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Abstract 

Background:  Post-translational modification (PTM) is a biological process that alters proteins and is therefore 
involved in the regulation of various cellular activities and pathogenesis. Protein phosphorylation is an essential 
process and one of the most-studied PTMs: it occurs when a phosphate group is added to serine (Ser, S), threonine 
(Thr, T), or tyrosine (Tyr, Y) residue. Dysregulation of protein phosphorylation can lead to various diseases—most com-
monly neurological disorders, Alzheimer’s disease, and Parkinson’s disease—thus necessitating the prediction of S/T/Y 
residues that can be phosphorylated in an uncharacterized amino acid sequence. Despite a surplus of sequencing 
data, current experimental methods of PTM prediction are time-consuming, costly, and error-prone, so a number of 
computational methods have been proposed to replace them. However, phosphorylation prediction remains limited, 
owing to substrate specificity, performance, and the diversity of its features.

Methods:  In the present study we propose machine-learning-based predictors that use the physicochemical, 
sequence, structural, and functional information of proteins to classify S/T/Y phosphorylation sites. Rigorous feature 
selection, the minimum redundancy/maximum relevance approach, and the symmetrical uncertainty method were 
employed to extract the most informative features to train the models.

Results:  The RF and SVM models generated using diverse feature types in the present study were highly accurate as 
is evident from good values for different statistical measures. Moreover, independent test sets and benchmark valida-
tions indicated that the proposed method clearly outperformed the existing methods, demonstrating its ability to 
accurately predict protein phosphorylation.

Conclusions:  The results obtained in the present work indicate that the proposed computational methodology can 
be effectively used for predicting putative phosphorylation sites further facilitating discovery of various biological 
processes mechanisms.
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Background
The post-translational modification (PTM) of proteins 
plays an extremely important role in numerous cellular 
functions and biological processes [1], including alter-
ing proteins’ physiochemical properties, conformation, 

localization, and enzymatic activity; it also plays an 
important role in several other processes, such as cell 
signaling, regulation of gene expression, and cellular 
metabolism, to name a few [2]. Over 200 diverse PTMs 
have been recognized [3], of which phosphorylation is 
the most abundant and well-established PTM in eukary-
otes and is crucial to almost all aspects of cell life.

Protein phosphorylation is a rapid process involved 
in signal transduction pathways, cell proliferation and 
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differentiation, metabolic activities, regulating pro-
tein functions, DNA replication, apoptosis, etc. [4–6]. 
Although PTMs are essential to homeostasis in biological 
systems, an individual PTM can also disrupt the regula-
tion of complex protein networks, further affecting pro-
tein function and leading to many diseases and disorders 
(most of which are related to aging and dementia) [7]. 
The most common example of such disruption is the 
extensive phosphorylation of tau proteins in neurofibril-
lary tangles, which leads to neurodegenerative disorders 
such as Alzheimer’s disease and Parkinson’s disease. 
Over-phosphorylation of tau proteins promotes their 
aggregation and reduces the stability of microtubules, 
kinase, and phosphatase activity, thus exacerbating neu-
rotoxicity [8]. The identification and elucidation of the 
role of PTMs is therefore required to better understand 
the molecular mechanisms of modified proteins, which 
could lead to the development of potential disease inter-
ventions and treatments.

During phosphorylation, a phosphate group is added 
to the side chain of an amino acid (AA)—mainly serine 
(Ser), threonine (Thr), or tyrosine (Tyr), but to a lesser 
extent to arginine, lysine and histidine residues [9]. This 
reaction is catalyzed by kinase enzymes and is reversible, 
during which phosphate groups are removed by specific 
protein phosphatases [10]. Phosphorylation of an AA 
residue by protein kinase is also known to depend on 
the neighboring AAs [11]. Over the years, PTMs have 
been identified experimentally using biological meth-
ods, including mass spectrometry and site-directed 
mutagenesis [12]. Although these techniques provide a 
vast amount of data when operated in a high-throughput 
manner, they are laborious, costly, time-consuming, and 
often produce false positives and false negatives. A large 
number of PTMs thus remain unidentified or misclas-
sified, and the associated mechanisms in context of cel-
lular and biological processes are overlooked [13]. The 
computational prediction of protein phosphorylation 
sites appears to be a promising alternative strategy for 
reducing the associated costs and time. The preliminary 
prediction of phosphorylation sites together with experi-
mentally identified PTMs would expand our knowledge 
of the molecular mechanisms behind phosphorylation 
events and aid in protein functional characterization.

