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Abstract: Fibroblast growth factor receptors (FGFRs) have become an attractive target in cancer
research and therapy due to their implication in several cancers. Limitations of current treatment
options require a need for additional, more specific and potent strategies to overcome cancers driven
by FGFRs. Photochemical internalization (PCI) is a light-controlled method for cytosolic delivery
of drugs that are entrapped in endosomes and lysosomes. We here evaluated the efficacy and
selectivity of PCI of FGF2-saporin (FGF-SAP) in cells overexpressing FGFR1. FGF-SAP is a conjugate
of FGF2 and the highly cytotoxic ribosome-inactivating protein (RIP) saporin, which is used as
payload to eliminate cancer cells. Evaluation of the targeting effect of PCI of FGF-SAP was done by
comparing the cytotoxic response in osteosarcoma cells with very low levels of FGFR1 (U2OS) to
cells overexpressing FGFR1 (U2OS-R1). We demonstrate that PCI greatly enhances cytotoxicity of
the drug showing efficient cell killing at pM concentrations of the drug in U2OS-R1 cells. However,
U2OS cells were also sensitive to the toxin after PCI. Binding experiments using confocal microscopy
and Western blotting techniques indicate that FGF-SAP is taken up by cells through heparan sulfate
proteoglycans (HSPGs) in U2OS cells. We further show that the cytotoxicity of FGF-SAP in U2OS cells
was reduced when cells were co-treated with heparin to compete out binding to HSPG, demonstrating
that the cytotoxic effect was due to internalization by HSPGs. We conclude that to prevent off-target
effects of FGF-based toxins, it will be necessary to circumvent binding to HSPGs, for example by
mutating the binding site of FGF2 to HSPGs.
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1. Introduction

Over a century ago Paul Ehrlich introduced the concept of “the magic bullet”. The
idea was to develop a drug that would precisely target disease-causing agents [1]. Since
then, much effort has been done to develop drugs that specifically target cancer cells. The
main categories for targeted therapies are currently small molecule inhibitors (e.g., gefitinib
inhibiting epidermal growth factor receptor (EGFR) signaling) and monoclonal antibodies
(mAbs) (e.g., trastuzumab against the human epidermal growth factor receptor 2 (HER2)
receptor). However, treatment is often impaired by nonspecific drug distribution, lack of
specificity to the target site, and acquired resistance [2,3].

The major objective of targeted cancer therapy is reducing side effects and enhancing
drug accumulation at the target site for effective and selective cancer eradication [3]. Several
strategies can be employed for targeted drug delivery. One such strategy is to exploit the
expression of specific receptors on the surface of cancer cells. Discrimination between
healthy and cancerous tissue is possible by applying a targeting ligand that binds efficiently
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to these surface markers [3]. By coupling a ligand to a toxic moiety, receptor–ligand
interaction triggering endocytosis can deliver a drug to the target site [3,4]. Various ligands
can be used, such as hormones, growth factors, or antibodies. The most common drug
carriers are, however, mAbs. Among the very few antibody–drug conjugates (ADCs) that
have been approved by the U.S. Food and Drug Administration (FDA) are, for example,
brentuximab vedotin (Adcetris™) for treatment of relapsed Hodkin’s lymphoma and
systemic anaplastic large cell lymphoma [5], and ado-trastuzumab ematisine (Kadcyla™)
for HER2-positive metastatic breast cancer [6].

The FGFR family consists of four signaling RTKs, termed FGFR1-FGFR4 [7,8]. They
are structurally similar to other RTKs [9]. The extracellular domain consists of two or three
immunoglobulin-like domains (D1–D3). Upon dimerization caused by the ligands (FGFs),
the two receptors will interact directly through D2, which also contains a heparin binding
site [10,11]. D2–D3 constitutes the FGF binding site. In addition to the extracellular domain,
FGFRs contain a single transmembrane helix part and an intracellular split, catalytically
active kinase domain [8,12]. FGFR dimerization leads to activation of the tyrosine kinase in
the intracellular part and initiation of several downstream signaling pathways [7,12].

FGFs also have affinity for the closely related heparin and cell surface heparan sulfate
proteoglycans (HSPGs) [12,13]. Both heparin and HS are common glycosaminoglycans
in proteoglycans, and regulate several biological processes by reacting with a number of
molecules [14]. HSPGs play an important regulatory role in FGF-signaling. FGFs with
high affinity to HSPGs are readily sequestered, thereby limiting their diffusion through
the extracellular matrix. Thus, HSPGs act as storage and protect FGFs from degradation.
Moreover, HSPGs facilitate the activation of and signaling through FGFRs by stabilizing
ligand-receptor binding [10].

