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ABSTRACT

To increase the number of value-added chemicals
that can be produced by metabolic engineering
and synthetic biology, constructing metabolic space
with novel reactions/pathways is crucial. However,
with the large number of reactions that existed in
the metabolic space and complicated metabolisms
within hosts, identifying novel pathways linking two
molecules or heterologous pathways when engineer-
ing a host to produce a target molecule is an ar-
duous task. Hence, we built a user-friendly web
server, novoPathFinder, which has several features:
(i) enumerate novel pathways between two speci-
fied molecules without considering hosts; (ii) con-
struct heterologous pathways with known or puta-
tive reactions for producing target molecule within
Escherichia coli or yeast without giving precursor;
(iii) estimate novel pathways with considering sev-
eral categories, including enzyme promiscuity, Syn-
thetic Complex Score (SCScore) and LD50 of inter-
mediates, overall stoichiometric conversions, path-
way length, theoretical yields and thermodynamic
feasibility. According to the results, novoPathFinder
is more capable to recover experimentally validated
pathways when comparing other rule-based web
server tools. Besides, more efficient pathways with
novel reactions could also be retrieved for further ex-
perimental exploration. novoPathFinder is available
at http://design.rxnfinder.org/novopathfinder/.

INTRODUCTION

One of the main focuses in metabolic engineering and
synthetic biology is to construct biosynthetic pathways
for producing value-added compounds. A large amount
of metabolites can be derived from nature, and it is es-
timated that there are at least 1 060 000 metabolites in
all plants, without considering microbes and fungi (1). Al-
though many successful cases of bioproduction of value-
added chemicals have been reported in recent decades (2–
7), they only represent a small proportion, it is necessary
to broaden the range of producible compounds by ex-
panding the metabolic space. To address this point, com-
putational tools could aid in the experimental process at
the design stage of engineering cycle (8). The main limi-
tations for expanding metabolic space are underestimation
of side enzymatic activities and the incompleteness of re-
action databases (9). An enormous amount of enzymes are
present in nature; however, only a small proportion of them
have been well characterized (10). Some enzymes are highly
specific, whereas others are promiscuous. For example, it is
estimated that 37% of Escherichia coli K12 enzymes have
promiscuous activity when the substrates are similar to their
main known substrates in structure (11). The promiscuity
of enzyme paves the way toward the rational construction
of pathways with putative reactions derived from chemical
transformations. To explore enzyme versatility, many high-
quality enzyme and biological reaction databases, such as
KEGG (12), Rhea (13), RxnFinder (14) and BRENDA
(10) have been established to provide extensive information.
Based on enzyme and reaction databases, chemical transfor-
mations can be extracted that represent the same structural
changes at the reaction center when one or more reactions
occur. Retrosynthesis algorithms are utilized to enumerate
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a series of orderly chemical transformations linking target
molecules to simpler chemical building blocks (15–17).

The novel pathway construction tools can be classified
into two categories according to whether or not they are
chassis-related. Tools in the first category mainly focus on
the construction of novel pathways between two specified
compounds without considering hosts. For instance, based
on characteristic RDM patterns in the KEGG database,
PathPred, a web-based server, can predict plausible path-
ways of multistep reactions starting from a query com-
pound (18). BNICE utilized the Enzyme Commission clas-
sification to formulate the enzyme reaction rule, which
can predict pathways with novel reactions (19). Based on
subgraph mining, ReactionMiner, a java-based package,
can predict a series of biochemical transformations linking
two molecules (20). Similarly, Masaaki developed a recur-
sive supervised approach to link two molecules by using a
reaction-filling framework (21). Tools in the second cate-
gory can retrieve pathways for producing target molecules
within a specified host. For example, rePrime&novoStoic is
an optimization-based novel-pathway construction frame-
work that integrates existing reactions and chemical trans-
formations (22). By integrating constraint-based recon-
struction and analysis (COBRA) (23) with GEM-model
(24), GEM-path identified 245 novel pathways for produc-
ing 20 large volume compounds when engineering E. coli
within four steps (25). RetroPath2.0, an open source work-
flow, could perform a retrosynthesis search from chassis
to target by using chemical transformations and then rank
pathways based on enzyme promiscuity (9). All of the afore-
mentioned tools in the two categories can help to predict
novel pathways by using chemical transformations. How-
ever, many of them do not provide a user-friendly web
server, making it infeasible for users fully utilize the results,
especially experimental researchers who are not experienced
in programming. For example, the results from GEM-path
consist of 245 pathways for producing 20 targets (25), and
ReactionMiner (20) is a java-based package that can be
downloaded from GitHub. Second, chemical transforma-
tions utilized in some tools only contain reactant-product
pairs. For example, when processing multisubstrate reac-
tions, a practical solution in RetroPath2.0 is to model en-
zymatic promiscuity for only one substrate at a time (9),
and PathPred utilizes main RDM pairs (18). Third, Com-
prehensive evaluation methods to estimate pathways is also
essential due to hundreds of novel pathways derived from
chemical transformations. For example, enzyme promiscu-
ity plays an essential role in novel pathway construction,
most of the aforementioned tools do not quantify enzyme
promiscuity by utilizing annotated sequences of enzymes,
except RetroPath2.0 (9). We have summarized these tools
in Table 1.

