biosystems-SCIEX, Framing-
ham, MA, USA) equipped with a Capcell Pak C18 column (2.0 mm × 150 mm, 5 µm, Tokyo,
Japan). The isocratic mobile phase was a mixture of acetonitrile (25%), methanol (40%),
and 0.01% formic acid in water (35%). The flow rate of the mobile phase was 0.2 mL/min.
The mass spectrometer was equipped with an electrospray ionization source and operated
in negative ion mode with multiple reaction monitoring. The mass transition ion pairs of
atorvastatin, 2-OH atorvastatin, and atorvastatin-d5 (internal standard) were selected as m/z
557.4→ 278.1, m/z 573.5→ 278.1, and m/z 573.5→ 278.1, respectively. Standard working
solutions of atorvastatin and 2-OH atorvastatin (0.5, 1, 2, 5, 10, 20, 50, 100, and 200 ng/mL)
were prepared by diluting the stock solution with blank plasma. Linear calibration curves
of standard atorvastatin and 2-OH atorvastatin were established (r2 = 0.999).

2.5. Pharmacokinetic Analysis

The pharmacokinetic variables of atorvastatin and 2-OH atorvastatin were estimated
using non-compartmental methods utilizing WinNonlin version 7.0 (Pharsight, Cary, NC,
USA) [27]. The peak concentrations (Cmax) and time to reach Cmax (Tmax) were estimated
directly from the observed plasma concentration–time data. AUClast was calculated us-
ing the linear trapezoidal rule. The AUC from 0 to infinity (AUCinf) was calculated as
AUCinf = AUClast + Ct/Ke (where Ct is the last plasma concentration measured). The elim-
ination rate constant (Ke) was determined via linear regression analysis of the log-linear
part of the plasma concentration–time curve. The half-life (t1/2) was calculated using the
equation half-life = ln2/Ke. Oral clearance (CL/F) of atorvastatin was calculated as follows:
CL/F = dose/AUCinf.

2.6. Statistical Analysis

Data are expressed as mean ± standard deviation (SD) in the text and tables and,
for clarity, as mean ± standard error of measurement (SEM) in the figures. Differences
were considered significant at p < 0.05. The pharmacokinetic parameters of the SLCO1B1
and CYP3A5 genotypes were comparatively analyzed using one-way analysis of variance
or the Kruskal–Wallis test, followed by Tukey’s post hoc analysis after examining the
normal distribution of the data. Regarding the SLCO1B1 c.521T>C polymorphism, only
one participant with c.521CC was found, so pharmacokinetic comparisons were performed
between participants with c.521TT and participants with c.521TC or c.521CC using an
unpaired t-test. Genetic equilibrium and linkage disequilibrium were determined according
to the Hardy–Weinberg equation using SNPalyzer version 7.0 (DYNACOM Co., Ltd.,
Yokohama, Japan). All statistical analyses were performed using the SAS statistical software
package version 9.4. (SAS Institute, Cary, NC, USA).

3. Results
3.1. Demographics and Genotyping

The SLCO1B1 and CYP3A5 genotypes and their allele frequencies are presented in
Table 1.
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Table 1. Frequencies of SLCO1B1 and CYP3A5 genetic variations evaluated in this study.

Genotype Frequency (%) Allele Frequency (%)

CYP3A5*3 *1/*1 3 (6.5%) *1 30.4%
(rs776746) *1/*3 22 (47.8%) *3 69.6%

*3/*3 21 (45.7%)
SLCO1B1 c.521T>C TT 33 (71.7%) T 84.8%

(rs4149056) TC 12 (26.1%) C 15.2%
CC 1 (2.2%)

SLCO1B1 c.388A>G AA 6 (13.0%) A 28.3%
(rs2306283) AG 15 (30.4%) G 71.7%

GG 27 (56.5%)

Their demographic data according to the SLCO1B1 and CYP3A5 genotypes are pre-
sented in Table S3.