Aberrant activation of FGFRs is observed in a number of cancers [7,8]. Alterations in
FGFRs include activating mutations, fusion proteins and receptor overexpression. Constitu-
tively active receptors may occur by activating mutations in the kinase domain, mutations
leading to ligand-independent dimerization or even chromosomal rearrangement resulting
in dimerized FGFRs and ligand-independent activation. Furthermore, gene amplifica-
tion or abnormal transcriptional regulation may lead to upregulation of FGFRs, resulting
in increased sensitivity to FGFs and subsequently increased FGFR signaling [15]. The
majority of FGFR alterations are receptor overexpression, followed by mutations and
rearrangements [16].

Large efforts have been devoted to developing strategies to target FGFRs and their
signaling pathways [12]. Tyrosine kinase inhibitors are the most common approach in
targeting FGFR aberrations. Other efforts include mAbs, ADCs, aptamers and ligand
traps [12,17]. However, the efficacies of anti-FGFR therapies have been variable. Clinical tri-
als have revealed a complexity in targeting FGFRs, challenged by factors such as resistance
to therapy, secondary FGFR alterations, bypass of signaling pathways and intratumoral
heterogeneity [18,19]. Still, FGFR aberrations are observed in many cancers and remain an
important target.

PCI was developed and first reported by Berg et al. in 1999. It was proposed as a new
technology for site-specific delivery of macromolecules into the cytosol [20]. The major ob-
jective of selective and targeted cancer therapy is reducing side effects as well as enhancing
drug accumulation at the target site. Macromolecules that exert their effect intracellularly
are of great therapeutic interest but are often limited by ineffective internalization as they
are transported to and degraded in lysosomes. In order to reach their intracellular targets,
the molecules must escape from endosomal and/or lysosomal compartments [20,21]. PCI
is based on a photosensitizer that, due to its amphiphilic nature, accumulates in endo-
and lysosomal membranes. Photochemical treatment induces ROS-generation resulting in
disintegration of these membranes, which is the basis of photodynamic therapy (PDT). In
PCI, the subsequent release of the endosomal content into the cytosol of light exposed cells
is exploited to deliver drugs intracellularly.
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Ideal candidates for PCI include therapeutic agents that are normally ineffectively de-
livered to the cytosol. One such example is type I ribosome inactivating proteins (RIPs) [20].
RIPs from plants are enzymes that exert N-glycosidase activity. By depurinating a specific
nucleotide in the large subunit of ribosomes, protein translation is inhibited. This will
in turn lead to cell death. There are two types of RIPs. Type II RIPs consist of an A and
B chain, e.g., ricin, which is one of the most potent natural toxins. The A chain hold the
enzymatic activity, while the B chain enables translocation into the cell. On the other hand,
type I RIPs lack the B chain and does not possess a way of entering the cell [22].

The lack of the translocation domain in type I RIPs (e.g., saporin and gelonin) make
them far less toxic. When access is gained to the cytosol, however, they have similar RIP
activity. Type I RIPs are mainly internalized by pinocytosis, which is both non-selective
and inefficient [22]. However, their potential can be exploited by linking the A chain to
a targeting vessel, such as antibodies or targeting ligands. Previous in vitro and in vivo
studies of PCI of saporin and gelonin-based immunotoxins and ligand toxins targeting
EGFR [23,24], vascular endothelial growth factor receptor (VEGFR) [25], CSPG4 [26,27],
CD133 [28,29] and HER2 [30] have been shown to enhance the delivery and efficacy of
these cytotoxic agents.

The aim of the present study was to evaluate PCI of FGF2-saporin (FGF-SAP), a
conjugate of FGF2 and saporin [31], as a strategy to target and achieve cytotoxic effects
in cancer cells overexpressing FGFRs. FGF-SAP has been used previously to eliminate
fibroblasts in primary cultures [32] and has shown effects on cancer cells expressing FGFRs
both in vitro and in vivo [33]. We wanted here to investigate whether PCI could potentiate
the cytotoxic effect of FGF-SAP.