To solve the issues mentioned above, in this article, we
developed a user-friendly web server, novoPathFinder, to
predict novel pathways for metabolic engineering. Com-
pared with other novel pathway design tools, the pro-
posed web server has several features: (i) it not only al-
lows for the design of novel pathways for target produc-
tion from specified precursors but can also identify heterol-
ogous novel pathways when engineering E. coli or yeast
without providing precursors; (ii) due to the integration

of chemical transformations and genome-scale metabolic
models, novoPathFinder supports the calculation of over-
all stoichiometric conversions (26) and growth-coupled the-
oretical yield in real-time under customized growth con-
ditions of hosts; and (iii) novel pathways predicted by
novoPathFinder can be evaluated based on several criteria,
including thermodynamic feasibility (27), enzyme promis-
cuity penalty score (9), Synthetic Complex Score (SCScore)
(28) and LD50 (29) of intermediates, pathway length, over-
all stoichiometric conversions (26) and theoretical yield.
According to the results, novoPathFinder is more capable to
recover experimentally validated pathways when comparing
other rule-based web server tools. Besides, more efficient
pathways with novel reactions could also be retrieved for
further experimental exploration. Thus, it is a convenient
web server tool with full functionality to aid rational pre-
diction of novel pathways.

MATERIALS AND METHODS

Workflow of novoPathFinder

Figure 1 shows the workflow of novoPathFinder. First, by
using the reaction rule extraction method mentioned be-
low, the reaction rule repository was constructed on the ba-
sis of valid reactions in Rhea. Second, expanded metabolic
spaces containing known/putative reactions were built to
link nodes in the known compound repository. Next, the
retrosynthesis algorithm could be performed in real time
to retrieve novel pathways for target molecule production,
and the results could be evaluated with multicategories
(e.g. thermodynamic feasibility analysis, theoretical yield,
enzyme promiscuity and overall stoichiometric conversion),
among which theoretical yield and thermodynamic feasibil-
ity analysis can be calculated in real time under customized
physical conditions. Finally, Django, CSS, JavaScript and
HTML were utilized to visualize novel pathways found in
this platform, and all data tables utilized in novoPathFinder
are stored in the PostgreSQL database.

Data resources

novoPathFinder makes full use of several data resources. (i)
Compounds: Due to the reaction-filling framework used in
novoPathFinder, metabolites in KEGG COMPOUND (12)
and ChEBI (31) are used as valid nodes when constructing
expanded reaction spaces. (ii) Reactions: Without consider-
ing transport reactions and reactions that involved genetic
compounds, there are 20 942 one-way reactions in the Rhea
database (release: 105) (13), which served as referenced data
for the extraction of chemical transformations. (iii) Enzyme:
The relationship between enzyme classification and reaction
entries is obtained from the Rhea database, and enzyme se-
quences are obtained from the reviewed part of UniProt
(32). (iv) GEM-model: GEM-models for Escherichia coli
K12 MG1655 (ID: iML1515) and Saccharomyces cerevisiae
S288c (ID: iMM904) are obtained from BiGG databases
(24).