CYP3A4*18 allele was also screened in this population, but no individuals were
found with this allele. All observed genotype frequencies for SLCO1B1 and CYP3A5
were in the Hardy–Weinberg equilibrium. The observed allele frequencies for CYP3A5*3,
SLCO1B1 c.521T>C, and SLCO1B1 c.388A>G in this population were 69.6%, 15.2%, and
71.7%, respectively. The genotype groups were compared based on an analysis of covariance
utilizing an effective term for both SLCO1B1 and CYP3A5 genotypes as well as demographic
data, including age, body weight, and height as covariates. However, the interactions
between genotype and each of the covariates were not statistically significant.

3.2. Effects of Polymorphic SLCO1B1 and CYP3A5 Genotypes

Individuals with CYP3A5*3 polymorphism exhibited elevated plasma concentration pro-
files of atorvastatin and 2-OH atorvastatin compared to those with CYP3A5*1/*1 (Figure 1).
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Figure 1. Mean (±SEM) plasma concentration-time curves of atorvastatin (A) and 2-OH atorvastatin
(B) following oral administration of 80 mg atorvastatin, classified by CYP3A5 genotype.

Additionally, the pharmacokinetic parameters of atorvastatin and its active metabolite,
2-OH atorvastatin, were significantly different between the CYP3A5 genotype groups. The
Cmax and AUCinf values of atorvastatin in the CYP3A5*3/*3 carriers were 2.6- and 2.8-fold
higher, respectively, than those with CYP3A5*1/*1 carriers (p < 0.05). Regarding 2-OH
atorvastatin pharmacokinetics, the AUCinf values of CYP3A5*3/*3 carriers were 2.4-fold
higher than those of CYP3A5*1/*1 carriers (p = 0.040); however, the Cmax values were higher
in CYP3A5*3 carriers, without a significant difference (p = 0.097, Table 2).
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Table 2. Pharmacokinetic parameters of atorvastatin and 2-OH atorvastatin following administration
of 80 mg atorvastatin, classified by CYP3A5*3 genotype.

CYP3A5 Genotype CYP3A5*1/*1 CYP3A5*1/*3 CYP3A5*3/*3 p-Value

Individuals (n) 3 22 21
Atorvastatin

Half-life (h) 5.18 ± 2.42 7.87 ± 2.17 8.28 ± 1.74 0.052
Tmax (h) 0.86 ± 0.77 0.94 ± 0.88 1.00 ± 0.61 0.483

Cmax (ng/mL) 23.77 ± 5.50 49.04 ± 11.90 61.15 ± 27.99 0.012 a,*
AUCall (ng·h/mL) 72.78 ± 30.57 161.03 ± 47.85 209.74 ± 131.03 0.010 a,*
AUCinf (ng·h/mL) 75.86 ± 26.98 162.79 ± 49.62 211.56 ± 131.45 0.010 a,*

CL/F (L/h) 1164.3 ± 470.4 532.2 ± 151.4 463.0 ± 173.6 <0.001 a,b,*
2-OH atorvastatin

Half-life (h) 7.47 ± 3.41 8.98 ± 1.90 9.39 ± 2.27 0.644
Tmax (h) 2.02 ± 1.72 1.45 ± 0.89 1.50 ± 0.72 0.789

Cmax (ng/mL) 15.50 ± 8.58 43.34 ± 16.66 42.71 ± 25.05 0.097
AUCall (ng·h/mL) 96.911 ± 44.67 238.50 ± 85.82 244.80 ± 128.63 0.030 a,b,*
AUCinf (ng·h/mL) 109.39 ± 38.47 242.49 ± 88.65 249.22 ± 129.18 0.040 a,b,*

AUC Ratio 1.54 ± 0.61 1.49 ± 0.39 1.21 ± 0.33 0.049 a,*

(2-OH atorvastatin/atorvastatin)

Data are expressed as mean ± SD. a, *1/*1 vs. *3/*3; b, *1/*1 vs. *1/*3, * p < 0.05. Cmax, peak plasma concentration;
Tmax, time to Cmax; AUCall, area under the time versus concentration curve from 0 to 24 h; AUCinf, AUC from 0
to infinity.