We show that PCI can successfully deliver FGF-SAP into cells in order for saporin to
exert its toxic effect at pM concentrations. However, we also find that HSPGs-mediated
uptake of FGF-SAP causes a challenge with respect to the selectivity of FGF-SAP against
FGFR overexpressing cells. We conclude that for FGFR-specific cell killing in vitro, co-
incubation with heparin can be used to avoid binding to HSPGs, while in vivo, mutation of
the heparin-binding site in FGF2 could be a possible way to avoid internalization by HSPGs.

2. Materials and Methods
2.1. Cells

The human osteosarcoma cell lines U2OS (ATCC, Manassas, VA, USA) and U2OS-R1
(established by Haugsten et al. [34] were maintained in Dulbecco’s Modified Eagle Medium
GlutaMAX™-I (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10%
fetal bovine serum (FBS, Thermo Fisher Scientific), 100 U/mL penicillin (Sigma-Aldrich,
St. Louis, MO, USA) and 100 µg/mL streptomycin (Sigma-Aldrich) and incubated at
37 ◦C in a humidified atmosphere containing 5% CO2. Cells were routinely assessed for
mycoplasma infections.

2.2. Materials, Antibodies, and Compounds

FGF-SAP (Advanced Targeting Systems, Carlsbad, CA, USA) is a chemical conjugate
of FGF2 and saporin.

Unconjugated saporin, SAP (Advanced Targeting Systems, Carlsbad, CA, USA),
served as control for the targeted ligand toxin. There are approximately 1.5 molecules of
saporin conjugated per molecule of FGF2, which was accounted for when treating the cells
with saporin versus FGF-SAP.

The plasmid pDEST15-GST-FGF2 was a generous gift from Dr. Malgorzata Za-
krzewska (Department of Protein Engineering, Faculty of Biotechnology, University of
Wroclaw, Poland) and recombinant GST-FGF2 was prepared as previously described [35].

The following antibodies were used: mouse anti-γ-tubulin (T6557) from Sigma-
Aldrich (St. Louis, MO, USA), mouse anti-GST (Sc-138) and rabbit anti-GST (Sc-459)
from Santa Cruz Biotechnology (Dallas, TX, USA), mouse anti-Lamp1 (1D4B) from De-
velopmental Studies Hybridoma Bank. HRP-conjugated secondary antibodies were from
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Dako (Glostrup, Denmark). Fluorescently labeled secondary antibodies were from Jackson
ImmunoResearch Laboratories (Cambridgeshire, UK).

Hoechst 33,258 and heparin were from Sigma Aldrich (St. Louis, MO, USA). cOmplete
EDTA-free protease inhibitor cocktail was from Roche (Basel, Switzerland).

2.3. PDT and PCI Treatment

PDT and PCI were performed using the photosensitizer fimaporfin (TPCS2a), (PCI
Biotech, Oslo, Norway). TPCS2a absorbs light most efficiently in the blue area (λmax ≈ 420 nm),
but also has an in vivo/clinically relevant peak in the red area (λmax ≈ 650 nm) [36]. Cells
were illuminated using the light lamp LumiSource™ (PCI Biotech, which consists of four
light tubes (4 × 18 W Osram L 18/67, Blue) emitting blue light with a peak wavelength of
approximately 435 nm at a fluence rate of 11.5 mW/cm2 (1 min light exposure = 0.69 J/cm2).
Except during illumination, all work with TPCS2a was performed in subdued light.

A total of 3000 cells/well were seeded in 96-well plates (Nunclon™ Delta Surface,
Thermo Fisher Scientific) and placed for attachment overnight. The cells were then in-
cubated with TPCS2a for 18 h overnight, prior to 2× wash and a 4-hour chase period to
remove the photosensitizer from the plasma membrane before illumination. PCI included
co-incubation of FGF-SAP with the photosensitizer overnight, or in the photosensitizer-free
medium 4 h prior to light exposure. Cell viability was assessed approximately 48 h after
illumination.

PDT and PCI data are presented as means of three independent experiments
plus/minus standard error of the mean (SEM). The data were normalized to control
(untreated cells)

2.4. Viability Assay

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega Corpora-
tion, Madison, WI, USA) was used to assess the cytotoxic responses to treatments according
to the manufactuer’s protocol. The absorbance at 490 nm was recorded by PowerWave™
XS2 Microplate Spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA) and
analyzed with Gen5™ Data Analysis Software (BioTek Instruments, Inc.).