Around 40 computational methods have been devel-
oped to predict protein phosphorylation sites [14]. For 
example, Maiti et  al. proposed an approach that uses 
sequence-environment-specific, geometric, and evolu-
tionary information-based features to identify phospho-
rylation sites using the LightGBM algorithm [13]. Other 
machine-learning (ML)-based approaches, such as Phos-
Pred-RF [11] and PhosphoSVM [15], use only sequence-
based features for predictions based on random forest 

(RF) and support vector machine (SVM), respectively. 
NetPhos [16] uses a combination of sequence and 
structural features for independent and kinase-specific 
predictions, whereas PPRED uses only evolutionary 
information to classify phosphorylation sites [17]. Phos-
phoPredict [10] also uses a combination of sequence and 
functional features to decipher kinase-specific substrates 
and their related phosphorylation sites. Other methods 
that use general and kinase-specific sequences for predic-
tion are MusiteDeep [18], DeepPhos [19], Scansite [20], 
KinasePhos2.0 [21], and GPS [22].

In the present study, RF and SVM algorithm-based 
learning were used to predict pS, pT, and pY residues 
from the protein sequences. A multitude of features, 
including sequence-based features, physicochemical-
property-based (PP) features, structural features (SF), 
functional features (FF), and functional annotation (FA) 
represented sequence fragments around phosphoryla-
tion sites. A two-step feature selection approach and a 
minimum redundancy maximum relevance (mRMR) 
approach, followed by symmetrical uncertainty (SU), 
produced the most informative features for training the 
classifiers.

Methodology
Figure  1 depicts the overall workflow of the proposed 
approach for prediction of phosphorylation sites.

Data collection and pre‑processing
The data comprising of experimentally validated phos-
phorylation sites, pS, pT and pY was extracted from 
publicly available dbPTM [23] database. This database 
provides information integrated from several databases 
that include Phospho.ELM [12], HPRD [24], Phospho-
NET [25] amongst others. A total of 256,481 experimental 
phosphorylation sites belonging to human category were 
obtained from dbPTM following which after the removal 
of homologous and redundant sequences, 230,416 phos-
phorylation sites remained encoded in 21-residues 
sequence fragments. Finally, a total of 384,591, 61,004 
and 125,142 protein sequence fragments were obtained 
for pS, pT and pY, respectively. The peptides having the 
central S, T or Y residue phosphorylated were considered 
as positive dataset and the other non-phosphorylated 
sites were labelled as negative dataset. The final datasets 
were divided into 80% training data for learning and 20% 
testing set for validation using an in-house Perl script. 
Feature selection and ML model generation was done 
using training dataset followed by five-fold internal cross 
validation for performance’s evaluation of the trained 
classifiers. Further assessment of ML models was carried 
out by validation with an independent testing dataset 
using various statistical measures.
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Feature encoding approaches
Each peptide sequence was converted into numeric fea-
ture vectors which were then used to generate ML mod-
els. For each positive and negative sequence fragment, 
the features were extracted for central residue as well as 
ten neighboring residues upstream and downstream of 
central site to capture the local information of the phos-
phorylation site. A total of 1404 features categorized into 
groups, PP features, SF, SSF, FF and FA were used to rep-
resent each AA in the present study. Additional file 1 pro-
vides a comprehensive list of all the extracted features.

Physicochemical property‑based features
In order to capture the environment around the central 
phosphorylated residue, AAindex database [26] was used 
to obtain numeric vectors representing physicochemical 
and biochemical properties of each AA. Seven proper-
ties used in the present study covered AA composition 
(AAC), average flexibility indices, hydrophobicity indi-
ces, net charge, partition coefficient, residue volume and 
molecular weight. Each sequence fragment with a length 
of 21 residues was represented by 7 properties resulting 
in a 147 (21 × 7 = 147) dimensional vector.

Sequence‑based features
Previous studies have shown that neighboring AAs of 
phosphorylated residue are the key sequence-based 

features for the prediction of phosphorylation sites [27]. 
Binary-encoding (BE) method was used in which each 
AA corresponded to a 20-dimensional binary vector 
comprised of elements, ‘0’ and ‘1’. For example, Alanine 
is represented as a vector ‘10000000000000000000’, Ser-
ine as ‘00000000000000010000’ and so on and thus we 
obtained a 420-dimensional vector (21 × 20 = 420).