Extraction of reaction rule

The same structure change in the reaction center at a de-
fined bound-distance when one or more reactions occurred
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Table 1. Retrosynthesis tools for the construction of novel pathways

Web
Server

Specified
chassis

Specified
precursor OCSa

Theoretical
yield Multiple-steps EPPSb

Thermodynamic
feasibility

PathPred (18) � – � – – � – –
BNICE(ATLAS) (30) � – � – – � – �
ReactionMiner (20) – – � – – � – –
Masaaki (21) – – � – – 4(at most) – –
rePrime&novoStoic (22) – � � � � � – �
GEM-path (25) – � – – � 4(at most) – �
RetroPath2.0 (9) – � – – – � � –
novoPathFinder � � � � � � � �

aOCS: overall stoichiometric conversions.
bEPPS: enzyme promiscuity penalty score.

Figure 1. Workflow of novoPathFinder.

can be represented by a reaction rule (Figure 2). During
this process, defining the reaction center is essential. In
this study, we defined the reaction center as atoms whose
circumjacent bounds changed when a reaction occurred.
The structure change can be coded by several methods
(33,34), and the SMIRKS pattern (https://www.daylight.
com/dayhtml/doc/theory) was used in this study. The pro-
cess of reaction rule abstraction can be divided into two
parts: (i) Identification of Atom-Atom Mapping (AAM):
AAM can label all atoms in substrates and then track their
positions in products (35). Because AAM is an NP-hard
problem (36), the more complex the reaction is, the more
time it will take to calculate, especially for some reactions
that involved cofactors (e.g. NADPH, NADP, ATP). To
this point, our practical solution is to manually identify
some typical stereotype transformations (Table 2) and re-

move them from the reactions. For example, as shown in
Figure 2, by removing a typical stereotype transformation
(n ATP →n ADP + n pi) from a reaction (A + nATP →
B + C+ nADP + npi), the reaction can be converted to a
simplified reaction (A → B + C) before identifying AAM.
The putative reaction (A′ → B′ + C′) predicted by the reac-
tion rule extracted from the simplified reaction will be com-
pleted later by adding cofactors. As a result, the final puta-
tive reaction is A′ + nATP → B′ + C′+ nADP + npi. (ii): Ex-
traction of the reaction rule: Based on labeled atoms from
AAM, we extracted reaction rules at a defined bound dis-
tance. Similar to previous research (37–39), to enable sen-
sitivity and specificity, we set the bond distance to 1 (ra-
dius = 1), which means that we only consider the struc-
ture change at a distance of one bound from the reaction
center.

https://www.daylight.com/dayhtml/doc/theory
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Figure 2. Generation of putative reaction from known reactions. (A) Workflow of generating putative reaction from a known reaction with typical stereo-
type transformation. (B) Workflow of generating putative reaction from a known reaction without typical stereotype transformation. (C) Extraction of
reaction rules from known reactions.

Table 2. A list of typical stereotype transformations

Typical stereotype transformations

S-adenosyl-L-methionine< = > S-adenosyl-L-homocysteine
NADPH < = > NADP
NADH < = > NAD
ATP < = > AMP + ppi
ATP < = > ADP + pi
FMNH2 < = > FMN
FAD < = > FADH2

Expand reaction space

A repertory consisting of known metabolites (excluding
currency compounds and compounds that involve R and
*) from KEGG COMPOUND (12) and ChEBI (31) was
first established. By using reaction rules, every compound
in the repertory was regarded as a parent node to pro-
duce child nodes. One of the main challenges in expanding
the reaction space is how to handle the thousands of these
child nodes for the next iteration. To address this point,
we first calculated the similarity between the substrate and
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the product from 15,937 RDM patterns (main pair) in the
KEGG database. According to the results, we set the simi-
larity threshold value to 0.1875, covering 15 155 main pairs
(∼95% of 15 937), which means that if any one of the com-
pounds in a product set (products from a rule-based reac-
tion) is similar to the target with a similarity score <0.1875,
the product set will be removed from the child nodes. Sec-
ond, novoPathFinder utilized a reaction-filling framework
to link nodes in the known metabolite repertory through
known or putative reactions. For example, to shrink the
scale of the child nodes and to construct chassis-related re-
action spaces (e.g. E. coli), our practical solution is to re-
serve the rule-based reactions, of which at most one child
node is E. coli nonnative, meaning that any other cosub-
strate is derived from E. coli. Here, we use the term of
cosubstrate because the pathway search algorithm is ret-
rosynthesis. By using native compounds in yeast, we con-
structed an expanded reaction space for yeast in the same
way. To construct a universal reaction space without con-
sidering chassis hosts, we counted the occurrence frequency
for every metabolite in the BiGG database, which contains
84 genome-scale metabolic models (24). Next, we regarded
metabolites with occurrence frequencies >42 times (84/2)
as sink compounds, meaning that these compounds exist in
most chassis hosts and could be regarded as cosubstrates
just as the native compounds within E. coli or yeast. By em-
ploying these strategies, every compound in the metabolite
repertory could be linked to its child nodes through rule-
based reactions.