2.5. Flow Cytometry

A total of 100,000 cells/well were seeded in 6-well plates (Nunclon™ Delta Surface,
Thermo Fisher Scientific) and left for attachment. After approximately 24 h, the medium
was exchanged with fresh medium containing 0.2 µg/mL TPCS2a. Cells were incubated
with photosensitizer for 22 h or alternatively, cells were kept for 18 h before washing
and further incubation for a 4-hour chase period in drug-free medium. Next, cells were
detached by trypsination followed by a 5-min centrifugation at 235× g at room temperature
(RT). The cells were then washed with PBS before a second centrifugation. The supernatant
was removed, and the pellet resuspended in standard culture medium. The cell suspension
was filtrated and collected in designated flow tubes. Treated cells were protected from light
until running the samples.

Flow cytometry was performed with BD™ LSR II flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA). Violet laser (407 nm) was used to excite TPCS2a with the
following filter settings for detection of emitted fluorescence: bandpass filter 660/20 nm
(650–670 nm) and longpass filter 635 nm. Dead and live cells were determined by SSC/FSC.
Data were analyzed using the software program FlowJo™ (Three Stars Inc., Ashland,
VA, USA).

2.6. Immunofluorescence Confocal Microscopy

A total of 200,000 cells/well were seeded onto 10 mm round coverslips in 6-well
plates and left for attachment overnight. The following day, the cells were treated with
culture medium containing 100 ng/mL GST-FGF2, with or without 20 U/mL heparin
(Sigma-Aldrich), for 30 min or 4 h at 37 ◦C in a humidified atmosphere containing 5% CO2.
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Treatment was ended by a 3× wash in PBS. Cells were fixed with 10% Neutral Buffered
Formalin solution (Sigma-Aldrich) for 10 min at RT. The fixative was removed by washing
3× with PBS.

Cells were permeabilized using 0.05% saponin (Sigma-Aldrich) in PBS and left for
10 min at RT before staining with primary antibody and a secondary antibody coupled to
a fluorophore.

The coverslips were immersed in Hoechst solution for 10–15 s followed by immersion
in ultrapure deionized water (Milli-Q H2O) and mounted in ProLong™ Diamond Antifade
Mountant (Invitrogen, Carlsbad, CA, USA).

Images were acquired with a 63× objective on Zeiss LSM 710 confocal microscope
(Carl Zeiss AG, Oberkochen, Germany). Processing and analysis of images was performed
in ImageJ (version 1.52o) [37].

2.7. Western Blotting

A total of 100,000 cells/well were seeded in 12-well plates and left overnight for
attachment. The cells were then treated with 600 ng/mL GST-FGF2 in the absence or
presence of 50 U/mL heparin for 1 h at 4 ◦C. Next, the cells were washed 10× with ice cold
PBS to remove unspecifically bound GST-FGF2.

Subsequently, cells were lysed in lysis buffer (10 mM phosphate-Na pH 7.4, 100 mM
NaCl, 1 mM Ethylenediaminetetraacetic acid (EDTA), 1% Triton X-100, protease inhibitors)
for 5–10 min on ice. Lysates were then mixed with sample buffer, containing lithium
dodecyl sulfate (LDS) at a pH of 8.4 (NuPAGE™ LDS Sample Buffer, Invitrogen) and
reducing agent, containing 500 mM dithiothreitol (DTT) (NuPAGE™ Sample Reducing
Agent, Invitrogen), and boiled at 95 ◦C for 5 min.

Separation by gel electrophoresis was carried out using NuPAGE™ 4–12% Bis-Tris Pro-
tein Gels (Invitrogen) and NuPAGE™ MES SDS Running Buffer (50 mM MES, 50 mM Tris
Base, 0.1% SDS, 1 mM EDTA, pH 7.3) (Invitrogen) at 150 V. Precision Plus Protein™ Dual
Color Standards (Bio-Rad, Hercules, CA, USA) were included. Transfer was performed
using the iBlot® dry Blotting System (Invitrogen) using 20 V for 10 min.

The membrane was then incubated with primary antibodies followed by secondary
antibodies conjugated to Horseradish Peroxidase (HRP).

SuperSignal™ West Dura system (Thermo Fisher Scientific) was used to produce
chemiluminescence that was captured using the imager system ChemiDoc™ (Bio-Rad).
Images were analyzed and processed in Image Lab™ version 6.0.0 (Bio-Rad).

3. Results
3.1. Optimization of PCI Parameters

To investigate the specificity of PCI of FGF-SAP towards cells overexpressing FGFRs,
we chose to use a cellular model system consisting of cells stably expressing FGFR1 (U2OS-
R1) and compare the efficiency in these cells to the parental cell line (U2OS) with very
low (non-detectable levels) of all FGFRs (FGFR1-4) [38]. This allowed us to compare the
efficiency of FGF-SAP PCI in similar cellular settings with and without FGFR1.