Structural level features
Three SSF used in the present study are accessible sur-
face area (ASA), secondary structure (coil, helix and 
strand) and disordered regions. ASA gives an estimate of 
accessibility of an AA to solvent in a protein thus giving 
crucial information on the protein structure [28]. Thus, 
ASA of individual AA residues for each protein sequence 
was obtained from AAindex. Another factor that gives 
insights about protein structure is the secondary struc-
tural configuration of AAs. A neural network-based 
prediction tool, PSSpred [29] was used for second-
ary structure prediction of all the AAs in each protein 
sequence fragment. It has been observed that phospho-
rylation sites are usually located in disordered regions, 
which makes protein disorder an important feature for 
predicting phosphorylation sites. The native disorder 
information was predicted using IUPRED2A which is an 
energy estimation method taking into account differences 
between ordered and disordered regions [30]. The scores 

Fig. 1  Overall workflow of the proposed approach for prediction of phosphorylation sites
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between, 0 and 1 were obtained amongst which residues 
above 0.5 score were considered as disordered and the 
others below 0.5 were labelled to be in ordered region. In 
all, 5 feature vectors denoted structural features resulting 
in a 105 (21 × 5 = 105) dimensional vector representing 
each sequence fragment.

Functional features
The functional information incorporated for prediction 
of phosphorylation sites include gene ontology terms 
(1) biological process (BP), (2) molecular function (MF) 
and (3) cellular component (CC); (4) protein functional 
domain data from InterPro [31]; and (5) KEGG path-
way [32] information through DAVID tool [33] which 
is a gene functional classification tool. A total of 846 FF 
including 555 GO terms, 177 functional domain types 
and 114 terms denoting KEGG pathways were acquired 
and each AA was encoded into ‘0’ and ‘1’ according to the 
absence and presence of FFs, respectively.

Functional annotations
Using functional annotation tool available from DAVID, 
functional properties belonging to two categories, UP_
SEQ_FEATURE and UP_KEYWORDS, were retrieved. A 
total of 526 types of protein functional annotations were 
obtained where an AA residue was denoted by ‘1’ if it had 
annotation for a particular function and ‘0’ if it was not 
linked with a specific function.

Combined features models
In order to enhance the prediction performance, all 
the groups, PP-based, SF, SSF, FF and FA features were 
pooled resulting in a total of 1404 features to generate 
learning models.

Feature selection
Feature selection methods were used to choose the most 
significant and informative features while minimizing the 
redundancy in the data thereby reducing its dimension-
ality and computational time and further improve model 
performances [34]. In the present study, feature selection 
was performed at two levels: mRMR approach followed 
by SU attribute selection method.

Minimum redundancy maximum relevance
mRMR is a widely used feature selection method based 
on mutual information. This approach ranks the features 
taking into consideration their importance to the classi-
fication variable along with the redundancy amongst the 
features themselves. A higher ranked attribute indicates 
its high correlation with the classification variable and 
least redundancy [35]. Top 50 ranked features of each 
category were selected as the most contributing features.

Symmetrical uncertainty
SU attribute evaluation method weighs the merit of an 
attribute by determining its uncertainty with reference to 
other sets of attributes [36]. SU can be calculated by the 
following equation:

where IG stands for information gain, H denotes entropy 
and X and Y represent attributes [37].

Considering the ability of this method to balance the 
biasness of information gain towards certain attributes 
[38], SU is a method of choice for a plethora of feature 
selection tasks [39, 40]. Weka software [41] was used to 
implement SU in combination with Ranker search which 
returned a list of top ranked attributes followed by the 
less significant ones and lastly the least important.

Training machine learning models
Random forest
RF is broadly used ML algorithm used for solving clas-
sification problems and making predictions [42–44]. This 
algorithm is based on the ensemble of decision-making 
trees which yield individual outputs and the most com-
mon output of the model is considered as final RF predic-
tion. The node of the tree and the subset of features used 
for generating trees is chosen randomly [45]. RF has many 
advantages which made it suitable for use in the present 
study. It is considered as a highly accurate learning clas-
sifier which can efficiently handle large dimensional data-
sets, deals with overfitting and does not consume a lot of 
time for training and prediction amongst many others 
[42, 46]. In this study, the RF models were trained using 
RandomForest package available from Weka [41].