Retrosynthesis algorithm

Based on the different reaction spaces established before,
a retrosynthesis algorithm is used to construct novel path-
ways for producing target molecules. Starting from a target
molecule, reactions that involve the target molecule as the
main product are obtained from the related reaction space.
Reactants in the reaction set, excluding currency metabo-
lites, serve as candidates to be randomly selected for the
next iteration. One challenge in retrosynthesis algorithms
is handling reactions with multiple substrates. To predict
novel pathways without considering chassis hosts, an algo-
rithm (40) (Equation 1) is utilized to calculate MCS (Max-
imum Common Substructure: the largest substructure that
appears in both structures) score between every reactant in
a single multi-reactant reaction and the target molecule, and
then, we choose a reactant with the maximum MCS score to
compose the candidates set for the next iteration. However,
when considering a chassis host (E. coli or yeast) instead
of choosing the reactant with the maximum MCS score,
our practical solution is to choose the heterologous metabo-
lite to compose the candidates set for the next iteration.
The retrosynthesis algorithm proceeds until the customized
iterations are reached, and each iteration stops when
a predefined step or the precursor/sink metabolites are
reached.

TMCS(A, B) = |MCS(A, B)|a
|A|a + |B|a − |MCS(A, B)|a

(1)

Pathway evaluation criteria

To evaluate the predicted pathways, novoPathFinder uti-
lizes several methods, including overall stoichiometric con-
versions, theoretical yield, thermodynamic feasibility anal-
ysis, enzyme promiscuity penalty score, synthetic complex-
ity score and LD50 of intermediates. (i) The overall sto-
ichiometric conversion (e.g. aA + cC < = > bB + dD)
can abstract the global elemental balance sheet for the
chemical changes including metabolites, ions and free en-
ergy (26). With predicted pathways, an automatic proce-
dure is utilized in novoPathFinder to calculate the over-
all stoichiometric conversion. (ii) With the integration of
the genome-scale metabolic model, the maximum theoreti-
cal yield can be calculated under customized growth con-
ditions by using Equations (2–6), where the meanings of
each parameter have been described in our previous stud-
ies (41,42). (iii) The thermodynamic feasibility of the reac-
tion direction can be significantly affected by cellular con-
ditions. By using eQuilibrator (27), the standard Gibbs en-
ergy for each reaction in predicted pathways can be calcu-
lated under customized physical conditions, including pH,
ionic strength and temperature. For metabolite concentra-
tions, we utilized 1 mM for all reactants. (iv) For known
reactions, a default enzyme promiscuity penalty score of 0
was set in novoPathFinder, while for putative reactions, the
enzyme promiscuity penalty score was calculated using an
approach from RetroPath2.0 (9) on the basis of the enzyme
sequence from UniProt (32). (v) Based on fragment contri-
butions and the complexity penalty, the synthetic complex-
ity score (SCScore) of intermediates in predicted pathways
can be calculated by using a method from a previous study
(28). The SCScore ranges between 0 and 5, for which lower
scores reflect lower complexity of the compound. Besides,
the LD50 of intermediates can also be calculated (29). The
penalty score of the whole pathway can be calculated using
Equation (7).

Max Vtarget (2)

∑
j∈J

(Si j Vi ) = 0 ∀i ∈ I (3)

Vlower bound
j ≤ Vj ≤ Vupperbound

j ∀ j ∈ J (4)

Vbiomass ≥ ηVmax
wtbiomass

∀η ∈ [0, 1] (5)

Yield = Vtarget × Mtarget

Vsubstrate × Msubstrate
× g DW−1hr−1

g DW−1hr−1

×g × mol−1

g × mol−1
(6)

Sets

I = (i | 1,. . . , N): set of metabolites.
J = (j | 1,. . . , M): set of reactions.
Vj: carbon flux of the jth reaction.
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η: percentage that the minimum growth rate of the mu-
tant type accounts for the maximum growth rate of the WT
type.