First, the optimal blue light dose and concentration of the photosensitizer, TPCS2a, in
U2OS and U2OS-R1 cells was investigated. To establish the optimal conditions, cytotoxic
response of TPCS2a-PDT (TPCS2a and blue light exposure in the absence of drug) was
investigated (Figure 1). Cells were treated with different concentrations of TPCS2a and
illuminated for different periods of time.

While the viability response curves for 0.4 and 0.6 µg/mL TPCS2a decreased rapidly
at longer illumination times, the viability of cells treated with 0.2 µg/mL decreased less at
longer illumination times. Subjecting the cells to 0.2 µg/mL TPCS2a and 120 s illumination
decreased the cell viability to approximately 40–50% in both cell lines. Light doses causing
30–50% reduction in cell viability have previously been reported to be optimal for drug
delivery by PCI. At these light doses, lysosomes are efficiently ruptured and release their
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content into the cytosol, allowing saporin to exert its toxic effect [39]. 0.2 µg/mL TPCS2a
and 120 s of light exposure were therefore selected for subsequent PCI experiments.
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3.2. Cellular Uptake of TPCS2a

The PDT results in Figure 1 indicated that U2OS-R1 cells were slightly more sensitive to
PDT as higher light doses (10–15%) were needed in order to obtain the same cytotoxic effect
in U2OS cells as in U2OS-R1. The cellular uptake of TPCS2a in U2OS-R1 and U2OS cells
was therefore evaluated by flow cytometry (Figure 2). Cells were treated with 0.2 µg/mL
TPCS2a for 22 h. Alternatively, cells were treated with 0.2 µg/mL TPCS2a for 18 h before
the cells were subjected to a washing step and incubated further for 4 h. Total incubation
time in both cases was 22 h.

The results reveal a large shift in median fluorescence intensity (MFI) compared to
non-treated cells (Figure 2A,B). Moreover, we observed that more TPCS2a was taken up
into cells when cells were kept for 22 h than when they were kept for 18 h, and washed.
Employing a 2× wash after 18 h of incubation decreased the median fluorescence intensity
by approximately 50% in both U2OS-R1 and U2OS. More importantly, upon TPCS2a
treatment for 22 h, as well as upon TPCS2a treatment for 18 h followed by washing and
4 more hours, U2OS cells internalized significantly less TPCS2a than U2OS-R1 cells. After
continuous incubation with TPCS2a for 22 h, a small, but significant (p = 0.048), difference
in fluorescence intensity between the cell lines was observed. When employing a 2× wash
followed by a 4-hour chase period, thereby mimicking the PCI protocol described below,
there was also a significant (p = 0.018) difference between the cell lines. This demonstrates
that, indeed, U2OS-R1 cells have a slightly higher uptake of TPCS2a relative to U2OS,
which corresponds well with the difference in PDT-sensitivity.
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from one experiment, (D) median fluorescence intensity (MFI) as an average from three independent
experiments. Cells were incubated with 0.2 µg/mL TPCS2a for 22 h or 18 + 4 h (2× wash after 18 h).
(A,B) U2OS-R1 and U2OS cells, respectively. Orange histograms represent untreated cells. Treated
cells are shown in red (18 + 4 h) and blue (22 h). (C) U2OS (red) and U2OS-R1 (blue) when treated
for 18 + 4 h from (A,B). (D) Average MFI determined on the basis of three independent experiments.
Error bars ± S.D. * p < 0.05 (two-tailed Student’s t-test). Blue bars represent U2OS-R1 cells, red bars
represent U2OS cells.

3.3. PCI of FGF-SAP

After having established the optimal concentration of photosensitizer and exposure
of light, we proceeded to test whether PCI could increase cytosolic delivery and toxicity
of FGF-SAP. The efficiency of PCI of FGF-SAP in U2OS and U2OS-R1 cells was compared
to the efficiency of non-targeted saporin (SAP) and measured as cytotoxicity using the
MTS assay.