Support vector machine
SVM is one of the most extensively applied ML algorithm 
in various computational studies involving classification 
and regression tasks [44, 47–50]. This algorithm finds an 
optimal hyperplane in a high-dimensional feature space 
using a kernel and then categorizes the input vectors into 
two classes [51]. The aim is to maximize the gap between 
input vectors of both the classes. In the present study, 
SVM was used with radial basis function (RBF) kernel 
implemented using Weka [41].

Model performance evaluation
To assess the prediction performance of the ML mod-
els generated in this work, several statistical measures, 
accuracy (ACC) that is proportion of correct positive 
and negative predictions, sensitivity (SN) or true posi-
tive rate (TPR), specificity (SP) which is percentage of 
correctly predicted non-phosphorylated sites, precision 

SU(X ,Y ) =
2 ∗ IG(X |Y )

H(X)+H(Y )
,
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(PRE), F-score and the Matthew’s correlation coeffi-
cient (MCC) were used [10]. These are defined in the 
following lines:

where TP, TN, FP and FN correspond to the numbers 
of true positives, true negatives, false positives and false 
negatives. Furthermore, the area under the curve (AUC) 
calculated from receiver operating characteristic (ROC), 
which is a plot of SN vs 1 minus SP, was used for evaluat-
ing model performances [10].

ACC =
(TP + TN )

(TP + TN + FP + FN )
,

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

PRE =
TP

TP + FP
,

F-score = 2×
TP

2TP + FP + FN
,

MCC =
(TP X TN )− (FP X FN )

√
(TP + FN )X (TP + FP)X (TN + FN )X (TN + FP)

,

Results
Input data transformation
In the case of each protein sequence, centered residue was 
flanked by 10 AAs in forward and backward directions 
(± 10); the problem we addressed was whether the cen-
tral residue acts as a phosphorylation site and belongs to 
class 1 or 0 (a non-phosphorylation site). In the present 
study, 61.2% instances were phosphate-binding and 38.7% 
belonged to class 1 (and were thus non-phosphate-bind-
ing). Totals of 134,584, 57,440, and 36,347 pS, pT, and 
pY, respectively, belonged to the positive (class 1) dataset, 
while pS 108,975, pT 27,415, and pY 316 sequence frag-
ments belonged to the negative dataset (class 0). Table 1 
provides the number of positive and negative phosphoryl-
ation sites in training and testing datasets.

Evaluating contribution of different feature encoding 
schemes
With regard to post-mRMR and SU attribute selection, 
of the PP-based features, AAC, molecular weight, resi-
due volume, flexibility, and partition coefficient of pre-
dominantly AA11 turned out to be highly significant for 
classification, followed by the hydrophobicity of the AAs 
around the central residue. These features have already 
been shown to be relevant for discriminating between 
phosphorylated and non-phosphorylated sites [13, 18]. 
Table 2 lists the initial number of different features types 
used to encode sequence fragments.

In SS features, the secondary structural conformation 
of AAs demonstrated maximum involvement in S, T, and 
Y phosphorylated sites prediction, followed by the disor-
dered region, in accordance with several previous studies 
[10, 27]. Of all the SS features used to train the ML mod-
els, ASA contributed least.

The highly informative features representing functional 
information, included only GO and KEGG pathway 
terms, whereas the data for the domains related to phos-
phorylated sequence fragments did not contribute at all 
to the prediction of PTM sites. In GO terms, the BP class 
majorly influenced the prediction of phosphorylation 

Table 1  The number of phosphorylation sites

Training set Testing set

Positive Negative Positive Negative

Serine 107,668 87,180 26,916 21,795

Threonine 45,952 21,932 11,488 5483

Tyrosine 29,078 253 63 7269

Table 2  Initial number and types of different features used to encode sequence fragments

Feature types Features Number

Physicochemical property-based Amino acid composition, average flexibility indices, hydrophobicity indices, net charge, 
partition coefficient, residue volume and molecular weight

147 (21 × 7)

Sequence-based Binary-encoding 420 (21 × 20)

Structural level Accessible surface area; secondary structure (coil, helix and strand) and disordered regions 105 (21 × 5)

Functional features Gene ontology (GO) terms (1) biological process (BP), (2) molecular function (MF) and (3) 
cellular component (CC); protein domain and KEGG pathway

555 GO, 177 
domain, 114 
KEGG pathway

Functional annotation UP_SEQ_FEATURE and UP_KEYWORDS 526
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sites followed by CC terms. The commonly influencing 
‘KEGG pathway terms’ were B cell receptor signaling 
pathway, endometrial cancer, prostate cancer, small-cell 
lung cancer, non-small-cell lung cancer, melanoma, renal 
cell carcinoma and platelet activation, which has been 
shown to play a role in cancer and neurodegenerative dis-
orders [52, 53].