PenaltyScore

=
p ≤ pathway length∑

p=1

(x × EPPS + y + z × SC Score) (7)

variables.

x

{
1(default), if considering enzyme promiscuity penalty score).

0, otherwise

y

{
1(default), if considering pathway length.

0, otherwise

z

{
1, if considering intermediate metabolites SCScore.

0(default), otherwise

EPPS : enyme promiscuity penalty score of a reaction

RESULT AND DISCUSSION

Construction of reaction rule repository and reaction spaces

By utilizing biological reactions from Rhea, we extracted
chemical transformations to construct a reaction rule repos-
itory. As a result, there were 4996 reaction rules covering 20
942 one-way reactions from Rhea, in which transport re-
actions and reactions involving genetic or structure-unclear
compounds were excluded. Based on reaction rules, we next
predicted edges consisting of known or putative reactions to
link nodes in the known compound repository, which con-
tains 57 512 unique metabolites from KEGG and ChEBI.
Next, we constructed reaction spaces aiming at different
categories, including the E. coli-based/yeast-based module
and no-hosts. As a result, each reaction space built in this re-
search is >10 times larger than Rhea. More specifically, the
reaction space of no-hosts contains 255 817 reactions, and
the E. coli-based reaction space contains 255 322 reactions.
The yeast-based reaction space contains 234 757 reactions.

Case study

We utilized novoPathFinder to retrieve novel pathways for
producing various value-added metabolites by engineering
hosts (E. coli K-12 MG 1655 or S. cerevisiae) and no-hosts
specified but with a precursor. To demonstrate its efficiency,
we summarized the results and then compared them with
pathways obtained from the literature or other rule-based
web server tools, such as PathPred (18) and ATLAS (30). To
retrieve novel pathways by using other web server tools, we
utilized their default parameters, except maximum pathway
length. As a result, we discovered that novoPathFinder not
only recovered the experimentally validated pathways that
in many cases other web server tools could not recover but
also identified more efficient pathways that contain putative
steps.

Production of vanillin

Vanillin, a primary flavoring agent, is widely used in
foods, beverages, and pharmaceuticals. Due to the scarcity

of vanillin and the expense of its extraction, signifi-
cant advancements have been made toward elucidating
its biosynthetic pathways in the last two decades (43). In
novoPathFinder, we first retrieved novel pathways for pro-
ducing vanillin from tyrosine within five steps without con-
sidering hosts. We found that the experimentally validated
pathway (five steps) could be recovered (Figure 3A) (44).
In addition, novel pathways with fewer steps could also be
identified in novoPathFinder (Figure 3B). The first pathway
in Figure 3B contains two putative steps (50% of the whole
pathway), while the shortest pathways retrieved by ATLAS
contains three putative reactions (75% of whole pathway)
and a known reaction, and no results could be retrieved by
PathPred. Previous studies have claimed that novel path-
ways with less putative steps are more favored in metabolic
engineering. Thus far, for the case of vanillin production,
novoPathFinder outperformed ATLAS and PathPred. Sec-
ond, we retrieved heterologous pathways for the production
of vanillin within E. coli and yeast (Figure 3C, D). As a re-
sult, heterologous novel pathways with three steps and na-
tive precursors in E. coli could be automatically retrieved
by using the E. coli-based module in novoPathFinder, and
only two steps are needed when engineering yeast according
to results from the yeast-based module. Next, the maximum
theoretical yield of each pathway within the two hosts was
calculated under the hosts’ specified growth conditions. As
a result, in the case of E. coli, the heterologous novel path-
way (pathway-2 in Figure 3C) achieved the highest theo-
retical yield (0.130 g/g glucose) comparing with the other
two pathways. In the case of yeast, pathway-3 in Figure 3D
shows that only two heterologous reactions are needed to
produce vanillin; however, pathway-3 achieved less theoret-
ical yield (0.044 g/g glucose) than pathway-2, which yielded
0.055 g/g glucose. Further experimental exploration should
be performed to prove the in silico solutions.