3.3.1. Cytotoxic Effects of PCI of SAP and FGF-SAP

U2OS or U2OS-R1 cells were treated with increasing concentrations of SAP (Figure 3A)
or FGF-SAP (Figure 3B), incubated for 18 h, washed and incubated further for 4 h in drug-
free medium, and illuminated for 120 s in the presence 0.2 µg/mL TPCS2a (photosensitizer).
An additional 4 h incubation after washing was included for TPCS2a to achieve endosomes
and removal from the cell surface before illumination. As controls, cells were also treated
with drug alone and no illumination (-), with drug and illumination (Light), or with drug
and TPCS2a but no illumination (TPCS2a). Unconjugated SAP served as a control for the
targeted ligand toxin, FGF-SAP.
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Treatment of cells with drug alone, either SAP (blue line in Figure 3A) or FGF-SAP
(blue line in Figure 3B) did not induce cytotoxic effects in U2OS or U2OS-R1 cells, although
a slight increase in cytotoxicity was observed for FGF-SAP at the highest concentrations of
drug. Cells treated with drug, SAP or FGF-SAP, followed by illumination in the absence of
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photosensitizer (TPCS2a), was included in order to determine if light by itself affects the
uptake or activity of SAP/FGF-SAP. In both cell lines, the effect of light, as an independent
variable on SAP or FGF-SAP, had very little or no influence on cell viability (red line in
Figure 3A,B). Moreover, incubation of cells, U2OS and U2OS-R1 with drug in the presence
of photosensitizer (TPCS2a) but without illumination (green line Figure 3A,B), did not
alter cytotoxicity considerably. However, in all cases, FGF-SAP alone demonstrated higher
cytotoxicity than SAP alone toward both cell lines (compare Figure 3A,B).

Despite the low susceptibility to SAP alone in both cell lines, PCI of cells treated with
SAP reduced cell viability substantially (black line Figure 3A). Although PCI of SAP in
U2OS-R1 cells was slightly more efficient than in U2OS cells, no considerable difference in
cytotoxicity was observed between the two cell lines. The potential increase in cytotoxic
efficiency of PCI of SAP in the case of U2OS-R1 could be an effect of the slightly higher
uptake of photosensitizer in U2OS-R1 than in U2OS cells.

Additionally, PCI of cells treated with FGF-SAP strongly potentiated the cytotoxicity
of the drug (black line Figure 3B) and was also considerably more cytotoxic than PCI of SAP.
The viability was reduced to approximately 5% in cells treated with 10 pM FGF-SAP, while
it was only reduced to 60–80% in the case of cells treated with the same molar ratio of SAP
(as FGF-SAP preparations contain on average 1.5 molecules SAP per FGF2, 10 pM FGF-SAP
equals 15 pM SAP). Clearly, PCI of FGF-SAP is more cytotoxic than PCI of SAP. Even
though PCI greatly enhanced the effect of FGF-SAP, the difference in cytotoxic response
between the cell lines was surprisingly low.

3.3.2. Cytotoxic Effect of PCI after a Short (Four Hours) FGF-SAP Incubation

Since PCI of FGF-SAP was toxic toward both U2OS and U2OS-R1 when incubating
cells with FGF-SAP for 18 h, we tested whether a shorter incubation time would have an
effect on the cytotoxicity. We hypothesized that a shorter incubation with the drug might
reveal potential differences in the cytotoxic efficiency of FGF-SAP in cells expressing FGF
receptor (U2OS-R1) or not (U2OS). Cells were therefore incubated for 18 h with or without
0.2 µg/mL TPCS2a, washed and incubated for additional four hours in the presence of
increasing concentrations of FGF-SAP, ranging from 0.01 pM to 1000 pM (Figure 4).

Again, PCI of FGF-SAP increased the cytotoxic effect compared to FGF-SAP alone
(Figure 4). PCI of cells treated with 10 pM FGF-SAP for 4 h reduced the viability to 15–20%.
The cytotoxic response to a shorter incubation with FGF-SAP (4 h instead of 18 h) was
not much altered. Moreover, a short incubation (four hours) of FGF-SAP in U2OS-R1 and
U2OS cells combined with PCI also resulted in similar cell viability for both cell lines.