In the case of FA, the terms crucial for pS and pT pre-
diction were “compositionally biased region: Ser/Thr-
rich,” “endoplasmic reticulum,” “short sequence motif: 
nuclear export signal,” “domain: TSPtype-13,” and “metal 
ion-binding site: Divalent metal cation1” and “cation 2”. 
In order to determine the most significant group, PP, 
sequence-based features, SSF, FF and FA feature groups 
were combined and compared. Additional file 2 presents 
all of the features obtained using the two-step, mRMR, 
and SU feature selection approach for predicting pS/pT/
pY sites.

Performance evaluation of ML models using independent 
testing data
Using individual and combined-feature encoding 
schemes, two extensively applied algorithms, RF and 
SVM, were used to generate learned models. The high-
est AUC values were obtained for the RF model, based 
on combined feature groups for pS (Fig.  2), pT (Fig.  3), 
and pY (Fig. 4) (0.95, 0.97, and 0.99, respectively). SVM 
models also had comparative AUC values, 0.89 for S, 0.59 
for T, and 0.87 for Y phosphorylated sites. Furthermore, 
the RF and SVM ML models generated using second-
ary structural information produced the second-highest 
AUC values, in accordance with our feature selection 
results, which indicated the maximum contribution of 
SSF to the prediction of pS/pT/pY sites. In addition to 
the highest AUC values, the combination and the SSF 
ML models also produced good values for other statisti-
cal measures, including ACC, SN, SP, PRE, F-score, and 

Fig. 2  ROC curve on (a) random forest (b) Support vector machine models using independent test set for Serine phosphorylation site prediction

Fig. 3  ROC curve on (a) random forest (b) Support vector machine models using independent test set for Threonine phosphorylation site 
prediction
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MCC (Tables  3, 4, 5). Moreover, the confusion matrix 
for all the RF and SVM models generated in the present 
study have been provided in Additional file 3. All the RF 
and SVM models generated for pS, pT, and pY prediction 
have been provided as Additional files 4–39.   

Comparison with existing methods
To evaluate prediction performance, four existing kinase-
independent tools, PhosPred-RF, PhosphoSVM, PPRED, 
and iPhos-PseEn, were compared to the proposed 
method of predicting pS/pT/pY sites. The proposed RF-
based method clearly outperformed other existing meth-
ods with regard to SN, SP, MCC, and AUC values, which 
corresponded to 0.89, 0.88, 0.78, and 0.95 for predicting 
pS; SN, SP, MCC, and AUC corresponded to 0.97, 0.74, 
0.77, and 0.97, respectively, for predicting pT; and SN, 

SP, MCC, and AUC corresponded to 0.10, 0.63, 0.57, and 
0.99, respectively, for predicting pY (Table 6).

Evaluation of the proposed models’ performance 
on experimental phosphorylation sites
Owing to the large number of computational methods 
proposed to identify probable PTM sites, the dbPTM 
database offers an experimental dataset as a standard to 
explore the PTM prediction ability of proposed tools. 
In the present study, the best-performing RF model was 
applied to a total of 5787 experimentally validated protein 
phosphorylation sites acquired from the dbPTM reposi-
tory. Of these 5787 phosphorylation sites, 4312 sequence 
fragments had Ser as central phosphorylated residue, 
1442 had Thr phosphorylated residue, and 33 fragments 
had phosphorylated Tyr residue positioned in the center 

Fig. 4  ROC curve on (a) random forest (b) support vector machine models using independent test set for Tyrosine phosphorylation site prediction

Table 3  Performance comparison with individual and combined feature encoding schemes for pS site prediction on the independent 
dataset

Performance metrics for best results are highlighted in bold

Attributes Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-measure (%) MCC AUC​