The SLCO1B1 c.388A>G genotype did not influence the plasma concentration profiles
of atorvastatin and 2-OH atorvastatin. However, SLCO1B1 c.521T>C polymorphism af-
fected the plasma concentration profiles in that the c.521CC carrier showed higher plasma
concentration profiles for both atorvastatin and 2-OH atorvastatin than the c.521TT or
c.521TC carriers (Figure 2).
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The pharmacokinetics of atorvastatin and 2-OH atorvastatin did not differ between
the c.388A>G genotype groups (p > 0.05, Table 3).

Table 3. Pharmacokinetic parameters of atorvastatin and 2-OH atorvastatin following administration
of 80 mg atorvastatin, classified by SLCO1B1 c.388A>G polymorphisms.

c.388AA c.388AG c.388GG p-Value

Individuals (n) 6 14 26
Atorvastatin

Half-life (h) 0.09 ± 0.02 0.08 ± 0.01 0.10 ± 0.04 0.619
Tmax (h) 7.74 ± 1.75 8.35 ± 1.73 7.67 ± 2.36 0.390

Cmax (ng/mL) 0.819 ± 0.309 1.166 ± 1.090 0.839 ± 0.564 0.529
AUCall (ng·h/mL) 42.751 ± 11.328 52.018 ± 31.393 54.716 ± 19.825 0.464
AUCinf (ng·h/mL) 146.14 ± 39.051 201.82 ± 152.98 168.23 ± 73.396 0.458

CL/F (L/h) 147.32 ± 39.909 203.95 ± 153.58 170.14 ± 73.819 0.747
2-OH atorvastatin

Half-life (h) 9.52 ± 1.49 9.65 ± 2.61 8.68 ± 2.03 0.358
Tmax (h) 1.02 ± 0.18 1.79 ± 1.24 1.42 ± 0.68 0.174

Cmax (ng/mL) 40.21 ± 18.94 44.07 ± 24.33 38.90 ± 21.67 0.782
AUCall (ng·h/mL) 223.33 ± 96.387 256.59 ± 146.55 214.05 ± 94.209 0.526
AUCinf (ng·h/mL) 227.24 ± 98.987 261.32 ± 146.88 218.89 ± 94.842 0.530

AUC Ratio 1.55 ± 0.71 1.34 ± 0.27 1.34 ± 0.36 0.482

(2-OH atorvastatin/atorvastatin)

Data are expressed as mean ± SD. Cmax, peak plasma concentration; Tmax, time to Cmax; AUCall, area under the
time versus concentration curve from 0 to 24 h; AUCinf, AUC from 0 to infinity.

However, SLCO1B1 c.521T>C substantially influenced the systemic exposures of ator-
vastatin and 2-OH atorvastatin: 150.27 ng·h/mL for c.521TT, 208.26 ng·h/mL for c.521TC,
and 704.74 ng·h/mL for c.521CC for atorvastatin AUCinf (p = 0.003), and 209.70 ng·h/mL
for c.521TT, 259.91 ng·h/mL for c.521TC, and 673.98 ng·h/mL for c.521CC for 2-OH ator-
vastatin AUCinf (p = 0.024, Table 4).

Table 4. Pharmacokinetic parameters of atorvastatin and 2-OH atorvastatin following administration
of 80 mg atorvastatin, classified by SLCO1B1 c.521T>C polymorphisms.

c.521TT c.521TC c.521CC c.521TC or c.521CC p-Value

Individuals (n) 33 12 1 13
Atorvastatin

Half-life (h) 7.84 ± 2.38 8.07 ± 1.20 7.31 8.01 ± 1.17 0.812
Tmax (h) 0.86 ± 0.68 1.15 ± 0.90 0.66 1.12 ± 0.88 0.295