3.3.3. Co-Incubation of FGF-SAP and Heparin

HSPGs play an important role in signaling through FGFRs and are abundant on the
cell surface and in the extracellular matrix. We therefore hypothesized that HSPGs could
mediate the internalization of FGF-SAP and, as such, account for the unspecific cytotoxic
responses obtained in U2OS cells with very low levels of FGFR1. Heparin, a highly sulfated
form of heparan sulfate, can outcompete binding of FGFs to HSPGs [40,41]. The role of
HSPGs in association of FGF-SAP to U2OS cells was therefore investigated by treating
U2OS cells with or without heparin and analyze binding of FGF2 to the cells by Western
blotting. FGF2-Saporin was, however, not used for this purpose, due to its high toxicity.
We instead used a surrogate, i.e., a fusion protein of FGF2 and glutathione-S-transferase
(GST), GST-FGF2. Cells were treated with GST-FGF2 +/− heparin and incubated for 1 h
on ice to allow binding, but to avoid endocytosis and degradation of GST-FGF2. Western
blot analysis (Figure 5A) revealed that GST-FGF2 bound to U2OS cells in the absence, but
not in the presence, of heparin.
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We therefore tested the toxicity of FGF-SAP in the presence or absence of heparin
in U2OS and U2OS-R1 cells. The cells were treated with increasing concentrations of
FGF-SAP, ranging from 0.01 pM to 1000 pM, incubated for 4 h and illuminated for 120 s, in
the presence of 0.2 µg/mL TPCS2a. In addition, in order to investigate HSPG-mediated
internalization of FGF-SAP, 20 U/mL heparin was added to the culture medium, to reduce
binding to cell-surface HSPGs.

The presence of heparin resulted in a reduced cytotoxic effect of PCI of FGF-SAP in
U2OS cells, while heparin treatment had no effect on cytotoxicity of PCI of FGF-SAP in
U2OS-R1 cells (Figure 5B). We conclude that heparin outcompetes binding of FGF-SAP
to HSPGs at the cell surface of U2OS cells and thus prevent FGF-SAP from entering the
cells. In U2OS-R1 cells, FGF-SAP is most likely taken up by binding to its high-affinity
receptor, FGFR1, which is not inhibited by heparin. Actually, heparin is known to stabilize
the complex of FGF2 and FGFR1 [10,12]. Therefore, there is little change in toxicity with or
without heparin in this case (Figure 5B).

3.4. Association of FGF-SAP to U2OS Cells Assessed by Immunofluorescence

To investigate the role of HSPGs in the internalization of FGF-SAP, cells were examined
by confocal microscopy. Due to the toxicity issues of FGF2-SAP, we used GST-FGF2 in
these experiments. Cells were treated with GST-FGF2, with or without heparin, for 4 h.
Chloroquine (CQ) was added to prevent lysosomal degradation. Cells were then fixed and
stained with a marker for lysosomes (LAMP1) in addition to a nuclear dye (Hoechst).
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There was a considerable reduction in the fluorescent signal representing GST-FGF2
(green) in U2OS cells treated with GST-FGF2 and heparin (Figure 6B) in contrast to U2OS
cells treated with GST-FGF2 alone (Figure 6A), indicating that heparin efficiently competes
out the binding to cell-surface HSPGs. In the case of U2OS-R1 cells, GST-FGF2 was
internalized well in the presence and absence of heparin (Figure 6C,D), probably through
FGFR1. The distribution of GST-FGF2 in U2OS and U2OS-R1 cells was different. U2OS-
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R1 cells displayed GST-FGF2in typical endosomal structures while GST-FGF2 was more
dispersed in U2OS cells. Partial colocalization of GST-FGF2 and LAMP1 was observed in
U2OS-R1 cells (Figure 6C,D), but not in U2OS cells (Figure 6A,B). We also observed slightly
enlarged lysosomal structures that are probably a result of CQ treatment. Taken together,
the data indicate that FGF-SAP binds and may be internalized by HSPGs in U2OS cells.
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Figure 6. Localization of LAMP1 and GST-FGF2 in U2OS and U2OS-R1 cells. (A–D) Cells were incubated with CQ for
1 h, prior to a 4 h incubation with 100 ng/mL GST-FGF2 +/− 20 U/mL heparin at 37 ◦C, 5% CO2. Cells were then
fixed and stained for LAMP1 (red), GST-FGF2 (green) and nucleus (blue). (A) U2OS − Heparin (B) U2OS + Heparin (C)
U2OS-R1 -Heparin (D) U2OS-R1 + Heparin. Arrows point to examples of colocalization. Scale bar, 5 µm. Images from one
representative experiment (out of three) are presented.
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4. Discussion