Physiochemical property RF 71.5 79 62.3 72.1 75.4 0.42 0.74

SVM 64.31 79.9 45.0 64.2 71.2 0.26 0.62

Structure RF 87.34 86.5 80.6 90.2 88.3 0.74 0.94

SVM 70.12 96.4 37.7 65.6 78.1 0.43 0.67

Sequence RF 70.3 80.1 58.2 70.3 74.9 0.39 0.73

SVM 77.65 99.1 51.2 77.5 83.1 0.59 0.75

Functional features RF 62.87 93.9 24.6 60.6 73.6 0.26 0.59

SVM 62.58 93.4 24.6 60.5 73.4 0.25 0.59

Functional annotation RF 62.75 90.7 28.2 60.9 72.9 0.24 0.60

SVM 62.50 93.6 24.1 60.4 73.4 0.25 0.58

Combined RF 89.16 89.4 88.9 90.8 90.1 0.78 0.95
SVM 88.50 79.9 99.1 99.1 88.5 0.79 0.89
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of the AA sequence. The results were in accordance with 
the performance measures obtained from an independ-
ent test set validation with 2824 sites predicted to be 
phosphorylated by Ser, 1410 by Thr, and all 33 sites to be 
phosphorylated by Tyr, as the pY RF model had the high-
est ACC and AUC, followed by pT and pS.

Discussion
Feature selection results in this study showed secondary 
structural information to be the top-ranked feature in 
the case of the pS and pT sites. For pY prediction, most 
of the PP-based features, AAC, flexibility, hydrophobic-
ity, molecular weight, partition coefficient and residue 
volume, of the 11th AA were revealed to be of utmost 
importance, followed by KEGG-pathway-associated 

terms. The other features responsible for pS and pT site 
predictions involved GO, KEGG pathway, and FA terms. 
Amongst the GO terms, for pS and pT prediction, the 
favored CC terms were integrin complex and ciliary base; 
BP terms included protein import into nucleus, androgen 
receptor signaling pathway, intracellular receptor signal-
ing pathway, response to cytokine, cell redox homeosta-
sis, and cellular response to ionizing radiation. For pS 
prediction, MF terms included fatty-acyl-CoA binding, 
receptor-signaling protein activity, Rho GTPase binding, 
SH2 domain binding, and Rac GTPase binding. Histone 
deacetylase activity was the only MF term contributing 
to pT prediction. The common KEGG pathway terms 
contributing towards prediction of pS/pT/pY sites were 
platelet activation, non-small cell lung cancer, melanoma 

Table 4  Performance comparison with individual and combined feature encoding schemes for pT site prediction on the independent 
dataset

Performance metrics for best results are highlighted in bold

Attributes Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-measure (%) MCC AUC​

Physiochemical property RF 77.54 92.1 47.1 78.5 84.7 0.45 0.76

SVM 67.05 77.7 55.9 64.9 70.7 0.34 0.66

Structure RF 89.58 94.8 78.8 90.3 92.5 0.75 0.96

SVM 77.66 99 33 75.6 85.7 0.47 0.66

Sequence RF 71.79 86 42.1 75.7 80.5 0.31 0.69

SVM 73.74 94.4 69.5 70.3 79.9 0.16 0.57

Functional features RF 72.75 92.1 32.3 74.0 82.1 0.31 0.63

SVM 72.43 93.0 29.3 73.4 82.0 0.29 0.61

Functional annotation RF 68.5 92.6 18.1 70.3 79.9 0.16 0.57

SVM 68.34 92.3 31.7 70.3 79.8 0.15 0.55

Combined RF 90.28 97.8 74.4 88.9 93.2 0.77 0.97
SVM 73.96 100 19.4 72.2 83.9 0.37 0.59

Table 5  Performance comparison with individual and combined feature encoding schemes for pY site prediction on the independent 
dataset

Performance metrics for best results are highlighted in bold

Attributes Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F-measure (%) MCC AUC​