Production of value-added metabolites from Farnesyl-PP

Farnesyl PP is an intermediate in the mevalonate path-
way used in many organisms. Due to its economic viabil-
ity and long-term sustainability, the biosynthesis of value-
added metabolites from Farnesyl PP has gained much at-
tention (45). Using Farnesyl PP as a precursor, we retrieved
biosynthetic pathways for the production of two value-
added metabolites, lycopene and artemisinic acid. As one
of the major carotenoids, lycopene has received much atten-
tion due to its beneficial biological and pharmaceutical ac-
tivities (46). Artesinin is highly effective against malaria, but
it is in short supply. Artemisinic acid could be regarded as an
immediate precursor for effectively producing artemisinin
(47).

First, we utilized novoPathFinder to search pathways for
lycopene production within four steps without considering
hosts. The results are shown in Figure 4, in which the top-
ranked (pathway-1) was the experimental pathway (46). We
also retrieved pathways using PathPred and ATLAS. Path-
Pred could not recover the experimental pathway, and only
one pathway (three putative steps) was obtained within four
steps; ATLAS could not identify pathways for lycopene pro-
duction from Farnesyl PP within four steps. On the other
hand, we applied novoPathFinder to search heterologous
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Figure 3. Search results for vanillin production in novoPathFinder. (A) Experimental pathway recovered by novoPathFinder. (B) Pathways for producing
vanillin from tyrosine without considering hosts. (C, D): Heterologous pathways and theoretical yield under specified conditions for producing vanillin
within E. coli and yeast.
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Figure 4. Three pathways found in novoPathFinder for lycopene production from farnesyl PP. Pathway-1-A: Heterologous pathway retrieved by using E.
coli-based module. Pathway-1-B: Heterologous pathway retrieved by using yeast-based module.

Figure 5. Search results for artemisinic acid production in novoPathFinder.

pathways for lycopene production when engineering E. coli
and S. cerevisiae. As a result, in the case of E. coli, the exper-
imental pathway (pathway-1-A in Figure 4), whose theoret-
ical yield is 0.080 g/g glucose, and native precursor (farne-
syl PP) could be automatically retrieved. In the yeast-based
module, a known two-step heterologous pathway (pathway-
1-B in Figure 4) with a theoretical yield of 0.071 g/g glucose
and a native precursor (GGDP) was found.

Second, we searched novel pathways for producing
artemisinic acid from Farnesyl PP in novoPathFinder
within five steps without considering hosts. As a result,
seven pathways were retrieved, and the top-ranked path-
way was the experimentally validated pathway, which con-
tains two known steps (47), in which Farnesyl PP was first
converted to amorpha-4,11-diene and then converted to
artemisinic acid (Figure 5). We also searched its pathways
in PathPred and ATALS by setting the maximum steps to
five; however, no pathway was found in either tool. Next, we
searched heterologous pathways for artemisinic acid pro-

duction in novoPathFinder when engineering chassis hosts,
E. coli and S. cerevisiae. The precursor (Farnesyl PP) could
be automatically found in both hosts, and the two hosts
shared the same heterologous pathway (Figure 5). The the-
oretical yield was 0.091 g/g glucose in E. coli and 0.083 g/g
glucose in yeast.

Production of cannabidiol

Cannabidiol, an important substance of cannabinoids, has
been approved as a prescription drug for a range of diseases
(e.g. epilepsy, autoimmune disorders) (48). A recent study
constructed a biosynthetic pathway for cannabidiol produc-
tion (49). Using novoPathFinder, we first searched biosyn-
thetic pathways for cannabidiol production from hexanoyl-
CoA without considering hosts within five steps. Ten path-
ways were found, which contained not only experimentally
validated pathways (Figure 6A) but also more efficient path-
ways with fewer steps (three steps or four steps), as shown in
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Figure 6. Search results for cannabidiol production in novoPathFinder. (A) Experimental pathway recovered by novoPathFinder. (B) Two top-ranked
pathways retrieved in novoPathFinder from hexanoyl-CoA. (C) Heterologous pathways retrieved by using E. coli-based and yeast-based modules.

Figure 6B. More specifically, the three-step pathway in Fig-
ure 6 shows that 5-penthylresorcinol could be converted to
cannabigerol, and then, cannabigerol could be converted to
cannabidiol directly, both steps are putative. However, four
steps are needed to achieve such conversion in the experi-
mental pathway (Figure 6A). We also searched the heterolo-
gous pathways needed for cannabidiol production when en-
gineering chassis hosts using E. coli-based and yeast-based
modules in novoPathFinder. The top-ranked pathways in
the two hosts and the maximum theoretical yield under
specified growth conditions are shown in Figure 6. Next,
we searched its pathways in PathPred and ATALS by setting
the maximum pathway length to five; however, no pathways
were found with either tool.