In the present study, we evaluated PCI of FGF-SAP as a strategy to target and achieve
cytotoxic effects aimed specifically at cancer cells overexpressing FGFRs. After establishing
optimal photochemical doses for PCI in our cellular system, we demonstrated that PCI of
FGF-SAP induced strong cytotoxic effect. However, FGF-SAP was not specific to FGFRs.
Our data suggests that the unspecificity of FGF-SAP could be due to HSPG-mediated
binding and internalization of FGF-SAP in U2OS cells. The results suggest that FGF-SAP
was internalized by HSPGs by showing that heparin (1) decreased the cytotoxicity of PCI
of FGF-SAP, (2) decreased the internalization of GST-FGF2 shown by immunofluorescence,
and (3) blocked surface-binding of GST-FGF2 assessed by Western blotting. Taken together,
this points to HSPG-mediated internalization of FGF-SAP as being the responsible mecha-
nism for the highly cytotoxic effects observed in U2OS cells. The results further suggest,
due to strong PCI-induced cytotoxicity, that the present type of FGF-SAP is not specific
enough to be combined with PCI unless binding to HSPGs can be omitted.

The role of HSPGs as coreceptors and regulators of signaling through FGFRs is well
acknowledged [8,12]. Furthermore, membrane HSPGs have been reported as endocytic
receptors that undergo constitutive as well as ligand-induced endocytosis [42,43]. The
endocytic route of HSPGs is unclear [43]. The rate at which endocytosis occurs and the fate
of the endocytic vesicle are dependent on cell type, the HS-binding ligand, and the roles and
localization of the HSPG core protein on the cell membrane, as well as other key membrane-
associated molecules [42,43]. Internalization of FGFs by HSPGs has been demonstrated
both in vitro and in vivo [44–47]. Although there is a lack of research on this topic, HSPG-
mediated internalization of FGF2 has been shown to proceed at a slower rate compared to
that of FGFR1 [48,49]. This could explain why there is a lack of colocalization of GST-FGF2
with LAMP1 in U2OS cells when observed at the same timepoint in U2OS-R1 cells.

The findings presented here constitute a major challenge, as HSPGs exist on most, if
not all, cell types. Therefore, in order to specifically target cancers overexpressing FGFRs
using PCI, binding of SAP-FGF2 to HSPGs at the cell surface should be omitted. In this
study, we attempted to do this by treating the cells with heparin. This is not therapeutically
applicable, as it would require a high dose of heparin administrations and risk serious
adverse events such as heparin-induced thrombocytopenia/thrombosis syndrome and
bleeding [50]. A rational strategy to achieve improved selectivity towards FGFRs is to
mutate the HS binding site of FGF2, thereby preventing binding to membrane HSPGs, in
favor of FGFR-mediated internalization.

In a clever approach, FGF-SAP has been used to clear cell populations for FGFR
expressing cells. For instance, primary cultures of pancreatic islets were cleared for fibrob-
lasts by using FGF-SAP [32]. Possibly, in these applications, co-incubating FGF-SAP with
heparin could improve targeting and specificity.

Analysis of cell viability showed that the U2OS-R1 cells are slightly more sensitive
to PDT than the U2OS parental cells. If this is due to an enhanced capacity of the FGFR-
positive U2OS-R1 cells to take up TPCS2a, which was indicated by the flow cytometry
data (20% increase of TPCS2a in FGFR-positive compared to FGFR-negative U2OS cells)
remains to be investigated. It is possible that cells overexpressing FGFR1 have higher
endocytic activity and therefore take up more photosensitizer. On the other hand, the
slightly increased uptake of TPCS2a in U2OS-R1 cells compared to U2OS parental cells
could also simply be a result of clonal variations, and more experiments are needed to
elucidate this. In any case, these observations do not change the conclusions presented
in this paper, as U2OS cells, which had somewhat less uptake of TPCS2a, was still highly
sensitive to PCI-mediated FGF-SAP toxicity, presumably due to binding and internalization
through HSPGs.

Although PCI was potentiating the effects of FGF-SAP, we discovered that FGF-SAP
was not specific to cells expressing high levels of FGFRs, as FGF-SAP also bound to HSPG at
the cell surface. Several previous reports concerning cytotoxicity of FGF-SAP demonstrated
effects in cells expressing FGFRs, although these were not done in combination with
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PCI [33,51]. In these studies, the possible contribution of HSPG-mediated uptake of FGF-
SAP was not evaluated. Our study indicates that control conditions, for instance cells with
or without FGFRs, should be used.

The main conclusion of this study is that FGF-SAP, in its present form, should not be
combined with any strategies that facilitate enhanced endosomal escape in a therapeutic
setting, as high toxicity unspecific to FGFRs could be the result.
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