Physiochemical property RF 77.19 77.5 46 99.4 87.1 0.05 0.65

SVM 79.21 79.6 30.2 99.2 88.4 0.02 0.54

Structure RF 99.3 100 79.4 99.3 99.7 0.43 0.95

SVM 96.08 96.4 63.5 99.7 98 0.27 0.79

Sequence RF 69.74 70 41.3 99 82 0.02 0.59

SVM 99 99.8 11.1 99.2 99.5 0.18 0.55

Functional features RF 98.09 98.6 39.7 99.5 99.0 0.27 0.70

SVM 97.73 98.2 39.7 99.5 98.9 0.24 0.69

Functional annotation RF 95.51 96.1 31.7 99.4 97.7 0.12 0.68

SVM 95.24 95.8 31.7 99.4 97.6 0.12 0.63

Combined RF 99.42 100 63.5 99.5 99.7 0.57 0.99
SVM 99.46 99.7 23.8 99.7 99.7 0.71 0.87
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and prostate cancer. Most of the KEGG pathway terms 
denoted different types of cancer which makes sense as 
altered phosphorylation has been strongly linked with 
cancer [54]. Protein domain information of the FF group 
appeared to be the least informative and contributed 
minimum to the prediction of S/T/Y phosphorylated 
sites. Amongst the FA features, the favorably associated 
terms for pS/pT/pY sites prediction included “alternative 
promoter usage,” “DNA recombination,” “repeat: TPR8,” 
and “transit peptide: mitochondrion.” These events have 
been associated with phosphorylation which is responsi-
ble for various diseases and disorders [55–57].

Further during ML model generation, both of the ML 
algorithms performed well overall in predicting pS/pT/
pY sites; however, RF clearly outperformed SVM in most 
of the feature group models. The best performance for all 
three of phosphorylated sites for both RF and SVM was 
achieved using combined feature groups, thereby dem-
onstrating the necessity and significance of exploiting a 
variety of feature types for prediction. The results of the 
evaluation of the model performances on the experi-
mental phosphorylation sites confirm that the proposed 
method can be employed to distinguish unidentified 
putative phosphorylation and non-phosphorylation sites. 
On the whole, these results indicate the importance of 
using different types of feature encoding schemes and 
feature selection to acquire a diverse set of extremely 
informative and relevant features for generating 

high-performance ML models to predict phosphoryla-
tion sites.

Conclusion
Protein phosphorylation is essential to the regula-
tion of biological processes and disease pathogenesis. 
Experimental identification of phosphorylation sites 
is time-consuming and costly, so in this paper we pro-
posed an ML-based computation method for cheaper, 
swift, and efficient S/T/Y phosphorylation prediction. 
The proposed RF- and SVM-algorithms-based method 
considers diverse features, physiochemical properties, 
sequence environment, secondary structure, functional 
features (pathway, GO, and protein domain), and func-
tional annotation of protein sequence fragments to pre-
dict phosphorylation sites. Through two-level mRMR 
and SU feature ranking we observed that secondary 
structural information followed by pathway, GO, and 
FA terms were the most informative features, whereas 
protein domain features were the least useful. The pro-
posed method also demonstrated significant improve-
ment in performance metrics in terms of SN, SP, MCC, 
and AUC prediction compared to other existing kinase-
independent computational tools. Furthermore, the 
proposed method exhibited outstanding performance 
on experimental phosphorylation sites, thereby indi-
cating that it is a promising method for identifying 

Table 6  Performance comparison of different existing tools for pS/pT/pY site prediction

Performance metrics for best results are highlighted in bold

Phosphorylation site Methods Sensitivity (%) Specificity (%) MCC AUC​

Serine PhosPred-RF 79.70 75.00 0.54 0.85

PhosphoSVM 44.43 94.04 0.29 0.84

PPRED 32.27 91.6 0.16 0.75

iPhos-PseEn 79.64 79.78 0.39 –

Our RF model 89.4 88.9 0.78 0.95
Threonine PhosPred-RF 73.80 72.60 0.46 0.81

PhosphoSVM 37.31 94.99 0.25 0.81

PPRED 34.32 83.65 0.09 0.65

iPhos-PseEn 71.51 80.68 0.34 –

Our RF model 97.8 74.4 0.77 0.97
Tyrosine PhosPred-RF 72.70 64.00 0.36 0.76

PhosphoSVM 41.92 87.34 0.20 0.73

PPRED 43.04 82.65 0.16 0.70

iPhos-PseEn 76.18 76.29 0.32 –

Our RF model 100 63.5 0.57 0.99
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potential pS, pT, and pY sites and would thus facilitate 
the prediction of functional PTMs and further biologi-
cal analyses.
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