DISCUSSION

A user-friendly web server named novoPathFinder was de-
veloped in this research with the following three objec-
tives: (i) to enumerate novel pathways between two specified

molecules without considering hosts; (ii) to construct het-
erologous pathways with known or putative reactions for
producing target molecules within E. coli or yeast without
giving precursors and (iii) to estimate novel pathways con-
sidering several categories, including enzyme promiscuity,
SCScore and LD50 of intermediates, overall stoichiomet-
ric conversions, pathway length, theoretical yield and ther-
modynamic feasibility. Instead of extracting reaction rules
based on Enzyme Commission nomenclature, a data-driven
method based on 20 942 one-way reactions from Rhea was
utilized in novoPathFinder to generate reaction rules. As
a result, 4996 reaction rules were extracted to link 57 512
metabolites in KEGG and ChEBI. Meanwhile, by using
chemical transformations, three expanded reaction spaces
targeting different categories were constructed. Each reac-
tion space built in this research is more than 10 times larger
than the known reaction repository, Rhea database. Specif-
ically, the no-host reaction space contains 255 817 reac-
tions, the E. coli-based reaction space contains 255 322 re-
actions, and the yeast-based reaction space contains 234
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757 reactions. By using the random-based retrosynthetic
algorithm, novoPathFinder could not only recover exper-
imental pathways but also identify more efficient pathways
containing novel reactions for target production. By inte-
grating the chassis-based reaction space with GEM-model,
heterologous pathways containing novel reactions for tar-
get molecule production within E. coli or yeast without a
predefined precursor could be identified, and then, growth-
coupled theoretical yield could be calculated under cus-
tomized growth conditions (e.g. main carbon source, oxy-
gen condition and biomass) by using FBA. Every chemical
transformation between two molecules in novel pathways is
supported by one or more reactions, the corresponding ref-
erence reaction in Rhea and the promiscuity penalty score
are provided, and the thermodynamic feasibility under cus-
tomized physiological states (e.g. pH, ionic strength, tem-
perature) can be calculated in real time.

A main piece of evidence demonstrating the efficiency
of a novel pathway design tool is whether the tool can re-
cover the experimental pathway. However, because the ex-
panded reaction spaces contain tens or hundreds of thou-
sands of novel reactions derived from chemical transfor-
mations, they are much larger than known biological re-
action repositories. Thus, it is more difficult to recover the
known pathways in comparison with other tools that focus
on pathway construction with known reactions. In this re-
search, we provided several example cases to elaborate that
novoPathFinder is more capable of recovering experimen-
tally validated pathways than other rule-based web server
tools (e.g. ATLAS and PathPred). In addition, more effi-
cient pathways with novel reactions could also be retrieved
for further experimental exploration.

novoPathFinder presented in this research is a versatile
online tool for metabolic engineering. It not only supports
the exploration of novel pathways between two specified
compounds without considering hosts but can also con-
struct heterologous novel pathways when producing tar-
gets within E. coli or yeast. Moreover, the feasibility of
each pathway can be evaluated from multiple aspects, in-
cluding the penalty score of enzyme promiscuity, growth-
coupled theoretical yield and thermodynamic feasibility,
among which the latter two can be calculated in real-time
under customized physical conditions. However, some lim-
itations should also be considered. Due to the exponential
growth of child nodes generated by reaction rules from a
parent compound when using the retrosynthetic method,
we utilized a reaction-filling framework for the sake of com-
putation time. Taking novel compounds into consideration
when constructing biosynthetic pathways would help build
much larger reaction spaces to connect more compounds.
In addition, the FBA algorithm was utilized in this research
to calculate growth-coupled theoretical yield; however, due
to the lack of kinetic parameters and regulatory parame-
ters, the result from FBA may be inconsistent with in vivo
experiments. The integration of kinetic information with
GEM-models would improve this phenomenon. Even with
the current limitations, novoPathFinder performs well in re-
covering experimental pathways and identifying more ef-
ficient pathways that should be experimentally explored.
novoPathFinder is a convenient web server tool with full

functionality that paves the way for more rational design
strategies in metabolic engineering.
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