Cmax (ng/mL) 49.16 ± 18.81 53.41 ± 18.78 144.0 60.39 ± 30.92 0.139
AUCall (ng·h/mL) 148.35 ± 51.206 206.67 ± 78.036 700.80 244.68 ± 156.09 0.003 *
AUCinf (ng·h/mL) 150.27 ± 52.008 208.26 ± 78.133 704.74 246.46 ± 156.70 0.003 *

CL/F (L/h) 607.22 ± 264.20 438.18 ± 163.14 113.51 413.21 ± 180.30 0.019 *
2-OH atorvastatin

Half-life (h) 9.18 ± 2.34 8.92 ± 1.80 7.90 8.85 ± 1.75 0.641
Tmax (h) 1.41 ± 0.85 1.69 ± 0.97 1.5 1.68 ± 0.94 0.361

Cmax (ng/mL) 37.47 ± 20.79 44.20 ± 17.39 102.5 48.70 ± 23.22 0.118
AUCall (ng·h/mL) 204.57 ± 82.641 256.57 ± 106.30 667.80 288.21 ±152.86 0.02 *
AUCinf (ng·h/mL) 209.70 ± 83.89 259.91 ± 106.47 673.98 291.77 ± 153.56 0.024 *

AUC Ratio 1.42 ± 0.41 1.26 ± 0.32 0.96 1.24 ± 0.41 0.172

(2-OH atorvas-
tatin/atorvastatin)

Data are expressed as mean ± SD, * p < 0.05. Cmax, peak plasma concentration; Tmax, time to Cmax; AUCall, area
under the time versus concentration curve from 0 to 24 h; AUCinf, AUC from 0 to infinity.

When AUC ratio of 2-OH atorvastatin to atorvastatin according to SLCO1B1 poly-
morphisms were compared, neither SLCO1B1 c.388A>G nor c.512C>T affected the ratio.
Regarding CYP3A5*3 polymorphism, the AUC ratio decreased in a gene-dose-dependent
manner (p = 0.049, Table 2).
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3.3. Simultaneous Effects of SLCO1B1 c.521T>C and CYP3A5*3 Polymorphisms

Because both SLCO1B1 c.521T>C and CYP3A5*3 substantially influenced the pharma-
cokinetics of atorvastatin and 2-OH atorvastatin, the simultaneous effects of both genotypes
on their pharmacokinetics were assessed. As expected, SLCO1B1 c.521TT/CYP3A5*1/*1
carriers showed lower Cmax and AUCinf values for atorvastatin and 2-OH atorvastatin than
individuals with the SLCO1B1 c.521T>C and/or CYP3A5*3 genotypes (p < 0.0001, Figure 3).
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In individuals with the SLCO1B1 c.521TT genotype, the CYP3A5*3 carriers
(155.9 ng·h/mL for atorvastatin, 215.3 ng·h/mL for 2-OH atorvastatin) showed a higher
systemic exposure for atorvastatin and 2-OH atorvastatin than CYP3A5*1/*1 carriers
(p = 0.0176) (72.8 ng·h/mL for atorvastatin, 96.9 ng·h/mL for 2-OH atorvastatin); however,
the CYP3A5*1/*3 and *3/*3 carriers both exhibited comparable values (p > 0.05, Figure 3).
Similarly, CYP3A5*3/*3 carriers (214.8 ng·h/mL for atorvastatin, 231.3 ng·h/mL for 2-OH
atorvastatin) exhibited comparable AUC values with CYP3A5*1/*3 carriers (195.3 ng·h/mL
for atorvastatin, 231.3 ng·h/mL for 2-OH atorvastatin) when compared within the SLCO1B1
c.521TC carriers (p > 0.05).

4. Discussion

This study demonstrated that both SLCO1B1 c.521T>C and CYP3A5*3 genetic poly-
morphisms considerably influenced the pharmacokinetic variability of atorvastatin and its
active metabolite, 2-OH atorvastatin.

The SLCO1B1 transporter is mainly expressed on the sinusoidal membrane of hepato-
cytes and acts as an efflux pump for its substrates, including several HMG-CoA reductase
inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and angiotensin II receptor
antagonists [28]. Atorvastatin is also a widely known substrate of SLCO1B1, and sev-
eral previous studies have revealed that systemic exposure to atorvastatin is affected by
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SLCO1B1 genetic polymorphisms [29]. In this study, atorvastatin pharmacokinetics were
influenced by c.521T>C but not by c.388A>G. Although 2-OH atorvastatin has not yet been
confirmed as a substrate of SLCO1B1, the possibility was suggested based on an observa-
tion of its increased disposition affected by the co-incubation of rifampin, an inhibitor of
SLCO1B1 transporter, in an in vitro drug–drug interaction study [30]. SLCO1B1 c.521T>C
(but not c.388A>G) polymorphism affected the pharmacokinetics of 2-OH atorvastatin
(like atorvastatin) in this study, and c.521T>C dependently increased its systemic exposure
gene dose. Assuming that the AUC ratio of 2-OH atorvastatin/atorvastatin did not differ
between the SLCO1B1 genotype groups, this study suggest that 2-OH atorvastatin may be
a substrate of the SLCO1B1 transporter.

No significant difference in atorvastatin and 2-OH atorvastatin pharmacokinetics
associated with the SLCO1B1 c.388A>G polymorphism was observed. Although in vitro
pharmacokinetic studies have suggested that this polymorphism may alter transporter
functions [31,32], the results of clinical studies that have evaluated the effects of SLCO1B1
c.388A>G on atorvastatin responses are conflicting. Some studies have shown a correlation
between an improvement in the low-density lipoprotein (LDL) cholesterol-lowering effect
of atorvastatin and the SLCO1B1 c.388A>G polymorphism [12,32]. However, a recent study
found no association between the LDL-lowering effect and SLCO1B1 c.388A>G [11]. No-
tably, these studies did not evaluate the pharmacokinetics of atorvastatin and its metabolites,
and until recently, there were no studies that evaluated the effect of SLCO1B1 c.388A>G on
atorvastatin and 2-OH atorvastatin pharmacokinetics.

In addition to SLCO1B1 genotypes, the CYP3A5*3 polymorphism substantially influ-
enced the pharmacokinetics of atorvastatin and 2-OH atorvastatin in this study. Like the
SLCO1B1 c.521T>C polymorphism, the CYP3A5*3 polymorphism increased the systemic
exposure of atorvastatin as well as that of 2-OH atorvastatin in a dose-dependent manner.
CYP3A4/5 facilitates the metabolism of atorvastatin in 2-OH atorvastatin [33]. The AUC
ratio of 2-OH atorvastatin/atorvastatin was consistently affected by the CYP3A5*3 polymor-
phism, thereby suggesting the involvement of CYP3A5 in the metabolism of atorvastatin
in 2-OH atorvastatin. Researchers have recently reported that CYP3A5*3 polymorphism
is a significant factor influencing the pharmacokinetic variability of atorvastatin [6]. In-
terestingly, their study showed that the CYP3A5*3 polymorphism reduced the systemic
exposure of atorvastatin, contrary to the results of the present study. This study cannot
fully explain the reasons behind the data of this study showing conflicting results with
other studies. Several studies have shown that CYP3A5*3 polymorphism increases the
intensity of atorvastatin-induced lipid-lowering effects and the risk of adverse events [4,21].
Assuming that the blood levels of atorvastatin are directly linked to its effects and adverse
event risks, the findings are arguable. However, there are several confounding factors
through which the CYP3A5*3 polymorphism may impact the disposition of atorvastatin.
This study only recruited healthy male Korean participants to exclude some confounding
factors for pharmacogenetic study, but there are several confounding factors (e.g., gender,
the usage or lack of ezetimibe as a comedication, and ethnicity) that influence the variability
of atorvastatin pharmacokinetics, and their effects could not be excluded [6]. Additional
investigations are needed to clarify the discrepancies in these findings.

In addition to atorvastatin, CYP3A5*3 polymorphism increased the systemic exposure
to 2-OH atorvastatin. Considering that CYP3A5 facilitates the metabolism of atorvastatin
into 2-OH atorvastatin, it is appropriate that the systemic exposure of 2-OH atorvastatin
decreases in tandem with the dysfunctional CYP3A5 enzymes via CYP3A5*3. However, the
results showed that the CYP3A5*3 polymorphism increased the systemic exposure to 2-OH
atorvastatin and atorvastatin. The half-life of 2-OH atorvastatin appeared to be longer in
CYP3A5*3 carriers than in CYP3A5*1/*1 carriers, but the difference was not statistically sig-
nificant. Therefore, CYP3A5 is likely not the main factor influencing the disposition of 2-OH
atorvastatin. Being formed from atorvastatin, 2-OH atorvastatin is further metabolized into
2-OH atorvastatin lactone via uridine diphosphate–glucuronosyltransferase (UGT) 1A1 and
UGT1A3 [3,7]. Considering that lactone formation is not affected by CYP3A5, an alternative
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mechanism through which the CYP3A5*3 polymorphism may alter the disposition of 2-OH
atorvastatin may be the difference in the binding affinity of both atorvastatin types to the
SLCO1B1 transporter. A drug interaction study showed that gemfibrozil substantially
and simultaneously increased both atorvastatin and 2-OH atorvastatin blood levels [34].
Gemfibrozil is a potent inhibitor of CYP2C8, but not CYP3A4/5 [35,36]. It is also a potent
inhibitor of the SLCO1B1 transporter, so both the atorvastatin and 2-OH atorvastatin levels
are increased via the inhibition of said transporter [34]. Similarly, cyclosporine, a potent
inhibitor of the SLCO1B1 transporter, has also increased the blood levels of both atorvas-
tatin types [37,38]. The present study has consistently demonstrated the increased systemic
exposure of atorvastatin and 2-OH atorvastatin caused by the SLCO1B1 c.521T>C polymor-
phism. Assuming that the binding affinities of atorvastatin and 2-OH atorvastatin to the
SLCO1B1 transporter are different, the elimination of 2-OH atorvastatin may be reduced
and preserved longer despite the relatively reduced formation of 2-OH atorvastatin caused
by the CYP3A5*3 polymorphism. When the cellular uptake of atorvastatin was measured in
the absence and presence of 2-OH atorvastatin in HEK293 cells, the atorvastatin uptake was
inhibited and reduced by approximately 65% and 15%, respectively, by 2-OH atorvastatin
at concentrations of 1 and 10 µM, respectively [30]. These results suggest that atorvastatin
and 2-OH atorvastatin act competitively on transporters, and that their permeabilities
are different.

This study had some limitations. First, it did not measure the lactone form of the
2-OH atorvastatin, which may provide another clue in evaluating the role of CYP3A5*3 in
atorvastatin metabolism. Hydroxylated metabolites reportedly demonstrate approximately
70% of the pharmacological activity of atorvastatin, but the lactone form is pharmacologi-
cally inactive [3,7]. Second, actual pharmacodynamic effects were not compared with the
exposure of the active metabolites, as this was a single-dose treatment study. However, the
simultaneously increased blood levels of atorvastatin and 2-OH atorvastatin may exhibit
an additive or synergistic effect on their lipid-lowering intensities and/or the incidence
rate of statin-induced adverse events. Lastly, there was only one person with genotype
CYP3A5*3/*3 with SLCO1B1 c.521TT. Further and larger-scale clinical research is necessary
to confirm the combined influence of the genotypes.

5. Conclusions

The results of this study suggest that both SLCO1B1 c.521T>C and CYP3A5*3 poly-
morphisms influence the pharmacokinetics of atorvastatin and its active metabolite, 2-OH
atorvastatin. In other words, presumably, the use of statin in the patients with SLCO1B1
c.521T>C and CYP3A5*3 polymorphisms may be more effective or may also yield ad-
verse events based on the results in this study, considering the effect of SNPs on the
atorvastatin pharmacokinetics.
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